FARKLI NESNELERİN DAĞILIMI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FARKLI NESNELERİN DAĞILIMI"

Transkript

1 < KI NSNİN DIIMI ÖNK: 3 farklı mektup 4 posta kutusuna kutusuna kaç farklı şekilde atılabilir? ÇÖÜM: İİNCİ YO: 1.mektup 4 kutuya 2.mektup 4 kutuya 3.mektup 4 kutuya 4.4.4=64 İKİNCİ YO: şeklinde dağılımlar olur.....! =4!....! =36!...! =24! =64 ÖNK: 4 farklı oyuncak 3 çocuğa kaç farklı şekilde dağıtılabilir? ÇÖÜM: İİNCİ YO: 1. oyuncak 3 çocuğa 2.oyuncak 3 çocuğa 3.oyuncak 3 çocuğa 4.oyuncak 3 çocuğa =81 şekilde olur. İKİNCİ YO: O şeklinde dağılımlar olur...!. =3!... 3!=24..!. =18!..!. =36! =81 bulunur. ÖNK: 5 çocuk,,c şehirlerine gönderilecektir.kaç farklı şekilde gönderilebilir? ÇÖÜM: İİNCİ YO: 1.çocuk 3 şehre 2.çocuk 3 şehre 3.çocuk 3 şehre 4.çocuk 3 şehre 5.çocuk 3 şehre =243 İKİNCİ YO: şeklinde dağılım yapılabilir...!. =3!... 3! = !=60..!. =60!..!. =90! =243 olarak bulunur. ÖNK: 4 farklı mektup 5 posta kutusuna bir posta kutusuna en fazla 2 mektup atmak koşuluyla kaç farklı şekilde atılır? ÇÖÜM: İİNCİ YO: üm durumlardan istenmeyenleri çıkaralım. 1.mektup 5 kişiye 2.mektup 5 kişiye 3.mektup 5 kişiye 4.mektup 5 kişiye =625 İstenmeyenler = = durumlarıdır. İKİNCİ YO: dağılımı olur ! 3!.2! = ! 2!.2! = ! 4! = =540 afer ğbulut

2 KI NSNİN DIIMI ÖNK: 6 farklı kitap 3 kişiye herbirine en az bir kitap verilmesi koşuluyla kaç farklı ÇÖÜM: İİNCİ YO: Dağılımlar S = ! 2! ! ! 3! = 540 İKİNCİ YO:İçeme-dışarma prensibine göre ir kişi kitap almasın S = İki kişi kitap almasın S = S 1 -S 2 +S 3 = ! 3! ! 2!.2! = 1560 s 222 şeklindedir. ÖNK:irbirinden farklı 6 oyuncak 4 çocuğa,her çocuk en az bir oyuncak almak koşuluyla kaç farklı ÇÖÜM: İİNCİ YO: Oyuncaklar 1113 yada 1122 şeklinde dağıtılır. İKİNCİ YO: İçerme -Dışarma prensibine göre ir kişi oyuncak almasın s. 3 =2916 İki kişi oyuncak almasın s. 2 = 384 Üç kişi oyuncak almasın s. s 1-S2+S3-S4= =1560 ÖNK:Özdeş olmayan 4 elma,3 armut,3 nar vardır.her cinsten enaz bir tane olmak üzere bir tabağa kaç değişik şekilde konulabilir? ÇÖÜM:üm durumlardan istenmeyenler çıkarılırsa sonuca daha kolay gidilir. Hiç elma yoksa =1 Hiç armut yoksa =7 Hiç nar yoksa =7 üm durumlar = (1+7+7)=195 ÖNK:Sude elindeki 4 farklı çiçeği annesine, babasına ve teyzesine dağıtacaktır.nnesine en az bir çiçek vereceğine göre bu çiçekleri kaç farklı şekilde dağıtır? ÇÖÜM: İİNCİ YO:3-2 =65 İKİNCİ YO: nneye 1 çicek verelim.diğer 3 çiçeği 2 kişiye dağıtalım.. 8=32 nneye 2 çiçek verelim.diğer 2 çiçeği 2 kişiye dağıtalım.. 4=24 nneye 3 çiçek verelim.diğer 1 çiçeği 2 kişiye dağıtalım..2=8 nneye tüm çiçekleri verelim =65 =1 afer ğbulut

3 KI NSNİN DIIMI ÖNK: 6 mektup,8 değişik posta kutusuna her mektup farklı bir posta kutusuna atılmak koşuluyla kaç farklı biçimde postalanabilir? ÇÖÜM:ir mektup 8 kutudan birine,ikinci mektup kalan 7 kutudan birine,...devam edilirse =20160 olur. ÖNK: 6 mektup,8 değişik posta kutusuna kaç değişik şekilde postalanabilir? ÇÖÜM: 6 mektup aynı kutuya birlikte atılabilir.una göre,her mektup için 8 değişik kutu kullanılabilir.u durumda 6 mektup =8 =2 olur. ÖNK: 6 kişi her ekipte en az bir kişi bulunmak koşuluyla 3 ekibe kaç farklı ÇÖÜM: Dağılımlar şeklindedir ! = ! = = 60 ÖNK: 9 kitap 3 çocuğa eşit olarak kaç değişik ÇÖÜM:. = 1680 ÖNK: 3 matematik,2 fizik ve 2 kimya öğretmeni arasından içinde enaz bir öğretmen bulunan 5 kişilik bir kurul kaç değişik biçimde oluşturulur? ÇÖÜM: 3M+2 yada 3M+2K şeklindedir... = 19 üm durumlardan istenmeyenler çıkartıldı. ÖNK: 10 farklı nesne farklı 2 kutuya kaç farklı dağıtılabilir?(kutular boş kalabilir) ÇÖÜM: 1.nesne 2 kutuya 2.nesne 2 kutuya 3.nesne 2 kutuya şeklinde devam edilirse 2 olur. ÖNK:10 farklı nesne farklı 2 kutuya 2 adet,8 adet olmak üzere kaç farklı şekilde dağıtılabilir? ÇÖÜM:.. 2! =90 ÖNK:10 farklı nesne farklı 2 kutuya eşit olarak kaç farklı şekilde dağıtılabilir? ÇÖÜM:.. 2! ÖNK: 10 farklı nesne farklı 5 kutuya eşit olarak kaç farklı şekilde dağtılabilir? ÇÖÜM: ! ÖNK: 10 farklı nesne farklı 3 kutuya kaç farklı şekilde dağıtılabilir?(kutular boş kalabilir) ÇÖÜM: 1.kutuya 3 tane 2.kutuya 3 tane 3.kutuya 3 tane.. 10.kutuya 3 tane, 3 olur. ÖNK: 10 f arklı nesne 1.kutuya 2 adet,2.kutuya 3 adet,3.kutuya 5 adet olmak üzere kaç farklı ÇÖÜM:.. ÖNK: 10 farklı nesne farklı 3 kutuya 2 adet,3 adet,5 adet olmak üzere kaç farklı şekilde dağıtılır? ÇÖÜM:... 3! afer ğbulut

4 GP YIM ÖNK: 10 kişi kaç farklı el sıkışabilir? ÇÖÜM: = 45 ÖNK:10 kişinin aynı anda kaç farklı el sıkışma durumu vardır? ÇÖÜM:.....! ÖNK: 12 kişiden 6 şar kişilik iki ekip kaç farklı şekilde seçilebilir? ÇÖÜM:. ÖNK:12 öğrenci üç gruba her grupta eşit sayıda öğrenci olmak kaç türlü ÇÖÜM:...! ÖNK: 8 kişi,herbiri 2 kişilik 4 gruba kaç farklı şekilde ÇÖÜM:....! ÖNK: 9 oyuncak üç çocuk arasında eşit olarak kaç kaç türlü dağıtılabilir?! ÇÖÜM:!.!.! ÖNK: 9 öğrenci üç takıma eşit olarak kaç farklı şekilde seçilebilir? ÇÖÜM:...! ÖNK:9 öğrenci sırasıyla 4,3,2 şerli üç takıma kaç farklı şekilde! ÇÖÜM:!.!.! ÖNK: 6 öğrenci 3 er kişilik iki takıma kaç türlü ÇÖÜM:!.!.!! ÖNK: 6 öğrenci 2 şer kişilik üç takıma kaç türlü ÇÖÜM:...! ÖNK: 5 elemanlı bir küme hiçbiri boş olmayan üç ayrık altkümeye kaç değişik biçimde ÇÖÜM:Dağılımlar 311 ve 122 şeklindedir ! = ! = =25 olur. ÖNK: 12öğrenci 2,2,4,4 er kişilik 4 gruba kaç türlü ÇÖÜM:...!.! ÖNK: 10 kişinin bulunduğu bir gruptan 4,2,2,2 şer kişilik kaç farklı ekip kurulabilir? ÇÖÜM:....! = 3150 ÖNK: 6 kişi herbirinde en az bir kişi bulunan üç takıma kaç farklı biçimde ÇÖÜM: akımları (3,2,1), (2,2,2),(1,1,4) şeklinde oluşturabiliriz ! +...! = 90 ÇIKMI ÖNK: 10 öğrenci kendi aralarında basketbol maçı yapmak üzere 5 er kişilik iki takıma kaç değişik biçimde ayrılabilirler? ÇÖÜM:10 öğrenciden 5 kişilik takım =252 biçimde seçilebilir.u durumda kalan 5 kişide diğer takımda olacaktır.ncak 5 er kişilik bu 252 takımın yarısı diğer yarısının aynısıdır. irici grup (a,b,c,d,e) (k,l,m,n,p) İkinci grup(k,l,m,n,p) (a,b,c,d,e) u durumlar farklı iki gruplama iken,aynı takımları gösterir.dolayısıyla 10 öğrenci 5 er kişilik iki takıma.. = 126 şekilde olur.! enzer şekilde 12 kişi herbiri 4 er kişilik 3 takıma ! 20 kişi herbiri 5 er kişilik 4 takıma ! ÖNK: 12 farklı hediye 4 çocuğa dağıtılacaktır. Herhangi bir çocuğa 6, diğerlerine 2 şer hediye vermek şartıyla kaç farklı şekilde dağıtılabilir? ÇÖÜM: ! ÖNK: 12 farklı hediye 4 çocuğa dağıtılacaktır.elirli bir çocuğa 6,diğerlerine 2 şer hediye vermek koşuluyla kaç farklı şekilde dağıtılabilir? ÇÖÜM:... ÖNK:12 öğrenci 3,3,6 şar kişilik,,c isimli üç gruba kaç türlü ayrılabilirler? ÇÖÜM:... 3!. = 55440! ÖNK:12 öğrenci 2,2,4,4 er kişilik,,c,d isimli 4 gruba kaç türlü ÇÖÜM:....!.!. 3! afer ğbulut

5 GP YIM ÖNK: 5 kişi üç otel odasına,her odada en az bir kişi olacak şekilde kaç farklı şekilde yerleşirler? ÇÖÜM: 5 kişi 3 otel odasına 311 veya221şeklinde yerleşebilirler ! 2! ! 2! = 150 3!,3 odaya yapılabilecek farklı dağılımlar 2!, 2 odada aynı sayıda kişinin kalmasından doğan aynı durumlar ÖNK: 4 arkadaş 5 farklı otel odasından ikisine(her iki odadan birinde enaz iki kişi olacak şekilde) kaç farklı biçimde yerleşebilir? ÇÖÜM: Önce 5 odadan ikisi seçilir ve buda = 10 demektir. Seçilen iki oda,,c,d, odalarından ve olsun.u iki odaya yerleşme durumu [ ]=140 ÖNK: ={1,2,3,4,5,6} kümesi 2 elamanlı 3 altkümeye kaç değişik şekilde ÇÖÜM:... = 15! urada 3! 'e bölmemizin nedeni 1.küme {1,2} 1.küme {3,4} 2.küme {3,4} 2.küme {1,2} 3. küme {5,6} 3.küme {5,6} urada altkümelerin farklı dizilişleri aynı olacağındandır. ÖNK:,,C aileleri sırasıyla 3,4 ve 5 kişdir.u ailelerden 4 kişi seçilip ntalya'ya geziye gönderilecektir.her aileden en az bir kişi olacağına göre,bu seçim kaç farklı şekilde gerçekleşir? ÇÖÜM: C =270 ÖNK: 9 çocuk 3 'erli 3 takıma kaç farklı şekilde ÇÖÜM: Kimlerle takım oluşturulduğu,takımda kimlerin olduğu önemli olsaydı.. =1680 diye çözüm yapardık.ma burada takımların önemi yoktur.daha açık bir ifadeyle üstteki üstteki durumda (a,b,c),(d,e,f) ve(k,l,m) taıkmlarını kendi aralarında yer değiştirmiş oluyoruz.halbuki bu soruda buna gerek yoktur ! = 280 İKİNCİ YO: 9 kişiden birini rastgele alalım.şimdi bu adama takım oluşturmak için 2 adam gereklidir.u iki adamı = 28 şekilde seçebiliriz.şimdi ilk takım oluştu.kalan 6 adamdan birini rastgele alalım.u adamada takım oluşturmak için 2 adam gereklidir. Kalan 5 adamdan 2 adam = 10 şekilde seçilir. Geriye kalan 3 adam zaten bir takım oluşturuyor =280 cevabımız olur. ÖNK: 10 kişiyi 2 şer kişilik 5 ekibe kaç farklı şekilde ayırabiliriz? ÇÖÜM: İİNCİ YO:..... = 945! İKİNCİ YO: ir adam seçip yanına bir kişi alırsak,aynı şekilde bir adam alıp yanına bir kişi verip işleme devam edersek = 945 ÖNK: 10 kişi aynı anda 5 çift olmak üzere tokalaşı yorlar.u tokalaşmalardan kaç değişik fotoğraf elde edilir? ÇÖÜM: 10 kişiden birisi olsun. ile tokaşacak kişi sayısı dir.şimdi ile tokalaşmayan birini alalım. dı olsun. nin eşini şekilde seçebiliriz. ve ile tokalaşmayan birini alalım adı C olsun. Cnin eşini şekilde seçebiliriz.,,c kişileriyle tokalaşmamış kişinin adı D olsun. D nin eşini şeklinde seçeriz. Son olarak,,c ve D kişileriyle tokalaşmamış kişi olsun.onun eşinide şekilde seçebiliriz = 945 afer ğbulut

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır?

2. (x 1 + x 2 + x 3 + x 4 + x 5 ) 10 ifadesinin açılımında kaç terim vardır? Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız. Sınavın ilk 30 dakikasında sınıftan çıkılmayacaktır.

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma

PERMÜTASYON DERS NOTLARI. Sayma Yöntemleri. TEMEL SAYMA KURALLARI Toplama yoluyla sayma. Çarpma yoluyla sayma TEMEL SAYMA KURALLARI Toplama yoluyla sayma A ve B ayrık iki küme olsun. Bu iki kümenin birleşimlerinin eleman sayısı, bu kümelerin eleman sayılarının toplamına eşittir. Bu sayma yöntemine toplama yoluyla

Detaylı

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır.

4. Bir tabakta 3 elma, 4 armut ve 5 portakal vardır. Saymanın Temel İlkesi Birinci elemanı A 1 kümesinden, ikinci elemanı A 2 kümesinden,..., n inci elemanı A n kümesinden alınmak koşulu ile; kaç değişik sıralı n li yazılabilir? 1. Aşağıdaki problemleri,

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25

1. Bölüm: SIRALAMA (PERMÜTASYON) Bölüm: SEÇME (KOMBİNASYON) Bölüm: BİNOM AÇILIMI Bölüm: OLASILIK...25 1 İçindekiler 1. Bölüm: SIRALAMA (PERMÜTASYON)... 5 2. Bölüm: SEÇME (KOMBİNASYON)...13 3. Bölüm: BİNOM AÇILIMI...21 4. Bölüm: OLASILIK...25 5. Bölüm: FONKSİYONLARIN SİMETRİLERİ VE CEBİRSEL ÖZELLİKLERİ...37

Detaylı

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU 19 KASIM 2011 SORULAR

OYAK ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU 19 KASIM 2011 SORULAR OYAK TÜBİTAK BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. OYAK MATEMATİK YARIŞMASI İL BİRİNCİLİĞİ SINAVI ADANA - BALIKESİR - BATMAN - BOLU - DÜZCE HATAY - KAHRAMANMARAŞ - MARDİN - ORDU RİZE - SAKARYA -

Detaylı

PERMÜTASYON VE KOMBİNASYON ARASINDAKİ FARK

PERMÜTASYON VE KOMBİNASYON ARASINDAKİ FARK 1 Bir dondurmacıda beş farklı dondurma çeşidi bulunmaktadır. Aylin üç çeşit dondurma almak istiyor. a) Aylin kaç farklı seçim yapabilir? b) Dondurmaların seçiminde sıranın önemli olması durumunda kaç farklı

Detaylı

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER MATEMATİK PROJESİ DANIŞMAN YASEMİN YAVAŞ İSTANBUL-2014 İÇİNDEKİLER AMAÇ... 3 GİRİŞ... 4 TEOREMLER...

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon

Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon Mustafa YAĞCI www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Kombinasyon K ombinasyon. n tane farklı elemandan oluşan bir kümenin altkümelerine birer kombinasyon denir.

Detaylı

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI. 4. c tabanındaki iki basamaklı ardışık üç

ÖZEL EGE LİSESİ 12. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI. 4. c tabanındaki iki basamaklı ardışık üç 1. Rakamları toplamından büyük olan kaç tane doğal sayı vardır? A) 0 B) 1 C) 3 D) 8 E) 10 4. c tabanındaki iki basamaklı ardışık üç sayının toplamı (0) cc ise c nin alamayacağı en büyük değer kaçtır? A)

Detaylı

1. Aşağıdakilerden hangisi birebir eşleme örneğidir?

1. Aşağıdakilerden hangisi birebir eşleme örneğidir? Test 1. Aşağıdakilerden hangisi birebir eşleme örneğidir? A) Çocuğun verilen çubukları uzundan kısaya doğru dizmesi B) Çocuğun bloklarını üçgen, kare ve dikdörtgen olmalarına göre kutulara koyması C) Çocuğun

Detaylı

TEST - 1 ÖDEV TESTİ elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin. 1. A = {1, {2}, {1, 2}, 3, Ø} kümesi için aşağıdakilerden

TEST - 1 ÖDEV TESTİ elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin. 1. A = {1, {2}, {1, 2}, 3, Ø} kümesi için aşağıdakilerden 10 Kümeler ÖDEV TESTİ TEST - 1 6. 5 elemanlı alt kümelerinin sayısı 3 elemanlı alt kümelerinin sayısına eşit olan bir kümenin en az 6 elemanlı kaç alt kümesi vardır? ) 24 ) 28 C) 37 D) 38 E) 42 1. = {1,

Detaylı

5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A. 9. A ve B iki kümedir.

5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A. 9. A ve B iki kümedir. 1. KÜMELER 5. A ve B gibi iki cümleden A nın bir, B nin iki elemanı A B cümlesinin elemanı değildir. dışında A B nin alt cümleleri sayısı 63 olduğuna göre, A B cümlesinin alt cümleleri sayısı kaçtır? (51)

Detaylı

x 24 ise x 96 dır. 4

x 24 ise x 96 dır. 4 YAŞ PROBLEMLERİ Yaş problemlerinin çözümünde şunları göz önüne alırız. 1. Bir kişinin bugünkü yaşı x ise, t yıl önceki yaşı t yıl sonraki yaşı x t dir. x t dir.. n tane kişinin yaşları toplamı: T ise,

Detaylı

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur?

3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur? Ayrık Hesaplama Yapıları A GRUBU.0.05 Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız.

Detaylı

Ünite 1: SAYMA Konu : Sıralama ve seçme Alt Konu : Toplama ve çarpma yolu ile sayma Neler öğreneceksiniz? Olayların gerçekleşme sayılarını toplama ve çarpma prensiplerini kullanarak hesaplamayı öğreneceksiniz.

Detaylı

PERMÜTASYON - KOMBİNASYON

PERMÜTASYON - KOMBİNASYON PERMÜTASYON - KOMBİNASYON Sayma Yöntemleri Saymanın çeşitli yöntemleri vardır. Bunlardan biri eşleme yolu ile saymadır. Eşleme yolu ile sayma yönteminde sayma sayıları kümesinin elemanları sayılacak nesneler

Detaylı

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1.

TEOG. Kümeler KÜME VE ELEMAN KAVRAMI ÖRNEK KÜMELERİN GÖSTERİMİ ÖRNEK ÖRNEK KÜMENİN ELEMAN SAYISI ÖRNEK 3. ORTAK ÖZELLİK YÖNTEMİ 1. TEOG ümeler ÜE VE EEN VRI Elemanları belirlenebilen, belirli bir anlam taşıyan canlı ya da cansız varlıkların veya kavramların oluşturduğu topluluğa küme denir. ümeyi oluşturan varlıkların, kavramların

Detaylı

Örnek. Temel Matematik Sınavı. 1 Diğer sayfaya geçiniz.

Örnek. Temel Matematik Sınavı. 1 Diğer sayfaya geçiniz. Temel Matematik Sınavı 10 u testte sırasıyla Matematik (1 3) ve Geometri (33 40) ile ilgili 40 soru vardır. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. u testin cevaplanması

Detaylı

www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Nesnelerin Dağılımları

www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Nesnelerin Dağılımları www.mustafayagci.com.tr, 2011 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Nesnelerin Dağılımları B u yazımızda, r tane nesneyi n farklı kutuya belli şartlar altında kaç değişik şekilde dağıtabileceğimizi

Detaylı

Elektra Raporlama Sistemi Sunumu

Elektra Raporlama Sistemi Sunumu Elektra Raporlama Sistemi Sunumu Raporlama Araçları Açıklamaları: 1-Seçilen nesneyi raporlar. 2-Yeni boş bir rapor eklemeyi sağlar. 3-Seçilen raporları düzenlemeyi sağlar. 4-Seçilen raporu siler. 5-Seçilen

Detaylı

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM)

LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) LYS MATEMATÝK II Soru Çözüm Dersi Kitapçýðý 5 (MF-TM) Permütasyon Kombinasyon Binom Açýlýmý Bu yayýnýn her hakký saklýdýr. Tüm haklarý bry Birey Eðitim Yayýncýlýk Pazarlama Ltd. Þti. e aittir. Kýsmen de

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Cebir Notları. Kümeler TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Kümeler TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler TEST I 1. s(a) = 13 s(a \ B) = 7 s(a B) = 23 ise, s(b) nedir? A) 6 B) 7 C) 10 D) 13 E) 16 7. Üç basamaklı 5 ve 7 ile tam bölünebilen,

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

ö ş Ü ş ş ş ş ş ö ş ş ö ş ş ö Ş ö ş ş ö Ş ö ş Ş ş ş ş ö ş Ç Ç ö ş ş ö ö ş ö Ö Ç Ş ö ş ş ş ş ö Ü ö ş ş ö ş ö ö ö Ş ş ö Ç Ş ş ş Ç Ş Ş ö ş ş ş ş ş ş Ç ö ö ş ş ş Ö Ö ş ş ş ş ş ş ş Ç Ş ş ö ö şşş ö ş ş ş ş ö

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3)

PERMÜTASYON DÜZEY: 1 TEST : P(6, n) = 6! 1. P(6, 2) + P(4, 3) PERMÜTASYON DÜZEY: 1 TEST : 1 1. P(6, 2) + P(4, 3) işleminin sonucu kaçtır? A) 30 B) 44 C) 50 D) 54 5. P(6, n) = 6! eşitliğini sağlayan n doğal sayılarının kümesi aşağıdakilerden hangisidir? A) {7} B)

Detaylı

Permütasyon Kombinasyon Binom Olasılık

Permütasyon Kombinasyon Binom Olasılık Permütasyon Kombinasyon Binom Olasılık Saymanın Temel İlkesi: A1, A2,..., A n kümeleri için s( A1 ) = a1, s( A2 ) = a2,.., s( An ) A xa x xa Kartezyen çarpımının eleman sayısı; s( A xa x... xa ) = s( A

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 0 Mayıs 009 Matematik Soruları ve Çözümleri. ( ) 4 işleminin sonucu kaçtır? A) B) C) 4 D) E) 6 Çözüm ( ) 4 ( ) 4 4 6.

Detaylı

Matematikte Sonsuz. Mahmut Kuzucuoğlu. Orta Doğu Teknik Üniversitesi Matematik Bölümü İlkyar-2017

Matematikte Sonsuz. Mahmut Kuzucuoğlu. Orta Doğu Teknik Üniversitesi Matematik Bölümü İlkyar-2017 Matematikte Sonsuz Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2017 17 Temmuz 2017 Matematikte Sonsuz Bugün matematikte çok değişik bir kavram olan sonsuz

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

Cebir Notları. Nesnelerin Dağılımları Mustafa YAĞCI,

Cebir Notları. Nesnelerin Dağılımları Mustafa YAĞCI, www.mustafayagci.com, 2006 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com Nesnelerin Dağılımları Bu yazımızda, r ve n birer sayma sayısı olmak üzere, r tane nesneyi n farklı kutuya belli şartlar altında

Detaylı

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ

5. BÖLÜM EKİ SAYMANIN TEMEL PRENSİPLERİ 5 ÖLÜM EKİ SYMNIN TEMEL PRENSİPLERİ elirli bir takım deneylerde olanaklı tüm sonuçları belirlemek için geliştirilmiş tekniklere kombinasyon analizi denir Örneğin iki farklı denemede 1 denemenin m 2 denemenin

Detaylı

PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI

PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI PROJE ADI: ÖZDEŞ NESNELERİN FARKLI KUTULARA DAĞILIMINDA POLİNOM KULLANIMI PROJENİN AMACI: Polinom fonksiyon yardımıyla özdeş nesnelerin farklı kutulara istenilen koşullardaki dağılım sayısının hesaplanması

Detaylı

Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde,

Örnek...5 : A = { a, b, c, d, e, f } kümesinin 4 lü perm ütas yonlarının kaç tanesinde, PERMÜTASYON ( SIRALAMA OLAYI ) Birbirinden farklı n tane nesnenin r tanesinin farklı her dizilişine (sıralanışına) n nesnenin r li permütasyonları denir ve P(n,r)= n! (r n) (n r)! biçim inde gösterilir.

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48 Numarası : Adı Soyadı : SINAV YÖNERGESİ 2. K 5 tam çizgesinin bir kenarı çıkarılarak elde edilen çizgenin köşe noktaları en az kaç renk ile boyanabilir? A) 3 B) 4 C) 2 D) 5 E) 6 İşaretlemelerinizde kurşun

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler ULNIK KÜME ulanık Küme Kavramı Elemanları x olan bir X evrensel (universal küme düșünelim. u elemanların ÌX alt kümesine aitliği, yani bu altkümelerin elemanı olup olmadığı X in {0,1} de olan karakteristik

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde 1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Bu modül, senaryolar, schedule form, raporlar, personel ve öğretmen portalı schedule menülerini kapsamaktadır.

Bu modül, senaryolar, schedule form, raporlar, personel ve öğretmen portalı schedule menülerini kapsamaktadır. Working Schedule (Çalışma Programı) Bu modül, senaryolar, schedule form, raporlar, personel ve öğretmen portalı schedule menülerini kapsamaktadır. Senaryo Görev senaryoları belirlenen kriterlere göre sistem

Detaylı

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =? Ayrık Hesaplama Yapıları A GRUBU 0.0.01 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Sayısal öğrencisi olan Ali nin bir hafta sonu çözdüğü

Sayısal öğrencisi olan Ali nin bir hafta sonu çözdüğü 13. ( n + 3 )! ( n + )! ( n + 1 )! = 3. 3. 5. 7 15. b olduğuna göre, n kaçtır? 3 6 9 a c d ) 1 ) 3 ) 4 ) 6 ) 8 16 14. V 3 V V 1 Yukarıda verilen düzgün altıgen şeklindeki pistin noktasından belirtilen

Detaylı

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız. MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları

Detaylı

6. Sınıf MATEMATİK TEST 1 ÜSLÜ SAYILAR. 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade

6. Sınıf MATEMATİK TEST 1 ÜSLÜ SAYILAR. 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade 6. Sınıf MATEMATİK ÜSLÜ SAYILAR TEST 1 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade aşağıdakilerden hangisidir? 5. A) 3. 3. 3 B) 4. 4. 4 C) 4. 4. 4. 4 D) 3. 3. 3. 3 Mert 100000000 2. 5. 5. 5 Yukarıda

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 6. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 6. SINIFLAR FİNAL SORULARI 6. SINIFLAR FİNAL SORULARI 1. abc9 32 (abc9 ) dört basamaklı, (de) iki basamaklı doğal sayılardır. Yandaki bölme işlemine göre, kalanın alabileceği değerler toplamı kaçtır? de 2. Boy ve kalınlıkları farklı

Detaylı

=A1+A2-A3, =A1*A2/A3,

=A1+A2-A3, =A1*A2/A3, 1 2 3 Formül Oluşturma: Excel de formüller = ile başlar. Örnek formüller; =ortalama(b1;c1) b1 ile c1 hücrelerinin ortalamasını alır =toplam(a1;b1) a1 ile b1 hücrelerinin toplama formülünü verir. =çarpım(a1;b1;c1;..)

Detaylı

Ali 8 yaşındadır. Ali den 1 yaş büyük olan Oya. Can ın 5 kalemi vardır. Ayla nın kalemleri Can ın kalemlerinden 3 fazladır. Ayla nın kalemi vardır.

Ali 8 yaşındadır. Ali den 1 yaş büyük olan Oya. Can ın 5 kalemi vardır. Ayla nın kalemleri Can ın kalemlerinden 3 fazladır. Ayla nın kalemi vardır. Zihinden toplayalım. 1. artı 8 eder.. 3 ten büyük olan sayı 5 tir. 3. 5 e eklersek olur. 4. 5.. 5 e 1 ilave edersek olur. 7 den sonra gelen sayı 5, 3 daha eder. olur. 7. yi 1 artırırsak olur. 8. 9. 9 ile

Detaylı

5. İki sayının toplamı 60 tır. Büyük sayı küçük sayının. 6. Bir çiftlikte toplam 20 tavuk ve koyun bulunmaktadır.

5. İki sayının toplamı 60 tır. Büyük sayı küçük sayının. 6. Bir çiftlikte toplam 20 tavuk ve koyun bulunmaktadır. Denklemler 7. Sınıf Matematik Soru Bankası TEST 0. kg. Denge durumunda verilen eşit kollu teraziye göre, kütlesinin kaç kg olduğunu veren denklem aşağıdakilerden hangisidir? A) + = + B) + = + C) + = +

Detaylı

Toplam Olasılık Prensibi

Toplam Olasılık Prensibi 1 Toplam Olasılık Prensibi A 1, A 2,, A n karşılıklı kapsamayan ve birlikte tamamlayan olaylar kümesi olsun: A k A A j 0 = 0 k j j nn j j 1 = 1 B, S içinde herhangi bir olay ise k j AA j = ise S ise Pr[A

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır?

TEST. Çarpanlar ve Katlar. 1. Asal çarpanların çarpımı olan sayı kaçtır? sayısının kaç tane birbirinden farklı asal çarpanı vardır? Çarpanlar ve Katlar 8. Sınıf Matematik Soru Bankası TEST. Asal çarpanların çarpımı..5 olan sayı kaçtır? A) 40 B) 480 C) 60 D) 70 4. 60 sayısının kaç tane birbirinden farklı asal çarpanı vardır? A) B) C)

Detaylı

KOMBİNASYON - PERMÜTASYON Test -1

KOMBİNASYON - PERMÜTASYON Test -1 KOMİNSYON - PERMÜTSYON Test -. kişi arka arkaya sıralanacaktır. u kişiler kaç farklı sıra oluşturabilir?. kişilik bir sıraya, öğrenci kaç farklı dizilişte yan yana oturabilir?. farklı çatal, farklı kaşık

Detaylı

[!] Sütun, çizgi ve daire grafikleri gerçek yaşamdan seçilmiş örnek etkinliklerle hatırlatılır.

[!] Sütun, çizgi ve daire grafikleri gerçek yaşamdan seçilmiş örnek etkinliklerle hatırlatılır. : OLASILIK VE 2. BÖLÜM: PERMÜTASYON, KOMBİNASYON, OLASILIK VE ISTATISTIK 1. Verilen bir gerçek yaşam durumuna uygun serpilme grafiği ve kutu grafiği çizer ve bu grafikler üzerinden çıkarımlarda bulunur.

Detaylı

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66...

İÇİNDEKİLER TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 02-03 FAKTÖRİYEL...65-66... İÇİNDEKİLER Sayfa No Test No 3-PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK TOPLAMA YOLUYLA SAYMA YÖNTEMİ...59-60... 01-01 ÇARPMA YOLUYLA SAYMA YÖNTEMİ...61-64... 0-03 FAKTÖRİYEL...65-66...

Detaylı

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi

Fen ve Anadolu Liselerine Öğretmen Seçme Sınav Denemesi EN LİSELERİ, SOSYL İLİMLER LİSELERİ,SPOR LİSELERİ,NDOLU LİSELERİ ÖĞRETMENLERİNİN SEÇME SINVIN HZIRLIK DENEME SINVI. 2 HZIRLYN : İ:K(2008) idensu@gmail.com kuscuogluibrahim@gmail.com http://idensu.googlepages.com

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

Gerçekten Asal Var mı? Ali Nesin

Gerçekten Asal Var mı? Ali Nesin Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9

TEST. Tam Sayılar 1. ( 36) : (+12).( 3) : ( 2) 3 + [( 6) ( 2)] işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 9 B) 1 C) 1 D) 9 Tam Sayılar 1. ( 6) : (+12).( ) 7. Sınıf Matematik Soru Bankası 5. 4 2 : () + [( 6) ()] TEST 1 A) 9 B) C) 1 D) 9 A) B) 4 C) D) 2. 6. Yukarıdaki sayı doğrusu üzerinde modellenen işlem aşağıdakilerden (

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

.com. Faydalı Olması Dileklerimizle... Emrah&Elvan PEKŞEN

.com. Faydalı Olması Dileklerimizle... Emrah&Elvan PEKŞEN .com Faydalı Olması Dileklerimizle... Emrah&Elvan PEKŞEN ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkokul1.com ilkok Adı-Soyadı:... Önce kelimeleri tek

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

7.SINIF. Tam Sayılarda Çarpma ve Bölme Islemleri. Tam Sayılarla Çarpma İşlemi

7.SINIF. Tam Sayılarda Çarpma ve Bölme Islemleri. Tam Sayılarla Çarpma İşlemi Tam Sayılarda Çarpma ve Bölme Islemleri Tamsayılarla çarpma ve bölme islemlerini yapar. 2 Tam Sayılarla Çarpma İşlemi Yanda verilmiş sayma pullarını 2 şerli gruplandırdığımızda 6 tane grup oluşur. Bir

Detaylı

MATEMATÝK TESTÝ. Pozitif n tam sayýlarý için, 10,23 0, 4 1,023 0,04. n! = (n. iþleminin sonucu kaçtýr? R(n) 2).

MATEMATÝK TESTÝ. Pozitif n tam sayýlarý için, 10,23 0, 4 1,023 0,04. n! = (n. iþleminin sonucu kaçtýr? R(n) 2). MATEMATÝK TESTÝ. Bu testte 0 soru vardýr.. Cevaplarýnýzý, cevap kaðýdýnýn Matematik Testi için ayrýlan kýsmýna iþaretleyiniz.. 0, 0, 4,0 0,04 iþleminin sonucu kaçtýr? A) 0 B) 9 0 D) 0 E) 0 4. Pozitif n

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

MEV KOLEJİ ÖZEL ANKARA ORTA OKULU 6. SINIF MATEMATİK DERSİ YAZ ETKİNLİKLERİ

MEV KOLEJİ ÖZEL ANKARA ORTA OKULU 6. SINIF MATEMATİK DERSİ YAZ ETKİNLİKLERİ MEV KOLEJİ ÖZEL ANKARA ORTA OKULU 6. SINIF MATEMATİK DERSİ YAZ ETKİNLİKLERİ 1) Tarık, bisikletiyle Kahraman ve Arslan malikânelerine gazete dağıtıyor ve tekrar aynı noktaya geri dönüyor. Sizce hangi yolu

Detaylı

PHYS 121 General Physics I (Yrd.Doç.Dr. E. TARHAN) Fizik Bölümü F1. PHYS 121 General Physics I (Yrd.Doç.Dr. G. ARAL) Fizik Bölümü F3

PHYS 121 General Physics I (Yrd.Doç.Dr. E. TARHAN) Fizik Bölümü F1. PHYS 121 General Physics I (Yrd.Doç.Dr. G. ARAL) Fizik Bölümü F3 2012-2013 EĞİTİM-ÖĞRETİM YILI YAZ OKULU DERS PROGRAMI BÖLÜM : FİZİK PROGRAM : LİSANS SINIF : 1 08.45-09.30 09.45-10.30 10.45-11.30 11.45-12.30 13.30-14.15 14.30-15.15 15.30-16.15 16.30-17.15 2012-2013

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

2009 VII.MATEMATİK YARIŞMASI

2009 VII.MATEMATİK YARIŞMASI ÖZL SRVRGZİ LİSSİ 2009 VIIMTMTİ YRIŞMSI ÇÖZÜMLRİ 1 5 (n 2009)! = 2 7 3 4 57 buradan n 2009 = 9 n = 2018 2 m + n = 2008 6 F β +β 3 t 1 kuralına göre 18 için (8 1)18 14 için (4 1)14 17 için (7 1)17 13 için

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223

A) 18 B) 19 C) 20 D) 21 A) 1226 B) 1225 C) 1224 D) 1223 . İlk 2 pozitif doğal sayıdan oluşan {, 2, 3,,...,, 2} kümesi veriliyor. u kümeden 3 eleman çıkartıldığında geriye kalan elemanların sayı değerleri çarpımı tam kare oluyor. una göre, çıkartılan sayıların

Detaylı

1. ADAY PERFORMANS DEĞERLENDİRME MODÜLÜ

1. ADAY PERFORMANS DEĞERLENDİRME MODÜLÜ 1. ADAY PERFORMANS DEĞERLENDİRME MODÜLÜ Aday öğretmenlerin performansını değerlendirmek üzere geliştirilen modülümüzde adayın sisteme işlenmesinde sırasıyla dört işlem yapılmaktadır. Bunlar: a) Adayın

Detaylı

Doğal Sayılarda Çarpma ve Bölme İşlemi. Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi

Doğal Sayılarda Çarpma ve Bölme İşlemi. Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi Doğal Sayılarda Çarpma ve Bölme İşlemi Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi ndedeoglu@sakarya.edu.tr Doğal Sayılarda Çarpma İşlemi Öğretimi 2. sınıftan itibaren toplamaya dayalı olarak

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 1 Mayıs 01 Matematik Sorularının Çözümleri 1. 9! 8! 7! 9! + 8! + 7! 7!.(9.8 8 1) 7!.(9.8+ 8+ 1) 6 81 9 7. 4, π, π π,14

Detaylı

Matematik Yarıyıl Tatili Etkinliği

Matematik Yarıyıl Tatili Etkinliği Matematik Yarıyıl Tatili Etkinliği 1) Aşağıdaki ifadelerden doğru olanlarına D, yanlış olanlarına Y harfi yazınız. (.) İşlem önceliğinde çarpma her zaman bölmeden önce yapılır. (.) Asal sayıların tamamı

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

BİL 101 - Bilişim Teknolojileri. PowerPoint 2007. http://bil.etu.edu.tr/bil101

BİL 101 - Bilişim Teknolojileri. PowerPoint 2007. http://bil.etu.edu.tr/bil101 BİL 101 - Bilişim Teknolojileri PowerPoint 2007 http://bil.etu.edu.tr/bil101 Etkili Sunum Hazırlama Teknikleri 2 Etkili Sunum Hazırlama Dinleyici kitlenizi belirleyin. Dinleyiciler uzman kişiler mi? Sıradan

Detaylı

Yrd. Doç. Dr. Güney HACIÖMEROĞLU Matematik Öğretimi I,

Yrd. Doç. Dr. Güney HACIÖMEROĞLU Matematik Öğretimi I, Yrd. Doç. Dr. Güney HACIÖMEROĞLU Matematik Öğretimi I, SAYMA parmalarımızla oyuncaklarla küçük objeler (fasülye, çubuklar) Abaküs Sayıların temsil ettiği miktarları gösterirken video Sayma Becerisi Sayma

Detaylı

Dikkat: En Son Güncel Haliyle, 2015 YGS Başvuruları Nasıl Yapılacak?

Dikkat: En Son Güncel Haliyle, 2015 YGS Başvuruları Nasıl Yapılacak? Dikkat: En Son Güncel Haliyle, 2015 YGS Başvuruları Nasıl Yapılacak? ÖSYM Başkanlığının,2015 Yılı Sınav Takvimi Duyurusuyla birlikte 2015 ÖSYM YGS-LYS Başvuru ve Sınav Tarihleri de böylece netlik kazanmıştır.peki,ösym

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

İçindekiler. 3. Sonlu ve Sonsuz Kümeler Denk ve Eşit Kümeler Kümelerde Birleşim ve Kesişim

İçindekiler. 3. Sonlu ve Sonsuz Kümeler Denk ve Eşit Kümeler Kümelerde Birleşim ve Kesişim İçindekiler 1. Küme Kavramı...6-7 2. Kümelerin Gösterimi...8-15 3. Sonlu ve Sonsuz Kümeler... 16-17 4. lt Küme Kavramı... 18-27 5. Denk ve şit Kümeler... 28-29 6. Kümelerde irleşim ve Kesişim... 31-41

Detaylı