1- Espriyi Yakalama Yöntemi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1- Espriyi Yakalama Yöntemi"

Transkript

1 1 TEST SORUSU ÇÖZME YÖNTEMLERĐ 1- Espriyi Yakalama Yöntemi Bu tip sorularda küçük bir espri gizlidir. Bu espri yakalanmazsa, soruyu çözmek için uzun işlemler yapmak gerekir. +2 = 2 +2 = 3 ise, +2 = toplamı kaçtır? A) 1 B) 2 C) 3 D) 4 Eşitliklerin sol tarafındaki terimleri toplayalım: = =3 + + Oluşan cebirsel ifadeye dikkatle bakıldığında, bize sorulan değerin 3 katının oluştuğu görülür Đşte, sorudaki espri de budur. Şimdi eşitliğin diğer tarafındaki terimleri toplayarak önceki bulduğumuz ifadeye eşitleyelim: 2+3+4= =9 elde ettik. Bize sorulan değerin 3 katı 9 olduğuna göre cevap 3 tür Đşleminin sonucu kaçtır? A) 1 B) 0 C) 1 D)

2 2 TEST SORUSU ÇÖZME YÖNTEMLERĐ Bu sorudaki espri, işlemi parantezden kurtarmaktır = = = 1+1=0 2- Şıklardan Gitme Yöntemi Bu tip sorularda, soruyu çözmek yerine şıklarda verilen değerlerin, soruda verilen şartları sağlayıp sağlamadığı denenerek, cevaba daha çabuk ulaşılabilir. Bu tip sorular,.. kaç olabilir?.. kaç gelebilir?.. sağlayan değer kaçtır?.. değeri kaçtır?.. kaçtır?.. aşağıdakilerden hangisidir? gibi ifadelerle biter... sağlayan değerlerin toplamı kaçtır?.. sağlayan değerlerin çarpımı kaçtır?.. sağlayan kaç değer vardır? gibi ifadelerle bitmez. Aslı ile annesinin yaşları farkı 26 dır. 4 yıl sonra annesinin yaşı, Aslı nın yaşının 3 katı olacaktır. Aslı nın şimdiki yaşı kaçtır? A) 9 B) 10 C) 11 D) 12 Biz soruyu Aslının şimdiki yaşı şıklardan hangisidir? biçiminde yorumlayalım ve A şıkkını deneyerek başlayalım. Aslının yaşı 9 olsaydı, yukarıdaki anlatılanları sağlar mıydı bir bakalım:

3 3 TEST SORUSU ÇÖZME YÖNTEMLERĐ Eğer Aslı 9 yaşında olsaydı, annesi 35 yaşında olurdu. (Neden?) Bu durumda 4 yıl sonra Aslı 13, annesi ise 39 yaşında olacaktı. Peki, 13 ün 3 katı 39 ediyor mu? EVET. O halde cevabı ilk denemede tutturduk. Şanslı günümüzdeyiz. Hangi sayının 3 katının 5 eksiği 16 dır? A) 5 B) 6 C) 7 D) 8 Bu soru da seçeneklerden gidilerek yapılabilir. Seçenekleri sırayla deneyelim: A) 5 in 3 katı 15; 15 in 5 eksiği 10 dur. O halde A yanlıştır. B) 6 nın 3 katı 18; 18 in 5 eksiği 16 dır. O halde B de yanlış. C) 7 nin 3 katı 21 ve 21 in 5 eksiği 16 dır. Demek ki Cevap C. 3- Şık Eleme Yöntemi Bazı soruların şıklarından bir ya da birkaçı, soru içerisinde verilen bir bilgiye dayanarak ya da herhangi bir işlemin sonucunda elde edilen bilgi neticesinde rahatlıkla elenebilir. Aşağıdakilerden hangileri doğrudur? i =2 ii =3 iii. 2 = 2 iv. 3 =3 A) i ve iv B) ii ve iii C) i, ii ve iii D) ii, iii ve iv i maddesindeki işlemi yapalım:

4 4 TEST SORUSU ÇÖZME YÖNTEMLERĐ 2 +0 =1+0=1 ve 1 2 olduğundan i maddesi yanlıştır. O halde i maddesini bulunduran A ve C şıkları cevap olamaz. Böylece iki adet şıkkı elemiş olduk. O halde cevap B ve D şıklarından biri. Daha bitmedi.. Burada ii ve iii maddesi B ve D şıklarının ikisinde de bulunduğu için bu maddelere bakmaya gerek yoktur. Yani iv maddesindeki işlemi yapmak, cevaba ulaşmak için yeterlidir. 3 =3 =3 olup, 3 3 olduğundan iv maddesindeki yargı yanlıştır. Dolayısıyla cevap B dir. Yukarıdaki çarpma işlemine göre, 1. çarpan kaçtır? A) 143 B) 145 C) 147 D) 197 Soruda verilen bilgiye göre bize sorulan 1. çarpanın 4 katı 572 dir. 1. çarpanı bulmak için 572 yi 4 e bölmeliyiz. Ama durun bi dakka!.. 4 ile kaçın çarpımı 2 ile biter, 3 ya da 8. O halde cevap 3 ya da 8 ile biten bir sayı. Şimdi şıkları elemeye başlıyoruz. A olabilir, B olamaz, C olamaz, D olamaz. Çok şanslıyız, cevap A.

5 5 TEST SORUSU ÇÖZME YÖNTEMLERĐ 4- Değer Verme Yöntemi Bu yöntemde, sorudaki bilinmeyenlere, verilen şartlara uygun olacak şekilde keyfi değerler verilir.,, ardışık üç tek sayı ve olmak üzere, ifadesinin değeri kaçtır? A) 32 B) 8 C) 8 D) 16 E) 32 =1, =3 ve =5 alalım. Bu sayılar ardışık tek sayılardır ve şartını sağlarlar. Bu değerleri sorudaki cebirsel ifadede yazarsak, Cevap A. = =4 2 =16 2 = 32 Yukarıdaki çıkarma işleminde kaçtır? A) 0 B) 1 C) 2 D) 3 Kaçtan 6 çıkınca 9 eder, 15. Demek ki A=5 tir. Şimdi sıra C yi bulmaya geldi. 4 rakamı az önce 3 e düşmüştü. 3 ten 7 çıkmaz. Peki, 13 ten 7 çıktı 6. Demek ki C=6.

6 6 TEST SORUSU ÇÖZME YÖNTEMLERĐ O halde, =6 5=1 olur. 5- Bilgiye Dayalı Sorular Bazı sorular, bilinen normal yollarla yapılmaya mahkûmdur. Biraz yorum, biraz da pratik kural bilgisiyle kolayca çözülebilirler tek sayı olduğuna göre aşağıdakilerden hangisi daima çift sayıdır? A) B) 2 7 C) D) 4 E) Önce aşağıdaki kuralları bir inceleyelim ve soruda verilen bilgiyi yorumlayalım.. Kural: = Ç=Ç Ç Ç=Ç = Ç =Ç + =Ç +Ç= Ç+Ç=Ç Ayrıca; Çift sayılar her zaman 2 ye tam bölünürler ama sonuç için bir yorum getirilemez. Yani sonuç tek de olabilir çift de. Yorum: tek sayı olduğuna göre 21 çift sayıdır. O halde çift sayıdır. Şimdi şıkları inceleyelim: (A) nın çift olduğunu biliyoruz ama sonuç için tek ya da çift denilemez. Tek de olabilir çift de. (B) 2 çifttir. Çiftten tek çıkarsa tektir. (C) 1 tektir. Tek sayılar 2 ye tam bölünmezler. (D) Ç çift sayı olduğundan çifttir. 4 da çifttir. Çiftten çift çıkarsa, yine çifttir. Yani cevap D dir.

7 7 TEST SORUSU ÇÖZME YÖNTEMLERĐ Diğer şıkkı incelemeye gerek kalmadığından incelemiyoruz. Yalnız zamanımız yeterli ise bakmakta fayda var. ve iki basamaklı doğal sayılardır. Buna göre aşağıdakilerden hangisi farkına eşit olamaz? A) 9 B) 18 C) 36 D) 48 Kural: =9 Yorum: farkı, 9 ile çarpılarak elde edilen bir sayı olduğundan bu farkın 9 ile tam bölünen bir sayı olması gerektiği anlaşılır. O halde seçeneklerde 9 a tam bölünmeyen bir sayı aramalıyız. Kural: 9 ile Tam Bölünme Kuralı: 9 a bölünecek olan sayıların rakamları toplanır. Rakamlar toplamı 9 oluyorsa, sayının 9 a tam bölünen bir sayı olduğu anlaşılır. Örneğin; =9 O halde 72 sayısı 9 a tam bölünür =16 1+6=7 O halde 385 sayısı 9 a tam bölünmeyen bir sayıdır. Seçenekler incelendiğinde yanız 48 in 9 a tam bölünmediği görülür. Cevap D. 6- Đşlem Gerektirmeyen Sorular Çok nadir de olsa bazı sorular için işlem yapmaya bile gerek yoktur. Bu sorular ya çok kurnazca hazırlanmıştır ya da acemice hazırlandığından olacak şıkları yazarken pek dikkat edilmemiştir. Bir annenin yaşı, iki çocuğunun yaşları farkının 9 katına eşittir. 3 yıl sonra annenin yaşı, çocuklarının yaşları farkının 10 katına eşit olacağına göre, annenin şimdiki yaşı kaçtır.

8 8 TEST SORUSU ÇÖZME YÖNTEMLERĐ A) 27 B) 29 C) 30 D) 31 Bir annenin yaşı, iki çocuğunun yaşları farkının 9 katına eşittir ifadesinden annenin yaşının 9 a tam bölünen bir sayı olduğu anlaşılmaktadır. Sadece A seçeneğindeki sayı 9 a tam bölünmektedir. Cevap A Olduğuna göre, x, y ve z nin işaretleri, sırasıyla aşağıdakilerden hangisidir. A),+, A),+,+ A),, A) +,+, Soruda verilen en alttaki bilgiye göre, ve nin ya hepsi de + işaretli ya da yalnız bir tanesi + işaretli olmalıdır. Hepsinin de + olduğu seçenek yoktur. O halde yalnız bir tanesi + dır. Bu bulguyu yalnızca A seçeneği sağladığından cevap A dır. KÜÇÜK BĐR NASĐHAT Girdiğiniz test sınavı hangi sınav olursa olsun, uzun süren bir çalışmanın ardından, büyük gayretle çözdüğünüz birkaç soruyu, çözemediğiniz soruların cevaplarını Ya tutarsa gibi akıl almaz bir mantıkla, netlerinizin sayısını artırmak maksadıyla sallayarak ziyan etmeyin ki, emekleriniz boşa gitmesin..

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: RASYONEL SAYILAR KONU: Rasyonel Sayılar Kümesinde Çıkarma İşlemi ÜNTE: RASYONEL SAYILAR ONU: Rasyonel Sayılar ümesinde Çıkarma şlemi ÖRNE SORULAR VE ÇÖZÜMLER. işleminin sonucu B) D) ki rasyonel sayının farkını bulmak için çıkan terimin toplama işlemine göre tersi alınarak

Detaylı

25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin.

25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin. BÖLME VE BÖLÜNEBİLME 25 sayısını 6 ya böldüğümüzde bölüm 4 ve kalan 1 olur. Şekli inceleyin. 25 = 6 x 4 + 1 Bölünen = Bölen x Bölüm + Kalan 12312312 sayısını 123 e bölelim. 123 te 123 bir kere var. Sonra

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.) YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c 138. a ve b gerçel sayılardır. a < a, 6a b 5= 0 b ne olabilir? (11) 4 5 8 11 1 139. < 0 olmak üzere, 4 3. =? ( 3 ) a 1 140. < a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9,4,7 3,

Detaylı

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C )

Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) :5-3 = = 11 ( C ) Önce ÇARPMA ve Bölme, sonra Toplama ve Çıkarma. 3.4+10:5-3 = 12+2-3 = 11 ( C ) Önce parantez içindeki işlemler yapılır. 150:(6+3.8)-5 = 150:(6+24)-5 = 150:30-5 = 5-5 = 0 ( A ) 72:24+64:16 = 3+4 = 7 ( B

Detaylı

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES)

AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) 00000000001 AKADEMİK PERSONEL VE LİSANSÜSTÜ EĞİTİMİ GİRİŞ SINAVI (ALES) plam cevaplama süresi 150 akikadır. (,5 saat) SAYISAL BÖLÜM SAYISAL - 1 TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

BÖLÜNEBĐLME KURALLARI

BÖLÜNEBĐLME KURALLARI YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS - 2 2-2 1 1-1 1 kalanı bulmak için sağdan ve + ile başlamak gerekir BÖLÜNEBĐLME KURALLARI 2 Đle Bölünebilme: tüm çift sayılar, yani birler

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1.

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1. SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin çözümlenmiş biçimidir? A) ab B) a0b C) a0b0 D) ab0 E) ab00 1000a 10b 1000.a 100.0 10.b 1.0 a0b0 Doğru Cevap:

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.

FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur. FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r?

Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r? ÖRNEK 3: x y y Bölme ifllemine göre x en az kaçt r? A) 6 B) 9 C) D) 4 E) 4 ÖRNEK 4: a, ve 6 say taban n göstermek üzere, (3) + (a) = (b) eflitli inde a 6 b kaçt r? A) 0 B) C) D) 3 E) 4 ÇÖZÜM 4: ÇÖZÜM 3

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA

MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA MATEMATİK DERSİ UZAKTAN EĞİTİM DERS NOTLARI 3. HAFTA 3. Ondalık Sayılarda İşlemler: Toplama - Çıkarma: Ondalık kesirler toplanırken, virgüller alt alta gelecek şekilde yazılır ve doğal sayılarda toplama-çıkarma

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR

BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR BÖLÜNEBİLME ÇÖZÜMLÜ SORULAR 1) Rakamları birbirinden farklı dört basamaklı 435a sayısı 2 ile tam bölünüyor fakat 4 ile tam bölünemiyor ise a'nın alabileceği değerler toplamı kaçtır? A) 2 B) 4 C) 6 D) 8

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Gerçekten Asal Var mı? Ali Nesin

Gerçekten Asal Var mı? Ali Nesin Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

FERMAT VE EULER TEOREMLERİ

FERMAT VE EULER TEOREMLERİ FERMAT VE EULER TEOREMLERİ 1. 8 103 sayısı 13 e bölündüğünde elde edilen kalanı bulunuz. Çözüm: Fermat teoreminden 8 12 1 (mod 13) 8 103 (8 12 ) 8 8 7 8 7 2 21 2 9 2 4 2 4 2 3 3 2 5 (mod 13). 2. 3 619

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğrenciler, Matematik ilköğretimden üniversiteye kadar çoğu öğrencinin korkulu rüyası olmuştur. Buna karşılık, istediğiniz üniversitede okuyabilmeniz büyük ölçüde YGS ve LYS'de matematik testinde

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

ISBN Sertifika No: 11748

ISBN Sertifika No: 11748 ISN - 978-0--- Sertifika No: 78 GENEL KOORDİNTÖR: REMZİ ŞHİN KSNKUR REDKTE: REMZİ ŞHİN KSNKUR SERDR DEMİRCİ - SRİ ŞENTÜRK SERVET SVŞ ÇETİN as m Yeri: UMUT MTCILIK - MERTER / STNUL u kitab n tüm bas m ve

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

MATEMATİK DENEMESİ +3

MATEMATİK DENEMESİ +3 MATEMATİK DENEMESİ +3 1. 0,3 1 2 + 0,5 4. a ve b pozitif tamsayılar ve a

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi

Sayı sistemleri-hesaplamalar. Sakarya Üniversitesi Sayı sistemleri-hesaplamalar Sakarya Üniversitesi Sayı Sistemleri - Hesaplamalar Tüm sayı sistemlerinde sayılarda işaret kullanılabilir. Yani pozitif ve negatif sayılarla hesaplama yapılabilir. Bu gerçek

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı ) 3 4 5 3 0 A) B) 6 C) 5 D) 4 E) 3 0 Not : a 0 3 4 5 3 4 5 3 3 3.3.3... ÜSLÜ SAYILAR QUİZİ VE CEVAPLARI 6 4 4 3 buluruz. Doğru Cevap : E şıkkı 0 ) n bir doğal saı olmak üzere, ( ) ( ) n ( ) n n n A) 4

Detaylı

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama

ÜSLÜ SAYILAR. AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama AMAÇ 1: 6 ve 7. Sınıflarda görmüş olduğumuz üslü ifadelerdeki temel kavramları hatırlama KURAL: Bir sayının belli bir sayıda yan yana çarpımının kolay yoldan gösterimine üslü sayılar denir. Örneğin 5 sayısının

Detaylı

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR

TAM SAYILARDA ÇARPMA BÖLME İŞLEMLERİ ESRA ÇAKIR Kazanım: Tam sayılarla çarpma ve bölme işlemleri yapar. Tam sayılarla işlemler yapmayı gerektiren problemleri çözer. HATIRLATMA :TAM SAYILARDA TOPLAMA İŞLEMİ Aynı işaretli tam sayılar toplanırken işaretleri

Detaylı

: Yetmiş yedi milyon altı yüz doksan beş bin dokuz yüz dört

: Yetmiş yedi milyon altı yüz doksan beş bin dokuz yüz dört Matematik Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Doğal Sayılar DOĞAL SAYILARI OKUMA ve YAZMA Türkiye İstatistik Kurumu (TÜİK), adrese dayalı nüfus kayıt sistemi sonuçlarına göre Türkiye

Detaylı

OBEB OKEK ÇÖZÜMLÜ SORULAR

OBEB OKEK ÇÖZÜMLÜ SORULAR OBEB OKEK ÇÖZÜMLÜ SORULAR 1) 4, 36 ve 48 sayılarının ortak bölenlerinin en büyüğü kaçtır? A) 1 B)16 C) 18 D) 4 E) 7 1) Sayılarınhepsini aynı anda asal çarpanlarına ayıralım; 4 36 48 1 18 4 6 9 1 3 9 6

Detaylı

Örnek: sayısının binler basamağındaki rakamın basamak değeri ve sayı değeri arasındaki fark bulunuz.

Örnek: sayısının binler basamağındaki rakamın basamak değeri ve sayı değeri arasındaki fark bulunuz. Basamak Analizi : Bir sayıda rakamların yazıldığı yere basamak denir. * Bir sayıda bulunan rakamların kendi değerine sayı değeri denir. Örnek: 208371 sayısının binler basamağındaki rakamın basamak değeri

Detaylı

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM

2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM 2BÖLÜM DOĞAL SAYILAR ve DÖRT İŞLEM DOĞAL SAYILAR ve DÖRT İŞLEM TEST 1 1) Güzelyurt ta oturan bir aile piknik için arabayla Karpaz a gidip, geri dönüyor. Bu yolculuk sonunda arabanın km göstergesini kontrol

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır?

Örnek...1 : Yandaki bölme işlemin de bölüm ile kalanın toplamı kaçtır? BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B 0 olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...4 : x sayısının y ile bölümündeki bölüm 2 ve kalan 5 tir. y sayısının z ile bölümündeki bölüm

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

ÇARPANLAR VE KATLAR. 1) 72 sayısının pozitif bölenlerin tamamı hangi seçenekte doğru verilmiştir?

ÇARPANLAR VE KATLAR. 1) 72 sayısının pozitif bölenlerin tamamı hangi seçenekte doğru verilmiştir? 1) 72 sayısının pozitif bölenlerin tamamı hangi seçenekte doğru verilmiştir? A)2 ve 3 B)1,2,3,8,9,18,24,36 ve 72 C)2,3 ve 5 4) 240=2 a.3 b.5 c ifadesi veriliyor.aşağıdakilerden hangisi aa. bb cc İfadesinin

Detaylı

MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ

MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ MERKEZİ ORTAK SINAV KAZANDIRAN MATEMATİK FÖYÜ ÖRNEK: 18 sayısının pozitif çarpanları nelerdir? Çarpımları 18 olan sayılar arayalım. 18 = 1. 18 18 =. 9 18 =. 6 Her doğal sayı iki doğal sayının çarpımı şeklinde

Detaylı

6. Sınıf MATEMATİK TEST 1 ÜSLÜ SAYILAR. 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade

6. Sınıf MATEMATİK TEST 1 ÜSLÜ SAYILAR. 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade 6. Sınıf MATEMATİK ÜSLÜ SAYILAR TEST 1 1. Tabanı 4 ve üssü 3 olarak gösterilen üslü ifade aşağıdakilerden hangisidir? 5. A) 3. 3. 3 B) 4. 4. 4 C) 4. 4. 4. 4 D) 3. 3. 3. 3 Mert 100000000 2. 5. 5. 5 Yukarıda

Detaylı

ÇARPANLAR VE KATLAR ÖĞRENİYORUM

ÇARPANLAR VE KATLAR ÖĞRENİYORUM ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

11. RASYONEL SAYILARIN SIRALANMASI

11. RASYONEL SAYILARIN SIRALANMASI 11. RASYONEL SAYILARIN SIRALANMASI SIRALAMA SEMBOLLERİ Sıralama sembolleri, sayıların sıralanma şeklini gösterirler. Yani, sıralama sembolleri sayıların küçükten büyüğe veya büyükten küçüğe doğru sıralanmasını

Detaylı

BÖLME ve BÖLÜNEBİLME

BÖLME ve BÖLÜNEBİLME BÖLME ve BÖLÜNEBİLME A. BÖLME A, B, C, K birer doğal sayı ve B 0 olmak üzere, bölme işleminde, A ya bölünen, B ye bölen, C ye bölüm, K ya kalan denir. A = B. C + K dır. Kalan, bölenden küçüktür. (K < B)

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

5. İki sayının toplamı 60 tır. Büyük sayı küçük sayının. 6. Bir çiftlikte toplam 20 tavuk ve koyun bulunmaktadır.

5. İki sayının toplamı 60 tır. Büyük sayı küçük sayının. 6. Bir çiftlikte toplam 20 tavuk ve koyun bulunmaktadır. Denklemler 7. Sınıf Matematik Soru Bankası TEST 0. kg. Denge durumunda verilen eşit kollu teraziye göre, kütlesinin kaç kg olduğunu veren denklem aşağıdakilerden hangisidir? A) + = + B) + = + C) + = +

Detaylı

8.Sınıf MATEMATİK. Çarpanlar ve Katlar Konu Testi. Test sayısının tek bölenlerinin sayısı aşağıdakilerden

8.Sınıf MATEMATİK. Çarpanlar ve Katlar Konu Testi. Test sayısının tek bölenlerinin sayısı aşağıdakilerden Çarpanlar ve Katlar Konu Testi MATEMATİK 8.Sınıf Test-01 1. I. 1, her sayının bölenidir. II. 2, asal bir çarpandır. III. Her sayı kendisinin bir çarpanıdır. IV. Bir sayının çarpanları, aynı zamanda o sayının

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS DOĞAL SAYILARDA TOPLAMA VE ÇARPMA Örnek( 1 ) - - - - (I) yandaki işleme x 1 (II) göre (I) çarpan - - - - kaçtır? 40 + - - - - - - - - - - (ÖSS-8) 40

Detaylı

MODÜLER ARİTMETİK Test -4

MODÜLER ARİTMETİK Test -4 MODÜLER ARİTMETİK Test -4 1. A doğal sayısının 7 ye bölümündeki kalan 4, B doğal sayısının 7 ye bölümündeki kalan 5 tir. Buna göre, A toplamının 7 ye bölümündeki kalan 3B A) 0 B) 1 C) D) 3 E) 4 5. I. 1

Detaylı

Rasyonel Sayılarla İşlemler. takip edilir.

Rasyonel Sayılarla İşlemler. takip edilir. Matematik Bir Bakışta Matematik Kazanım Defteri Rasyonel Sayılarla İşlemler Özet bilgi alanları... RASYONEL SAYILARLA ÇOK ADIMLI İŞLEMLER Çok adımlı işlemlerde şu sıra takip edilir : Parantez içindeki

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 10 Mayıs Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 0 Mayıs 009 Matematik Soruları ve Çözümleri. ( ) 4 işleminin sonucu kaçtır? A) B) C) 4 D) E) 6 Çözüm ( ) 4 ( ) 4 4 6.

Detaylı

HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA

HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA HADİ BAKALIM KOLAY GELSİN ZOR GİBİ GÖRÜNEN BASİT BİR TOPLAMA 1 2 + 3 4 + 5 6 + 7 8 + 9... 1000 toplamının sonucunu bulmak zor gelir mi size bilemeyiz? Dikkatli bakarsanız kalemsiz de çözmeniz mümkün. 1

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

www.derssunumlari.com

www.derssunumlari.com . BÖLÜM: KESİRLER HER YERDE Kesirleri Karşılaştıralım, Toplayalım ve Çıkaralım 7 7 7 ile kesirlerini karşılaştırınız ve bu 8 8 kesirleri sayı doğrusunda gösteriniz. 8 Pay üï Payda : Bir bütünün kaç parçaya

Detaylı

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D)

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) TEST-8 Matematik Yarışmalarına Hazırlık 1 Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) 2 Yandaki kareden çizgiler boyunca kesilerek çeşitli şekiller

Detaylı

.:: BÖLÜM I ::. MATRİS ve DETERMİNANT

.:: BÖLÜM I ::. MATRİS ve DETERMİNANT SAKARYA ÜNİVERSİTESİ İŞLETME FAKÜLTESİ İŞLETME BÖLÜMÜ.:: BÖLÜM I ::. MATRİS ve DETERMİNANT Halil İbrahim CEBECİ BÖLÜM I 1. Matris Cebirine Giriş MATRİS VE DETERMİNANT Sayıların, değişkenlerin veya parametrelerin

Detaylı

ÖSYM nin Sorduğu Tüm Sorular DGS. Tamamı Çözümlü ÇIKMIŞ SORULAR. Temmuz Dahil

ÖSYM nin Sorduğu Tüm Sorular DGS. Tamamı Çözümlü ÇIKMIŞ SORULAR. Temmuz Dahil ÖSYM nin Sorduğu Tüm Sorular DGS Tamamı Çözümlü ÇIKMIŞ SORULAR 00 00 005 006 007 008 009 00 0 Temmuz Dahil Komisyon DGS TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR ISBN 978-975-879-06- Kitapta yer alan bölümlerin tüm

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda

Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. b Payda Matematik6 Bir Bakışta Matematik Kazanım Defteri Özet bilgi alanları... Kesirlerle İşlemler KESİR ve KESİRLERDE SIRALAMA Bir bütünün eş parçalarının bütüne olan oranı kesir olarak adlandırılır. Bir kesirde

Detaylı

x 24 ise x 96 dır. 4

x 24 ise x 96 dır. 4 YAŞ PROBLEMLERİ Yaş problemlerinin çözümünde şunları göz önüne alırız. 1. Bir kişinin bugünkü yaşı x ise, t yıl önceki yaşı t yıl sonraki yaşı x t dir. x t dir.. n tane kişinin yaşları toplamı: T ise,

Detaylı

Tek Doğal Sayılar; Çift Doğal Sayılar

Tek Doğal Sayılar; Çift Doğal Sayılar Bölüm BÖLÜNEBİLME VE ÇARPANLARA AYIRMA. Bölünebilme Kuralları Bir a doğal sayısı bir b sayma sayısına bölündüğünde bölüm bir doğal sayı ve kalan sıfır ise, a doğal sayısı b sayma sayısına bölünebilir.

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı