7. Ders. Mahir Bilen Can. Mayıs 17, 2016

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "7. Ders. Mahir Bilen Can. Mayıs 17, 2016"

Transkript

1 7. Ders Mahir Bilen Can Mayıs 17, 2016 Bu derste bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği sıfır olan k cismi üzerine tanımlı olduğunu varsayıyoruz. 1 Tekrar Gözden Geçirme: Basitlik, Çözülebilirlik, ve Üstelsıfırlılık Üstelsıfır elemanların oluşturduğu Lie cebirlerinin doğrusal etkilerinin önemli yok etme özellikleri vardır. V, üzerine kompleks genel doğrusal grubun GL(V ) tersinir elemanlarla etki ettiği kompleks n boyutlu vektör uzayı olsun. Birbirinden farklı, n 1 tane iç içe bulunan bir dizi vektör altuzaylarına F : V 0 = 0 V 1 V n 1 V n = V (tam) bayrak denir. V için bir baz seçiyoruz ki GL(V ) = GL n (n n lik tersinir matrislerin grubu) olsun. B n GL n ile üst üçgensel matrislerin altgrubunu, U = U n B ile de birimgüçlü üst üçgensel matrislerin altgrubunu gösterelim. Bu derste ispatlamayacak olsak da GL n /B, boyutu dim C (GL n /B) = ( ) n = 2 n(n 1) 2 olan düzgün izdüşümsel cebirsel varyete olduğu gerçeği bilinmelidir. 1

2 GL n /B kosetindeki bir elemanı bir bayrak ile aşağıda tarif edildiği gibi eşleyebiliriz. Gauss-Jordan eleme metoduyla gösterebiliriz ki bir g GL n için u U, b B, ve w bir permütasyon matrisi olması kaydıyla g = uwb olacak şekilde tek bir biçimde yazılabilir (bir 0/1 matrisinin eğer her sütun ve satırında tam olarak bir tane 1 varsa bu matrise permütasyon matrisi denir). Bu yüzden, GL n deki bir koseti ḡ = gb, uw U S n ile tek bir şekilde gösterebiliriz. Örnek olarak, n = 3 durumunda, 1 a b b 1 a uw = 0 1 c = c matrisini düşünelim. Buna karşılık gelen bayrak su şekilde tarif edilir: 0 C 1 C 1, C 2 C 1, C 2, C 3 = C 3, burada C 1 = be 1 + ce 2 + e 3, C 2 = e 1, C 3 = ae 1 + e 2 ; uw matrisinin sütunları ve e i, i = 1, 2, 3, C 3 ün standard bazıdır. Bu örnek keyfi bir n için genelleştirilebilir ve GL n /B yi, C n nin üzerindeki tam bayrakların kümesi olarak düşünebiliriz. Bayrak varyetelerinin ve onunla ilişkili diğer nesnelerin çalışılması modern cebirsel geometri ve temsil teorisi için çok büyük bir önem arz etmektedir. Bu derslerin geri kalanında B nin Lie cebiriyle alakalı bazı temel fikirleri sunacağız. Daha açık belirtmek gerekirse bir vektör uzayına etki eden üstelsıfır bir Lie cebirinin sıfırdan farklı bir vektörü yok ettiğini göstereceğiz, ve çözülebilir bir Lie cebiri bir vektör uzayına etki ettiğinde bütün elemanları için ortak bir özvektörünün olduğunu göstereceğiz. Bir çok sonucun yanı sıra çözülebilirlik ve üstelsıfırlık için kriterleri de sunacağız. 2

3 1.1 Çözülebilir Lie Cebirleri g bir Lie cebiri olsun. g nin türetilmiş dizisi g (i) asağıdaki gibi tanımlanır: g (0) = g, g (1) = [g, g], g (2) = [g (1), g (1) ],. g (i+1) = [g (i), g (i) ], eğer bir i > 0 için g (i) = 0 oluyorsa g ye çözülebilir denir.. Örnek 1.1. b n ile n n lik bütün üst üçgensel matrislerin uzayını gösterelim. Bir X gl(n, C) için, tek parametreli altgrup exp(tx), t R, B n nin içinde olur ancak ve ancak X b n. Burada B n ile tersinir üst üçgensel matrislerin grubunu gösteriyoruz. Bu yüzden, b n, B n nin Lie cebiridir. i, j {1,..., n} olmak üzere e i,j ile (i, j) girdisi 1 diğer bütün girdileri 0 olan yalın matrisi gösterelim. Dikkat ederseniz 1 i j n olacak şekilde e i,j ler b n nin bir bazını vermektedir. e i,j yalın matrisinin seviyesini j i olarak tanımlayalım. b n (k) b n ile seviyesi 2 k 1 olan e i,j ler ile gerilmiş altuzayı gösterelim. Barizdir ki, b n = b n (0) b n (1) b n (2) Aşağıdaki bilgiyi kullanarak, e i,l if j = k [e i,j, e k,l ] = 0 otherwise 2 (i 1) > n 1 olduğunda b (i) n Sıradaki önermenin ispatı kolay. = b n (i) = 0 olduğunu göstermek kolay. 3

4 Önerme 1.2. g bir Lie cebiri olsun 1. Eğer g çözülebilir ise bütün altcebirleri ve homomorfik görüntüleri de çözülebilirdir 2. a çözülebilir ideal ve g/a çözülebilirse g de çözülebilirdir 3. a ve b çözülebilir ideallerse a + b de çözülebilir idealdir. 1. ve 2. kısımları tanımları kullanarak ispatlamak kolay. 3. kısmı ispatlamak için (a + b)/a b/a b olduğunu kullanınız. 1.2 Üstelsıfır Lie Cebirleri Bir Lie cebirinin azalan merkezi dizisi g i asağıdaki gibi tanımlanır: g 0 = g g 1 = [g, g 0 ] g 2 = [g, g 1 ]. g i+1 = [g, g i ]. eğer bir i > 0 için g i = 0 oluyorsa g ye üstelsıfır denir. Açıktır ki g (i) g i. Bu yüzden, eğer g üstelsıfırsa aynı zamanda çözülebilirdir. Bu ifadenin tersi genelde doğru değildir. Gerçekten de n n lik mutlak üst üçgensel matrislerin uzayı n n üstelsıfırdır ancak çözülebilir değildir. 3. dersteki notasyonumuzu hatırlayalım: g nin merkezi Z(g) = {x g : [x, y] = 0 her y g icin }. Önerme 1.3. g bir Lie cebiri olsun. 4

5 1. Eğer g üstelsıfırsa bütün altcebirleri ve homomorfik görüntüleri de üstelsıfırdır. 2. Eğer g/z(g) üstelsıfırsa g de üstelsıfırdır. 3. Eğer g üstelsıfırsa ve g 0 ise Z(g) 0 olur. g den bir eleman x aldığımızda eğer (ad x) m = 0 olacak şekilde bir m 1 varsa x e eşlek-üstelsıfır denir. Üstelsıfırlığı eşlek-üstelsıfırlıktan ayırmak önemlidir. g deki bir eleman x, üstelsıfır olmadığı halde eşlek-üstelsıfır olabilir. Örnek vermek gerekirse gl(v ) deki birim elemanı eşlek-üstelsıfırdır ancak üstelsıfır değildir. Ancak önermenin tersi doğrudur. Önsav 1.4. Eğer x gl(v ) üstelsıfırsa aynı zamanda eşlek-üstelsıfırdır. İspat. ad x i sol ve sağ ötelemelerin farkı olarak yazarsak; λ x ve ρ x, burada λ x (y) = xy ve ρ x (y) = yx, λ x ve ρ x in birbiriyle değişmeli olduğunu ve ikisinin de üstelsıfır olduğunu görmek kolay. Değişmeli üstelsıfır operatörlerin farkları da her zaman üstelsıfırdır. Teorem 1.5. V sonlu boyutlu bir vektör uzayı ve g de gl(v ) nin bir Lie altcebiri olsun. Eğer g üstelsıfır elemanlardan oluşuyorsa o zaman sıfırdan farklı öyle bir eleman v V vardır ki g v = 0 dır. İspat. n = dim g üzerinden tümevarım yapacağız. Eğer n = 1 ise v V öyle bir vektör olsun ki bir tane x g için v := x v sıfırdan farklı olsun. g değişmeli olduğu için y v = (xy + [y, x]) v = 0 her y g için doğru olur. Şimdi, a g nin bir maksimal özaltcebiri olsun. g, V üzerindeki üstelsıfır operatörlerden oluştuğu için a da böyle elemanlardan oluşmaktadır. Özel olarak a nın elemanları eşleküstelsıfırdır. Dolayısıyla g üzerine üstelsıfır operatörler olarak etki ederler. Bu sebeple a, g/a üzerine de üstelsıfır olarak etki eder. Tümevarımın varsayımından biliyoruz ki a x a olacak şekilde bir koset x + a a vardır. Etki, eşlek etki olduğundan a x = {[y, x] : y a} a olur. Diğer bir deyişle x, a nın g deki normalleyeninde N g (a) kalır. x / a ve a olduğu için a nın normalleyeni g olmalıdır. Bu yüzden a g bir ideallerdir. π ile doğal izdüşüm fonksiyonunu π : g g/a gösterelim. Eğer dim g/a birden büyükse g/a nın π altındaki öngörüntüsü a dan mutlak olarak daha büyüktür ve bir Lie altcebirdir. 5

6 Bu a nın maksimal olmasıyla çelişir. Bu yüzden dim g/a = 1 olur ve dolayısıyla bir x g için g = kx + a olur. (Burada k kullanılan cisim.) a ideal olduğundan W = {v V : a v = 0} uzayı g nin etkisi altında değişmezdir. Gerçekten de x g ve v W için y x v = [y, x] v = 0 olur. Şimdi x g i öyle seçelim ki g = kx + a olsun. x, V üzerine etki ettiğinden üstelsıfır olduğu için tek bir özdeğeri vardır o da sıfırdır. Bu yüzden x v = 0 dır. Dolayısıyla kx + a, W ya bayağı etki eder. Teorem 1.6 (Engel). Eğer g nin her elemanı eşlek-üstelsıfırsa g bir üstelsıfır Lie cebirdir. İspat. dim g üzerinde tümevarım yapacağız. Varsayalım ki eğer a eşlek-üstelsıfır elemanlardan oluşan bir Lie cebirse ve dim a < dim g ise a üstelsıfırdır. g nin kendi üzerine eşlek temsil ile etkisini düşünelim. Teorem 1.5 e göre, [g, x] = 0 olacak şekilde sıfırdan farklı bir x g vardır. Diğer bir deyişle g nin merkezi Z(g) boş değildir. Bu da V = g/z(g) nin g den az boyutlu bir Lie cebir olduğunu ve dahası V nin eşlek-üstelsıfır operatörlerden oluştuğunu göstermektedir. Dolayısıyla, tümevarım varsayımımızdan ötürü g/z(g) üstelsıfırdır. Önerme 1.3 ün 2. kısmından dolayı g üstelsıfırdır. 1.3 Çözülebilir Bir Lie Cebirinin Değişmez Vektörü Eğer bir x gl(v ), bayrak F : V 0 = 0 V 1 V n 1 V n = V ve her i = 1,..., n 1 için x V i V i oluyorsa x e bayrağı değiştirmez (ya da sabit bırakır) denir. Dikkat ediniz ki üstelsıfır bir eleman x gl(v ) için x F = F ancak ve ancak x V i V i 1 olduğunda doğru olur. Sonuç 1.7. g, sonlu boyutlu vektör uzayı olan V nin üzerindeki gl(v ) nin bir altcebiri olsun. Eğer g üstelsıfır operatörlerden oluşuyorsa, o zaman sabit bırakılan bir bayrak F vardır. 6

7 İspat. Bunu V nin boyutu üzerinde tümevarım yaparak ispatlayacağız. v V yi öyle seçelim ki g v = 0 olsun. V 1 = span{v} olarak tanımlayalım. g nin W = V/V 1 üzerine indirgenmiş etkisi de üstelsıfır operatörler ile olur. Bu yüzden tümevarım varsayımımızdan dolayı W nun g tarafından sabit bırakılan bir bayrağı vardır. Bu bayrağı V ye geri çekersek V deki aradığımız tam bayrağı buluruz. Teorem 1.8. V sıfırdan farklı sonlu boyutlu bir vektör uzayı ve g gl(v ) çözülebilir bir Lie cebiri olsun. O zaman öyle bir doğrusal fonksiyonel λ : g k ve v V vardır ki her x g için x v = λ(x)v olur. Diğer bir deyişle g nin elemanlarının V de ortak bir ozvektoru vardır. İspat. İspatın ana fikri Teorem 1.5 in ispatındakiyle aynı. dim g üzerinden tümevarım yapacağız. dim g = 0 olduğunda iddia açıkça doğru bu yüzden dim g > 0 olduğunu varsayacağız. g çözülebilir ve dim g > 0 olduğundan [g, g] g olur. Aksi halde g (i) = g olurdu ve bu bir çelişki. g = g/[g, g] ını düşünelim. Bu değişmeli bir Lie cebiridir. Bu yüzden g nin içindeki herhangi bir vektör altuzayı da bir Lie altcebiridir. O zaman tersboyutu bir olan bir altuzay g alalım ve onun g deki ters görüntüsünü a ile gösterelim. Açıktır ki a, g de tersboyutu bir olan bir idealdir ve [g, g] dan mutlak olarak daha büyüktür. g nin altcebiri olarak a çözülebilirdir ve dahası, tümevarım varsayımımızdan dolayı, biliyoruz ki öyle bir doğrusal fonksiyonelimiz λ : a k (1.9) ve v V vardır ki her x a için x v = λ(x)v olur. a bütün ortak özvektörlerinin uzayını W ile gösterelim: W := {w V : x w = λ(x)w, her x a icin }. a nın g deki tersboyutu bir olduğu için bir z g a vardır ve g = kz +a olur. z ile gerilen < z > Lie altcebiri 1 boyutludur ve dolayısıyla değişmelidir. Özel olarak çözülebilirdir. Şimdilik < z > nin W üzerinde bir etkisi olduğunu varsayalım. O zaman, tümevarım 7

8 varsayımımızdan dolayı, z v 0 = cv 0 olacak şekilde bir v 0 W vardır. Bu yüzden λ : a k yı λ(z) = c olarak tanımlayarak g ye (doğrusal olarak) genişletebiliriz; ve v 0, g deki her eleman için ortak bir ozvektor olur. Şimdi g nin W yu değişmez bıraktığını göstermemiz gerekiyor. x g, y a ve w W olsun. x w W olduğunu, ya da denk olarak, y xw = λ(y)xw olduğunu göstermeliyiz. yx w = xy w [x, y] w = λ(y)x w λ([x, y])w olduğu için λ([x, y]) = 0 olduğunu göstermeliyiz. İspatın geri kalanı aydınlatıcı fakat dolambaçsız; [x, y] operatörünün belli bir vektör uzayı üzerindeki etkisini analiz edeceğiz. Bir w W alalım ve {w, x w,..., x n w} V setinin doğrusal bağımsız olduğu en küçük n > 0 değerini alalım. W i ile ilk i vektör ile gerilen uzayı gösterelim. O halde W n n boyutlu bir altuzay ve x altında değişmezdir. y a ve i = 1,..., n için yx i w = λ(y)x i w mod W i olur (i üzerinden tümevarım yapınız.) {w, x w,..., x n 1 w} bazına göre y a nin matrisi üst üçgensel ve köşegendeki her bir girdi λ(y) ye eşittir, dolayısıyla Tr(y) = nλ(y) olur. y, a dan keyfi bir eleman olduğuna göre, özel olarak, iddialarımız [x, y] a için de doğrudur ve Tr([x, y]) = nλ([x, y]) olur. İki fonksiyonun değişmeli yapanı her zaman izsizdir (hatırlayın ki Tr(xy) = Tr(yx)), dolayısıyla nλ([x, y]) = 0 olur bu da λ([x, y]) = 0 ı verir. Not: Tabi ki, son adım n nin k da tersinir olmasına bağlı. Dolayısıyla k nin karakteristiği 0 olduğunda iddialarımızda problem yoktur. Sonuç 1.10 (Lie nin teoremi). g, sonlu boyutlu vektör uzayı olan V nin üzerindeki gl(v ) nin bir altcebiri olsun. Eğer g çözülebilirse g nin etkisi tarafından sabit bırakılan bir bayrak F vardır. Diğer bir deyişle V nin öyle bir bazı vardır ki bu baza göre g nin her bir elemanı üst üçgensel matristir. Lie nin sabit bayrak teoremi ni ad g gl(g) ye uygularsak görürüz ki g nin içinde ide- 8

9 allerden oluşan bir tam bayrak vardır: 0 g 1 g 2 g n = g, (1.11) burada g i g, i-boyutlu bir altcebirdir. Önsav g çözülebilir bir Lie cebiri olsun. Eğer x [g, g] ise ad x üstelsıfırdır. İspat. Lie nin teoreminden biliyoruz ki g için ad g deki bütün elemanları üst üçgensel matris olarak gösterilebilecek bir baz vardır. Üst üçgensel matrislerin türetilmiş cebiri mutlak üst üçgensel matrislerin üstelsıfır cebiri olduğundan görüyoruz ki ad x bir mutlak üst üçgensel matris ile gösterilir ve dolayısıyla üstelsıfırdır. Sonuç g bir Lie cebiri olsun. g çözülebilirdir ancak ve ancak [g, g] üstelsıfırsa. İspat. Yardımcı önerme 1.12 den biliyoruz ki eğer g çözülebilirse [g, g] ının elemanları eşleküstelsıfırdır, dolayısıyla Engel in teoreminden üstelsıfırlardır. Özel olarak, [g, g] üstelsıfır bir Lie cebiridir. Diğer yandan hatırlayın ki üstelsıfır bir Lie cebiri çözülebilirdir. Bu yüzden eğer [g, g] üstelsıfırsa çözülebilirdir. [g, g], g nin türetilmiş dizisindeki ilk terim olduğundan görüyoruz ki g çözülebilirdir. 2 Cartan ın Çözülebilirlik Kriteri k karakteristiği 0 olan cebirsel kapalı bir cisim olsun. Dolayısıyla içerisinde rasyonel sayıların cismini içermektedir. Bu bölümde bir Lie cebirinin ne zaman çözülebilir olduğuna karar verirken faydalı olan bir kriteri ifade edeceğiz ve ispatlayacağız. Bu pratik bilginin ispatı asağıdaki akıllıca yapılmış gözlemi gerektirmektedir. Önsav 2.1. A B gl(v ) iki altuzay olsun (burada V sonlu boyutlu bir vektör uzayı.) M = {x gl(v ) : [x, B] A} olsun. Eğer x M, her y M için Tr(xy) = 0 ı sağlıyorsa üstelsıfırdır. 9

10 İspat. x = s + n, x in Jordan ayrışımı olsun, burada s yarıbasit ve n üstelsıfır. s = 0 olduğunu göstereceğiz. Bu amaçla v 1,..., v n V nin öyle bir bazı olsun ki s bu bazda köşegen matris s = diag(a 1,..., a n ) olsun. E, k nin x in oödeğerleriyle a 1,..., a m gerilen Q-vektör altuzayı olsun. s = 0 olduğunu göstermek için E = 0 olduğunu göstermek yeterli. f : E Q, E üzerinde bir doğrusal fonksiyonel olsun. y = diag(f(a 1 ),..., f(a m )) yi düşünelim; bu gl(v ) de yarıbasit olan bir eleman. Sıradaki hesabı yapmak kolay: {e ij }, gl(v ) nin öyle bir bazı olsun ki e ij (v k ) = δ jk v i sağlansın, burada v 1,..., v n yukarıdaki baz. O zaman s ve y nin eşlek operatörleri ad s(e ij ) = (a i a j )e ij, ad y(e ij ) = (f(a i ) f(a j ))e ij şeklindedir. Lagrange ara değer bulmayı kullanarak r yi r((a i a j )) = f(a i ) f(a j ) olacak şekilde sabit terimi olmayan polinom olarak tanımlayalım. O halde ad y = r(ad x) olur. ad s, (ad x) üzerinde sabit terimi olmayan bir polinom olduğundan ad y de ad x üzerinde sabit terimi olmayan bir polinomdur. Dahası, ad x(b) A olduğundan aynı şey ad y için de geçerli. Diğer bir deyişle y M. Dikkat ediniz ki iki köşegen matrisin çarpımının izi özdeğerlerinin çarpımlarının toplamına eşittir. Ayrıca varsayımımızdan biliyoruz ki Tr(xy) = 0. Bu yüzden i a if(a i ) = 0 olur. Ayrıca dikkat ediniz ki eşitliğin sol tarafi E de kalmaktadır, ve f i uygulayarak i f(a i) 2 = 0 ı elde ederiz. E, Q üzerine sonlu boyutlu bir vektör uzayı olduğu için ve f bir doğrusal fonksiyonel olduğu için görüyoruz ki her i = 1,..., n için f(a i ) = 0 dır. Bu yüzden, f 0. f keyfi olduğu için E 0 olmak zorundadır. Önsav 2.2. V sonlu boyutlu bir vektör uzayı olsun. O zaman gl(v ) deki her x, y ve z için Tr(x[y, z]) = Tr([x, y]z) olur. İspat. Düz hesaplama. 10

11 Teorem 2.3 (Cartan ın Kriteri). g gl(v ) bir Lie altcebiri olsun. x [g, g] ve y g için Tr(xy) = 0 doğru. O halde g çözülebilirdir. Farz edelim ki her İspat. Sonuç 1.13 ten dolayı [g, g] ının üstelsıfır olduğunu göstermemiz yeterlidir. Yardımcı önerme 1.4 ten ve Engel in teoreminden biliyoruz ki her bir x [g, g] in V üzerinde üstelsıfır bir operatör olduğunu göstermemiz yeterli. Yardımcı önerme 2.1 i A = [g, g], B = g, ve M = {x gl(v ) : [x, g] [g, g]} alarak uygularız. Dikkat ediniz ki g M. Varsayımımızı hatırlayınız: her x [g, g] ve y g için Tr(xy) = 0 doğru. Dolayısıyla, x in üstelsıfır olduğunu göstermek için her y M için Tr(xy) = 0 olduğunu göstereceğiz. x = [x, y ], [g, g] ın tipik bir üreteci olsun ve y M olsun. O zaman, yardımcı önerme 2.2 den, Tr([x, y ]y) = Tr(x [y, y]) = Tr([y, y]x ) olur. y, M nin bir elemanı olduğundan [y, y] [g, g] doğrudur. Varsayımımızdan dolayı Tr(([x, y ]y) = Tr([y, y]x ) = 0 olduğunu elde ederiz. Diğer bir deyişle, her y M ve x [g, g] için Tr(xy) = 0 olur. Bu yüzden x üstelsıfırdır ve ispat bitmiştir. Sonuç 2.4. g, gl(v ) nin bir Lie altcebiri olsun öyle ki her x [g, g] ve y g icin B(x, y) = 0, burada B(x, y) = Tr(ad x ad y). O zaman g çözülebilirdir. İspat. Cartan ın kriterini ad : g gl(g) ın görüntüsüne uygularsak görürüz ki ad g = g/ ker(ad) üstelsıfırdır ve dolayısıyla çözülebilirdir. Öte yandan g nin merkezi ker(ad) dır. Değişmeli olduğundan çözülebilirdir. Bu yüzden, önerme 1.2 nin 2. kısmından, g çözülebilirdir. References [1] Humphreys, J. Introduction to Lie Algebras and Representation Theory 11

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

Üst Üçgensel Matrisler

Üst Üçgensel Matrisler Ders Notlar Üst Üçgensel Matrisler Ali Nesin / anesin@bilgi.edu.tr 1. Lineer Cebir Tekrar V, bir K cismi üzerine n > 0 boyutlu bir vektör uzay olsun. V nin K-vektör uzay olarak andomorfizmalar, V nin lineer

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ SERBEST İDEAL HALKALARI ÜZERİNDEKİ MODÜLLER MATEMATİK ANABİLİM DALI ADANA, 2013 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SERBEST İDEAL

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

Ders 7: Konikler - Tanım

Ders 7: Konikler - Tanım Ders 7: Konikler - Tanım Şimdie kadar nokta ve doğrular ve bunların ilişkilerini konuştuk. Bu derste eni bir kümeden söz edeceğiz: kuadrikler ve düzlemdeki özel adı konikler. İzdüşümsel doğrular, doğrusal

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı

14.12 Oyun Teorisi Ders Notları

14.12 Oyun Teorisi Ders Notları 4.2 Oyun Teorisi Ders Notları Muhamet Yıldız Ders 2-3 Tekrarlı Oyunlar Bu ders notlarında, daha küçük bir oyunun tekrarlandığı ve bu tekrarlanan küçük oyunun statik oyun adını aldığı oyunları tartışacağız.

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d) Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek

Detaylı

1. Bir noktadan bir noktaya bir doğru çizilebilir (ve bu doğru tektir). 2. Bir doğru içinde bir doğru parçası (tek bir biçimde) genişletilebilir.

1. Bir noktadan bir noktaya bir doğru çizilebilir (ve bu doğru tektir). 2. Bir doğru içinde bir doğru parçası (tek bir biçimde) genişletilebilir. Tarihte bilindiği kadarıyla düzlem geometrisinin ilk kez sistemli bir biçimde incelenişi, Öklid in Elementler kitabının (M.Ö. 300) birinci cildinde yapıldı. Öklid bu kitapta düzlem geometrisini beş belit

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

IARS Kuantum Bilgi Kuramının Temel. Ders Notları 22 Haziran - 4 Temmuz 2009

IARS Kuantum Bilgi Kuramının Temel. Ders Notları 22 Haziran - 4 Temmuz 2009 IARS Kuantum Bilgi Kuramının Temel Kavramları Bölüm 1 Ders Notları Haziran - 4 Temmuz 009 Yusuf İpekoğlu ODTÜ Fizik Bölümü Ders Asistanı: Enderalp Yakaboylu ODTÜ Fizik Bölümü Ders Notu Asistanı: Enderalp

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

ŞEKİL DEĞİŞTİRME HALİ

ŞEKİL DEĞİŞTİRME HALİ ŞEKİL DEĞİŞTİRME HALİ GİRİŞ Önceki bölümde cisme etkiyen kuvvetlerin dengesi incelenerek gerilme kavramı geliştirildi. Bu bölümde ise şekil değiştiren cisim mekaniğinin en önemli kavramlarından biri olan

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Mat624 Cebir II. Ders Notları. Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/

Mat624 Cebir II. Ders Notları. Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/ Mat624 Cebir II Ders Notları Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/ İçindekiler Kısım 1. CİSİM TEORİSİ iii Bölüm 1. Eşitliklerin

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

Model Teoriye Giriş. Bruno Poizat tarafından verilen derslerden oluşturulmuştur

Model Teoriye Giriş. Bruno Poizat tarafından verilen derslerden oluşturulmuştur Model Teoriye Giriş Bruno Poizat tarafından verilen derslerden oluşturulmuştur 16 Nisan 2012 Mimar Sinan Güzel Sanatlar Üniversitesi Matematik Bölümü http://mat.msgsu.edu.tr/ Bu notlar, Bruno Poizat nın

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 13 (2013) 011301 (1-7) AKU J. Sci. Eng. 13 (2013) 011301 (1-7)

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

T.C. ADIYAMAN ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ YÜKSEK LĠSANS TEZĠ SONSUZ MATRĠSLERLE TANIMLANAN ÖZEL OPERATÖRLER.

T.C. ADIYAMAN ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ YÜKSEK LĠSANS TEZĠ SONSUZ MATRĠSLERLE TANIMLANAN ÖZEL OPERATÖRLER. T.C. ADIYAMAN ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ YÜKSEK LĠSANS TEZĠ SONSUZ MATRĠSLERLE TANIMLANAN ÖZEL OPERATÖRLER Zeliha MAĞDEN MATEMATĠK ANABĠLĠM DALI ADIYAMAN 2012 TEZ ONAYI Zeliha MAĞDEN tarafından

Detaylı

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır. SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

Modüli Uzaylarının Bi-rasyonel Geometrisi

Modüli Uzaylarının Bi-rasyonel Geometrisi Modüli Uzaylarının Bi-rasyonel Geometrisi Modüli Uzaylarının Bi-rasyonel Geometrisi Modüli Uzaylarının Bi-rasyonel Geometrisi Modüli Uzaylarının Bi-rasyonel Geometrisi Modüli Uzaylarının Bi-rasyonel Geometrisi

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

Hemen Hemen Her Sonlu Çizge Asimetriktir

Hemen Hemen Her Sonlu Çizge Asimetriktir Çizgeler Kuram Hemen Hemen Her Sonlu Çizge Asimetriktir Kayhan Zemin E er bir çizgenin özdefllik, yani Id fonksiyonundan baflka otomorfizmas yoksa, bu çizgeye denir. flte en küçük asimetrik çizge: Asimetrik

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik

Detaylı

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı:

Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama. Giriş ve Projenin Amacı: Projenin Adı: Matrisler ile Diskriminant Analizi Yaparak Sayı Tanımlama Giriş ve Projenin Amacı: Bu projenin amacı; matrisler ile diskriminant analizi yaparak, bir düzlem üzerine el ile yazılan bir sayının

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yüksek Lisans Cebir (in Turkish) Başlık: Grup Teorisi I Seviye: - İçerik: Gruplar, bölüm grupları, temel izomorfizma teoremleri, alterne, simetrik ve dihedral gruplar, direkt çarpımlar, otomorfizma grupları

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

MATRİS İŞLEMLER LEMLERİ

MATRİS İŞLEMLER LEMLERİ MTRİS İŞLEMLER LEMLERİ Temel matris işlemlerinin doğrudan matematik açılımını 2 yapmadan önce, bir eşanlı denklem sisteminin matris işlemleri kullanılarak nasıl daha kolay ve sistematik bir çözüm verdiğini,

Detaylı

ğ ğ ğ ş ğ ş ğ ğ ği ğ ş ğ İ ş ğ ş ş ş ğ ş İ ğ ğ ş ş

ğ ğ ğ ş ğ ş ğ ğ ği ğ ş ğ İ ş ğ ş ş ş ğ ş İ ğ ğ ş ş ş Ğ İ ş ş ş ğ ğ ğ ğ ş İ ğ ğ ğ ş ğ ş ğ ğ ği ğ ş ğ İ ş ğ ş ş ş ğ ş İ ğ ğ ş ş İ ş ş ş ş ş ş ş ş ğ ğ ş ğ ş ğğ ş ş ş ş ğ ş ş ğ ş ş ş ğ ş ş ş ğ ğğ ş ğ ş ş ğ İ ş ş ğ ş ş ğ ğ ğ ş ş ğ ğ ş İ ş ğ şğ ş ş ş ş ş ş ğ

Detaylı

"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir.

Bütün kümelerin kümesi, X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in Alt kümeleri kümesi de X'in alt kümesidir. Matematik Paradoksları: Doğru Parçası Paradoksu: Önce doğru parçasının tarifini yapalım: Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir? Nokta: Kalemin

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

FONKS IYONEL ANAL IZE G IR IŞ I Aras nav Sorular

FONKS IYONEL ANAL IZE G IR IŞ I Aras nav Sorular Ad ve Soyad : Numaras : FONKS IYONEL ANAL IZE G IR IŞ I Aras nav Sorular 30.11.2007 1. Aşa¼g daki ifadelerin do¼gru olup olmad klar n nedenlerini aç klayarak yaz n z. (a) (X; kk) bir normlu uzay ve M bunun

Detaylı

14.12 Oyun Teorisi Ders Notları Seçim Teorisi

14.12 Oyun Teorisi Ders Notları Seçim Teorisi 14.12 Oyun Teorisi Ders Notları Seçim Teorisi Muhamet Yıldız (Ders 2) 1 Temel Seçim Teorisi X kümesi alternatifler kümesi olsun. Alternatifler birbirini dışlayan olsunlar, yani bir kişi aynı anda iki farklı

Detaylı

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için,

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için, Ritz Yöntemi Kullan larak Integral Operatörlerin Özde¼gerlerinin Yaklaş k Hesab Yüksel SOYKAN, Erkan TAŞDEM IR, Melih GÖCEN Zonguldak Karaelmas Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 6700

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı