VEKTÖR OTOREGRESİF MODELLERİN ETKİ TEPKİ FONKSİYONLARININ GÜVEN ARALIKLARININ GÜVENİRLİLİĞİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VEKTÖR OTOREGRESİF MODELLERİN ETKİ TEPKİ FONKSİYONLARININ GÜVEN ARALIKLARININ GÜVENİRLİLİĞİ"

Transkript

1 VEKTÖR OTOREGRESİF MODELLERİN ETKİ TEPKİ FONKSİYONLARININ GÜVEN ARALIKLARININ GÜVENİRLİLİĞİ Yrd.Doç Dr. Bülent Güloğlu 1 Abstract : In this study, we firstly focus on the construction of confidence interval for impulse response functions by using different bootstrap methods. Then we compare bootstrap based confidence intervals with asymptotic ones. In doing so we utilise real economic data and allow for very large VAR models with more than four lags and more than three variables. Keywords : Impulse Responses, Structural VAR, Bias Corrected Bootstrap, Percentile and Percentile t Confidence Interval, Asymptotic Standard Errors Özet : Bu çalışmada ilk olarak, değişik bootstrap metotları kullanılarak, etki tepki fonsksiyonlarının güven aralıklarının oluşturulmasıyla ilgilenilmektedir. Daha sonra, bootstrap yöntemine dayanan güven aralıkları, asimtotik güven aralıklarıyla karşılaştırılmaktadır. Bunu yaparken, gerçek veriler kullanılmakta ve dörtten fazla gecikmeli ve üç taneden fazla değişkenli VAR modelleri kullanılmaktadır. Anahtar Kelimeler : Etki Tepkiler, Yapısal VAR, Sapması düzeltilmiş bootstrap,yüzdelik ve Yüzdelik t Güven Aralıkları, Asimtotik Standard Hatalar. I.Giriş Vektör otoregresif (VAR) modeller, ekonomik değişkenler arasındaki ilişkileri inceleyen standard araçlar haline gelmişlerdir. VAR modellerinden elde edilen etki tepki fonksiyonları, sıklıkla, sistemdeki değişkenlerden birisine gelen şokun, sistemdeki diğer değişkenler üzerindeki etkilerini incelemek için kullanılırlar. Başka bir ifadeyle etki tepki fonksiyonları VAR modelindeki her bir değişkenin, yapısal şoklar ortaya çıktığında, bu şoklara karşı dinamik tepkisini gösterirler. Etki tepki katsayıları VAR modelinin katsayılarından hareketle hesaplanmaktadır. Ancak VAR modelinin katsayılarının asimptotik dağılımı normal olasa da, özellikle küçük örneklemlerde sapmalı ve dağılımlarının çarpık olduğu kabul edilmektedir(kilian,1998). Dahası etki tepkiler VAR katsayılarının doğrusal bir fonksiyonu olmadıklarından, onların gerçek değerleri bilinemez. Bu yüzden etki tepki katsayılarının istatistiksel özelliklerinin bilinmesi araştırmacılar için önem arzeder. Etki tepki katsayılarının istatistiksel belirsizliğini azaltmak için, güven aralıklarının kullanılması oldukça yaygın bir uygulamadır. Böylelikle belirli bir olasılıkla etki tepki katsayılarının anakütle değerleri belirli bir aralık içinde bulunacaktır. Etki tepki katsayılarının elde edilmesiyle ve güven aralıklarının hesaplanmasıyla ilgili değişik yöntemler mevcuttur. Örneğin Runkle(1987) bootstrap yöntemiyle etki tepki katsayılarının ampirik dağılımının elde edilerek, çarpıklık sorununun üstesinden gelinebileceğini işaret 1 Pamukkale Üniversitesi İ.İ.B.F Kınıklı Kampüsü, KINIKLI/ DENİZLİ

2 etmiştir. Kilian ise, hem çarpıklık sorununu ortadan kaldıran, hem de sapmayı düzelten bir bootstrap tekniği geliştirmiştir. Bu çalışmanın amacı analitik ve bootstrap yöntemleriyle elde edilen etki tepki katsayılarını karşılaştırmak ve bu katsayılar için hesaplanan güven aralıklarının ne kadar güvenilir olduğunu göstermektedir. Genelikle tek bir gecikmeli VAR modelleriyle yapılan diğer çalışmaların aksine, bu çalışmada yüksek dereceden VAR modelleriyle çalışılmış ve kü.ük örneklem ve büyük örneklem için sonuçlar karşılaştırılmıştır. II. Etki Tepki fonksiyonlarının Hesaplanması II.a Geleneksel Yöntemler Etki tepki fonksiyonlarının hesaplanmasını ve yorumlanmasını göstermek için n değişkenli p.gecikmeye sahip durağan yapısal VAR modelinin şu şekilde olduğunu varsayalım: A 0 y t = c+a 1 y t-1 + A 2 y t A p y t-p + u t (1) Yukarıdaki denklemin her iki tarafı A 0 matrisinin tersiyle çarpılırsa, indirgenmiş formda VAR(p) modeli elde edilir: y t = d+φ 1 y t-1 + φ 2 y t φ p y t-p + ε t (2) Yapısal VAR modeliyle indirgenmiş formda VAR modeli arasındaki ilişkiler ise şu şekildedir: -1 d = A 0 c -1 φ k = A 0 A k k=1,2...p ε t = A 0-1 u t Eğer yapısal VAR modelindeki u t vektörü beyaz gürültü özelliklerini taşıyorsa, ε t vektörü de beyaz gürültü vektörü olacaktır(hamilton,1994). Bunun ötesinde, eğer y süreci durağan bir süreçse, 2. denklem Wold hareketli ortalama ya da VAR hareketli ortalama süreci (VMA) olarak şu şekilde ifade edilebilir(lutkepohl,2001): y t = ϕ 0 ε t + ϕ 1 ε t -1 +ϕ 2 ε t (3) Burada ϕ 0 =I n ve ϕ s = s ϕs-1 φ i s=1,2... i= 1 Yukarıdaki denklemdeki ϕ s katsayıları etki tepki katsayılarını göstermektedir. Buna göre örneğin ϕ s matrisinin 1.satır 2. sutunundaki elemanı, y t nin tüm geçmiş değerleri sabit tutulduğunda, y 2t deki bir birimlik değişmeye, y 1t+s nin tepkisini göstermektedir. Y nin geçmiş

3 değerleri sabitken, y 1t deki değişme ε 1t deki değişmeyle ölçüldüğünden, ϕ s matrisinin elemanları, y t nin, ε t daki değişmelerle ilgili bileşenlerinin etki tepkilerini göstermektedir. Ayrıca ε t ler bir aşamalı öngörü hataları olduğundan, bu etki tepkilere aynı zamanda öngürü hatası etki tepki katsayıları(forecast error impulse response) da denmektedir. Ancak belirtmek gerekir ki, ε t ler arasındaki eşdönemli korelasyondan dolayı, 3. denklemden elde edilen ϕ s katsayıları, bir değişkenin belirli bir şoka karşı tepkisini değilde, ilgili bütün şoklar karşı tepkisini gösterirler.bu sorunun üstesinden gelmek için, VAR modelindeki ε t ler ilişkisiz hale getirilir.(dikeyleştirilir.) Bu dikeyleştirme işlemi, genellikle denklem 2 den elde edilen varyans kovaryans matrisinin(σ ε ), Cholesky ayrıştırmasına tabii tutulmasıyla yapılır. C ye düşük üçgen matrisi dersek, Σ ε =CC olur. Bu durumda dikeyleştirilmiş hatalar ε t = A -1 0 u t ilişkisinden elde edilebilir. Bundan dolayı VAR modeli durağansa, 3. denklemden şu ilişki elde edilecektir: y t = γ 0 u t + γ 1 u t -1 +γ 2 u t (4) Burada γ 0 = C γ j =ϕ i C j=0,1,2... Bu durumda birinci değişkendeki bir yapısal şok bütün değişkenler üzerinde eşdönemli bir etkiye sahip olurken, ikinci değişkende ortaya çıkan bir şok, y 1t üzerinde eşdönemli etkiye sahip olmazken, diğer değişkenler üzerinde etkilidir. Choleski ayrıştırması, uygulamada yaygın olmasına karşın, y vektöründeki değişkenlerin sıralaması değiştiğinde, etki tepki katsayılarının da değişmesine yol açacağından dikkatle kullanılmalıdır. Yani, değişkenlerin sıralaması değiştiğinde etki tepki fonksiyonlarının önemli derece de değişip değişmediğine bakılmalıdır. Sims(1981), denklem 1 deki A 0 matrisini, ekonomik teorinin öngürdüğü hipotezlerle kısıtlayarak yapısal VAR modelinin elde edilmesini tavsiye etmiştir. Bu çalışmada Choleski ayrıştırmasından yararlanıldığından yapısal VAR modeline değinilmeyecektir. II.b Bootstrap Yöntemleri Efron(1979) tarafından öne sürülen bootstrap yöntemi, parametre tahminlerinde, istatistiklerin ampirik dağılımlarının bulunmasında ve güven aralıklarının hesaplanmasında son yıllarda sıklıkla kullanılmaktadır. Bu yöntem verilerin iadeli örnekleme yöntemiyle oluşturulmasına, bu şekilde oluşturulan her bir örneklem için ilgili istatistiklerin tahmin edilmesine dayanan ve birkaç defa tekrar eden bir süreçtir.

4 VAR modelleri çerçevesinde bootstrap yöntemleri etki tepki fonksiyonlarının güven aralıklarının oluşturulması amacıyla kullanılmaktadır. Etki tepki katsayılarının güven aralıklarını oluşturmak için, VAR modelinin katsayıları değişik iadeli örnekleme tekniklerinden birisi kullanarak, birkaç defa EKK ile tahmin edilir. Daha sonra VAR modeli VMA şekline dönüştürülerek etki tepki fonksiyonları yukarıda gösterildiği gibi bulunur. Son aşamada etki tepki katsayılarının ampirik dağılımları bulunarak, güven aralıklarının alt ve üst sınırları oluşturulur. Güven aralıklarının oluşturulmasında, standard yüzdelik(standard percentile) metodu ile, Hall(1992) in yüzdelik ve yüzdelik t yöntemleri kullanılabilir. Etki tepki fonksyonlarının hesaplanmasında Diebold ve diğerleri (1998) tarafından geliştirilen Cholesky faktör bootstrap ile Runkle ve Kilian ın bootstrap yöntemleri kullanılmaktadır. II.b.1 Cholesky Faktör Bootstrap Diebold ve diğerleri tarafından geliştirlen Cholesky Faktör Bootstrap yöntemi şu şekilde uygulanmaktadır: Y, T döneminde gözlenen n tane değişkenden oluşan bir vektör şu şekilde iade edilmiş olsun: Y=Cε (5) Burada C matrisi, nt,nt boyutunda, ε ise nt,1 boyutunda bir vektördür.cholesky faktör bootstrap yöntemi aşağıdaki aşamaları içermektedir: 1) Y nin varyans covaryans matrisi(σ) tahmin edilir 2) Σ matrisinin Cholesky ayrıştırması elde edilir: CC =Σ 3) ε* N(0,I) olacak şekilde rassal sayılar elde edilir 4) y*=cε* kullanılarak yapay y* değerleri elde edilir. 5) Etki tepki katsayıları hesaplanır 6) 3 ile 5 arası aşamalar birçok defa tekrar edilerek etki tepki katsayılarının ampirik dağılımları bulunur ve güven aralıkları oluşturulur. II.b.2 Runkle metodolojisi Runkle bootstrap yöntemi başlangıçta VAR modelinden elde edilen hata terimlerini kullanan bir yöntemdir.şu aşamaları içerir: 1) Model 2 EKK yöntemiyle tahmin edilerek, hata terimleri(ε) ve otoregressif katsayılar(φ) elde edilir.

5 2) Tahmin edilen hata terimleri anakütle olarak kabul edilerek, iadeli tesadüfi örnekleme yöntemiyle t büyüklüğünde örneklem çekilir.bu şekilde elde edilen hata terimleri ε* olsun. 3) Tahmin edilen φ katsayıları ve ε* kullanılarak y*değerleri elde edilir. 4) y* değerleri kullanılarak yeni otoregresif katsayılar(φ*) elde edilir. 5) 2 ile 4 arası aşamalar tekrar edilerek etki tepki katsayıları ve onlar için güven aralıkları hesaplanır. Bu yöntemin en önemli avantajı, hata terimleri için herhangi bir dağılım empoze etmeden, φ* katsayılarının küçük örneklem dağılımının tahmini vermesidir.ancak hata terimlerinin iadeli örnekleme tabii tutulması ve buna dayanarak elde edilen yeni y* değerlerinin, yapısal katsayılarının elde edilmesi sırasındaki yakınsama sürecine zarar verebilmesi, bu yöntemin en önemli eksikliğidir. II.b.3 Sapması düzeltilmiş bootstrap yöntemi Kilian tarafından öne sürülen bu yöntemin en önemli avantajı, otoregresif katsayıların sapmalı tahminini düzeltmesi ve daha sonra VMA katsayılarını tahmin etmesidir. Bu yöntem şu şekilde uygulanabilir: 1)Y= d+φ 1 y t-1 + φ 2 y t φ p y t-p + ε t modeli EKK ile tahmin edilir. 2) Parametrik olmayan bootstrap tekniklerden birisi kullanılarak yapay y* değerleri elde edilir. 3) y* değerleri kullanılarak bootstrap katsayıları (φ*) hesaplanır. 4) Bu süreç 1000 kez tekrarlanarak 1000 tane bootstrap katsayısı (φ*) hesaplanır. 5) (φ*) katsayıların ortalaması alınarak φ değeri bulunur 6) EKK ile elde edilen VAR modelinin companion matrisi elde edilir. 7) Companion matrisinin en büyük köklerinin modulus değerleri (m(φ)) bulunur. 8) Eğer m( φ) 1 ise, sapması düzeltilmiş katsayı değeri φ c =φ kabul edilir. 9) Eğer m(φ)<1 ise, φ c =φ -ψˆ. Burada ψˆ =φ -φ dir. 10) Eğer m( φ c ) 1 ise, ψˆ 1=ψˆ ve δ 1 =1 kabul edilerek, ψˆ i+j =δ i ψˆ i ve δ i+1 =δ i değerleri tanımlanır. 11) i=1,2,... için, yinelemeli olarak φ c i=φ-ψˆ i değerleri, m(φ c i )<1 oluncaya kadar bulunur. 12) m(φ c i )<1 olduğunda, φ c =φ c i olarak alınır.

6 13) İndirgenmiş VAR modelindeki φ katsayıları yerine düzeltilmiş katsayılar(φ c ) bulunur tekrarla yeni φ * değerleri hsaplanır ve 4-13 arası basamaklar tekrar edilerek yeni φ c değerleri bulunur. 14) Bulunan φ c değerleri kullanılarak etki tepki katsayıları ve bunların güven aralıkları bulunur. III.Bootstrap Güven Aralıkları Etki tepki katsayıları,bootstrap yöntemlerinden birisi kullanılarak hesaplandıktan sonra, güven aralıklarının oluşturulması gerekir. Bootstrap güven aralıkları birkaç değişik yöntemle oluşturulabilir. Bunlardan en yaygın kullanılanları, standard yüzdelik güven aralığı ile, Hall(1992) in yüzdelik ve yüzdelik t yöntemleridir. III.a. Standard yüzdelik güven aralığı Etki tepki katsayıları için en yaygın kullanılan güven aralığı olup, hesaplanması oldukça kolaydır. CI s = [Q* α/2,q* (1-α/2) ] Burada Q* α/2 ve Q* (1-α)/2 sırasıyla l(ϕ* y-p+1,...y 0,...y T) dağılımının α/2 ve (1-α)/2 bootstrap yüzdelikleridir. III.b. Hall yüzdelik güven aralığı Etki tepki katsayıları için Hall bootstrap yüzdelik güven aralıkları, bootstrap yöntemiyle ve standard yöntemlerle elde edilen etki tepki katsayılarının farkının(ϕ*-ϕ) dağılımına dayanmaktadır. Bootstrap yöntemiyle elde edilen etki tepki katsayılarına ϕ* ve standard yöntemlerle elde edilenlere ϕ dersek, o zaman Hall yüzdelik güven aralığı şu şekilde oluşturulabilir: CI H = [ϕ s* ( 1-α/2),ϕ -s* α/2 ] Burada s*( 1-α/2) ve s* α/2, l(ϕ*-ϕ y-p+1,...y 0,...y T) dağılımının (1-α)/2 ve α/2 bootstrapyüzdelikleridir. III.c. Hall yüzdelik t güven aralığı Hall yüzdelik t güven aralığı şu şekilde hesaplanır: CI t = [ϕ t* ( 1-α/2) s(ϕ), ϕ -t* α/2 s(ϕ)]

7 Burada s(ϕ), etki tepki katsayılarının asimtotik standard hatalarını,t*( 1-α/2) ve t* α/2 ise, ( ϕ*- ϕ)/s(ϕ*)) dağılımının yüzdeliklerini göstermektedir. IV. Ampirik Karşılaştırma Standard yöntemler kullanılarak elde edilen etki tepki katsayılarının güven aralıklarıyla, bootstrap yüzdelik güven aralıkları Lutkepohl un veri seti kullanılarak karşılaştırılmış. Veriler 1960:Q1-1982:Q4 döneminde doğal logaritması alınmış yatırım(y1) gelirin(y2) ve tüketimi(y3) kapsamaktadır. Standard yöntemlerle hesaplanmış etki tepki katsayılarının %95 güven aralıkları ile Runkle parametrik olmayan bootstrap yöntemiyle hesaplanmış etki tepki katsayılarının Hall yüzdelik güven aralıkları sırasıyla şekil1 ve şekil2 de verilmiştir. Şekil1 ve şekil2 karşılaştırıldığında asimtotik standard hatalara dayanan % 95 güven aralığı ve Runkle bootstrap yöntemine dayanarak hesaplanan Hall yüzdelik güven aralığı arasında önemli bir fark görülmemektedir. Ancak her iki güven aralığıyla elde edilmiş sonuçlar yanıltıcı olabilir. Bu yüzden sonuçların sapması düzeltilmiş bootstrap yöntemiyle de tekrarlanması gerekebilir. V.Sonuç Bu çalışmada VAR modellerinden elde edilen etki tepki katsayılarının güven aralıklarının güvenirliği incelenmiştir. Değişik yöntemler arasından asimtotik standard hatalara dayanan % 95 güven aralığı ile Runkle bootstrap algoritmasına dayanarak hesaplanan etki tepki katsayılarının Hall yüzdelik güven aralıkları karşılaştırılmıştır. Örneklem büyüklüğü (76 gözlem) göz önüne alındığında bu iki yöntem arasında büyük örneklemler için fark olmadığı görülebilir. Kaynakça Efron B.(1979) Bootstrap Methods: Another Look at the Jacknife, Annals of Statistics, 9, Hamilton J.(1994) Time Series Analysis, Princeton University Press Hall P.(1992) The Bootstrap and Edgeworth Expansion, Springer, New York Runkle D. (1987) Vector Autoregression and Reality, Journal of Business and Economics Statistics, 5, Kilian L.(1998) Small Sample Confidence Intervals for Impulse Response Functions Review of Economics and Statistics, 80, Lutkepohl H.(2001) Vector Autoregressive and Vector Error Correction Models, mimeo

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Bootstrap Metodu ve Uygulanışı Üzerine Bir Çalışma 2. Güven Aralıkları, Hipotez Testi ve Regresyon Analizinde Bootstrap Metodu

Bootstrap Metodu ve Uygulanışı Üzerine Bir Çalışma 2. Güven Aralıkları, Hipotez Testi ve Regresyon Analizinde Bootstrap Metodu Ege Üniv. Ziraat Fak. Derg., 2006, 43(2):63-72 ISSN 1018-8851 Bootstrap Metodu ve Uygulanışı Üzerine Bir Çalışma 2. Güven Aralıkları, Hipotez Testi ve Regresyon Analizinde Bootstrap Metodu Çiğdem TAKMA

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

Sağlık Kuruluşlarında Maliyet Yönetimi ve Güncel

Sağlık Kuruluşlarında Maliyet Yönetimi ve Güncel Sağlık Kuruluşlarında Maliyet Yönetimi ve Güncel Uygulamalar YRD. DOÇ. DR. EMRE ATILGAN TRAKYA ÜNİVERSİTESİ SAĞLIK YÖNETİMİ BÖLÜMÜ Sağlık Kurumlarında Maliyet Yönetimi ve Güncel Uygulamalar Sunum Planı:

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ette nin performansı:

ette nin performansı: ette nin performansı: (2012 yılı milli gelir tüketim tahminleri ile karşılaştırma) Sayı Sayı:48 : 7 ***5*** Sayı:48 Ercan Türkan ercanturkan@ette.gen.tr 3 Nisan 2013 www.ette.gen.tr ette performansını

Detaylı

Sayı: 2012-13 / 13 Haziran 2012 EKONOMİ NOTLARI. Belirsizlik Altında Yatırım Planları

Sayı: 2012-13 / 13 Haziran 2012 EKONOMİ NOTLARI. Belirsizlik Altında Yatırım Planları EKONOMİ NOTLARI Belirsizlik Altında Yatırım Planları Yavuz Arslan Aslıhan Atabek Demirhan Timur Hülagü Saygın Şahinöz Abstract: This note analyzes the relationship between uncertainty and firm investment

Detaylı

Tekirdağ&Ziraat&Fakültesi&Dergisi&

Tekirdağ&Ziraat&Fakültesi&Dergisi& NamıkKemalÜniversitesi ISSN:1302*7050 TekirdağZiraatFakültesiDergisi Journal(of(Tekirdag(Agricultural(Faculty( ( ( ( ( ( ( An(International(Journal(of(all(Subjects(of(Agriculture( Cilt(/(Volume:(10Sayı(/(Number:(2(((((Yıl(/(Year:(2013

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Ünite 4 Kaba Verinin örneklenmesi ve Araştırılması. Örnekleme Tasarım Adımları. Ana konular. Örnekleme Boyutu. Örnekleme

Ünite 4 Kaba Verinin örneklenmesi ve Araştırılması. Örnekleme Tasarım Adımları. Ana konular. Örnekleme Boyutu. Örnekleme Ünite 4 Kaba Verinin örneklenmesi ve Araştırılması Sistem Analizi ve Tasarımı Sedat TELÇEKEN Örneklemeye neden ihtiyaç duyulur? Sistem Analistleri örneklemeyi; Maliyetleri azaltmak, Veri Toplama sürecini

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR İÇİNDEKİLER BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR I. Öğretimde Ölçme ve Değerlendirmenin Gerekliliği... 2 II. Ölçme Kavramı... 3 1. Tanımı ve Unsurları... 3 2. Aşamaları... 3 2.1. Ölçülecek

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME 4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME Bu bölümde; Bir grup değişkenin çalışma sayfası görüntüsünü görüntüleme Bir grup değişkenin tanımlayıcı istatistiklerini görüntüleme Bir grup içerisindeki

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

TAHRİBATLI YÖNTEMLE (KAROT) YERİNDE BETON BASINÇ DAYANIMININ BELİRLENMESİ VE DEĞERLENDİRİLMESİ TS EN 13791 NİSAN 2010

TAHRİBATLI YÖNTEMLE (KAROT) YERİNDE BETON BASINÇ DAYANIMININ BELİRLENMESİ VE DEĞERLENDİRİLMESİ TS EN 13791 NİSAN 2010 TAHRİBATLI YÖNTEMLE (KAROT) YERİNDE BETON BASINÇ DAYANIMININ BELİRLENMESİ VE DEĞERLENDİRİLMESİ TS EN 13791 NİSAN 2010 Yerinde basınç dayanımın belirlenmesi uygulamada aşağıda sıralanan durumlar için gerekli

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması 2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması Mahmut YARDIMCIOĞLU Özet Genel anlamda krizler ekonominin olağan bir parçası haline gelmiştir. Sıklıkla görülen bu krizlerin istatistiksel

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

ÜAS DA SUNULAN BİLDİRİLER KAPSAMINDA İMALAT İŞLETMELERİNİN ÜRETİM SORUNLARINA BAKIŞI

ÜAS DA SUNULAN BİLDİRİLER KAPSAMINDA İMALAT İŞLETMELERİNİN ÜRETİM SORUNLARINA BAKIŞI V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 ÜAS DA SUNULAN BİLDİRİLER KAPSAMINDA İMALAT İŞLETMELERİNİN ÜRETİM SORUNLARINA BAKIŞI Halil SAVAŞ Pamukkale Üniversitesi

Detaylı

EN BÜYÜK OLASILIK YÖNTEMİ KULLANILARAK BATI ANADOLU NUN FARKLI BÖLGELERİNDE ALETSEL DÖNEM İÇİN DEPREM TEHLİKE ANALİZİ

EN BÜYÜK OLASILIK YÖNTEMİ KULLANILARAK BATI ANADOLU NUN FARKLI BÖLGELERİNDE ALETSEL DÖNEM İÇİN DEPREM TEHLİKE ANALİZİ EN BÜYÜK OLASILIK YÖNTEMİ KULLANILARAK BATI ANADOLU NUN FARKLI BÖLGELERİNDE ALETSEL DÖNEM İÇİN DEPREM TEHLİKE ANALİZİ ÖZET: Y. Bayrak 1, E. Bayrak 2, Ş. Yılmaz 2, T. Türker 2 ve M. Softa 3 1 Doçent Doktor,

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

SUDA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-190.2014.

SUDA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-190.2014. SUDA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI Rapor No: KAR-G3RM-190.2014.02 Koordinatör: Dr. Fatma AKÇADAĞ 23 Aralık 2014 Gebze/KOCAELİ Bu

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN. Ders No:2 Simülasyon Örnekleri 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ.DR. SAADETTIN ERHAN KESEN Ders No:2 GIRIŞ Bu derste elle ya da bir çalışma sayfası yardımıyla oluşturulacak bir simülasyon tablosunun kullanımıyla yapılabilecek simülasyon

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

AN APPLICATION TO EXAMINE THE RELATIONSHIP BETWEEN REIT INDEX AND SOME FIRM SPECIFIC VARIABLES.

AN APPLICATION TO EXAMINE THE RELATIONSHIP BETWEEN REIT INDEX AND SOME FIRM SPECIFIC VARIABLES. FİRMAYA ÖZGÜ DEĞİŞKENLERLE GAYRİMENKUL YATIRIM ORTAKLIKLARI (GYO) GETİRİSİ ARASINDAKİ İLİŞKİYİ İNCELEMEYE YÖNELİK BİR UYGULAMA 1 Cumhur ŞAHİN Arş. Grv., Bilecik Şeyh Edebali Üniversitesi, İİBF, İşletme

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-240.2013.

SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-240.2013. SUDA ph TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI Rapor No: KAR-G3RM-240.2013.02 Koordinatör: Dr. Fatma AKÇADAĞ 6 Ocak 2014 Gebze/KOCAELİ Bu yeterlilik

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

MURAT EĞİTİM KURUMLARI

MURAT EĞİTİM KURUMLARI 2013 KPSS de Testlerin Kapsamları Değişti ÖSYM tarafından yapılan açıklamaya göre 2013 KPSS de uygulanacak testlerin içeriğinde bir takım değişiklikler yapıldı. Bu değişikler başta Genel Yetenek - Genel

Detaylı

Kentsel Hava Kirliliği Riski için Enverziyon Tahmini

Kentsel Hava Kirliliği Riski için Enverziyon Tahmini DEVLET METEOROLOJİ İŞLERİ GENEL MÜDÜRLÜĞÜ ARAŞTIRMA ve BİLGİ İŞLEM DAİRESİ BAŞKANLIĞI ARAŞTIRMA ŞUBE MÜDÜRLÜĞÜ Kentsel Hava Kirliliği Riski için Enverziyon i 2008-2009 Kış Dönemi (Ekim, Kasım, Aralık,

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı