10. Ders. Mahir Bilen Can. Mayıs 20, Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız:
|
|
- Esen Uygun
- 4 ay önce
- İzleme sayısı:
Transkript
1 10. Ders Mahir Bilen Can Mayıs 20, Yarıbasit Bir Lie Cebirinin Yapısı Hakkında Yarıbasit bir Lie cebirinin yapısını analiz etmeye devam ediyoruz. hatırlayınız: Kök uzay ayrışımını g = h χ Φ g χ. (1.1) Burada h bir maksimal simitsel altcebir ve ayrışım (1.1), V = g vektör uzayının bir h-modül (h değişmeli operatörlerden oluşmakta) olarak ortak özuzay ayrışımıdır. Bir kökü χ Φ sabitleyelim. x g χ için, öyle tek bir y g χ vardır ki (x, y, [x, y]), sl(2, k) nin bir kopyası s χ yi gersin. Dahası, y i öyle bir seçelim ki [x, y] = h χ olsun, burada h χ = Yukarıda t χ, h nin karakter χ ı belirleyen elemanıdır: 2t χ B(t χ, t χ ). (1.2) χ(h) = B(t χ, h) her h h için. Bu yüzden, χ(h χ ) = 2χ(t χ )/B(t χ, t χ ) = 2 olur. Aşağıdaki iddialarda bulunuyoruz; 1
2 1. Her χ Φ için, kök uzayı g χ 1-boyutludur ve s χ = g χ g χ [g χ, g χ ]. 2. Eğer χ Φ ise χ ın Φ de kalan tam sayı katları sadece χ ve χ dır. 3. χ, β Φ ise β(h χ ) Z ve β β(h χ )χ Φ olur. 4. χ + β Φ ise [g χ, g β ] = g χ+β olur. 5. Eğer β, χ Φ ve q, r; β + qχ ve β rχ ın kök olduğu en büyük tam sayılar olsun, o zaman β + iχ da bir kök olur ( r i q.) 6. g bir Lie cebiri olarak kök uzayları g χ lar tarafından gerilir. Bu iddialarımızı sıradaki altbölümde ispatlıyoruz. 1.1 İspatlar M = h + c k olarak tanımlayalım. M nin, s χ üzerine bir modül olduğu barizdir. z g cχ için [h χ, z] = cχ(h χ )z = 2cz olur. sl(2, k) nın bir kopyasının tüm ağırlıkları tam sayı olduğundan, görürüz ki 2c Z olmalı. Özel olarak, c bir tam sayının yarısı olmalıdır. χ bir karakter (k ya, örten homomorfizma) olduğundan, h deki çekirdeğinin ters boyutu bir ve h = ker χ kh χ olur. Açıktır ki s χ, ker χ ya bayağı etki eder ve dolayısıyla, h s χ, M nin bir alt temsili K dır. Yarıbasit Lie cebirlerinin temsilleri tamamıyla indirgenebilir olduğundan, h s χ ın M deki tamlayanına odaklanacağız. Bu tamlayanı K ile gösterelim. Eğer K K indirgenemez bir s χ modül ise onun ağırlıkları m, m + 2,..., m 2, m şeklinde tam sayılardır. 0, K ın ağırlığı olmadığından, sayılar m,..., m 2, m den hiç biri çift değildir. Özel olarak, görürüz ki K ağırlığı çift olan bir özuzayı içeremez, dolayısıyla bir kökün iki katı K da olmaz. Özel g cχ 2
3 olarak, 1χ kök olamaz. Son iddia m nin tek olamayacağını da ima eder, dolayısıyla 2 K = 0 olmalıdır. Sonuç olarak, h c k g cχ = M = h s χ olur ve bu da s χ = g χ g χ [g χ, g χ ] olduğunu ima eder. Dolayısıyla dim g χ = 1 ve χ ın, Φ de kalan diğer tek skalar katı χ olur. 3 ü ispatlamak için s χ = sl(2, k) nın K = i Z g β+iχ üzerine olan etkisine bakarız, burada β, ±χ dan farklı bir kök. Dikkat ediniz ki [g ±χ, g β+iχ ] g β+iχ±1 olduğundan, K bir s χ modüldür. J, K da olan sıfırdan farklı ağırlıkların β(h χ ) + 2i 0 (i Z) çoklu kümesi olsun. Aslında J nin küme olduğu açıktır (çoklu küme değil.) Tamamıyla indirgenebilir olmanın ışığında, görüyoruz ki K ya sl(2, k) nin indirgenemez bir temsilidir ya da { m, m+2,..., 2, 0, 2,..., m} ve { n,..., 1, 1,..., n} ağırlıklarına sahip iki tane sıfırdan farklı indirgenemez temsilin, K ve K, direkt toplamıdır. Ancak, herhangi bir ağırlık β(h χ ) + 2i (i Z) şeklindedir, dolayısıyla iki ağırlığın aralarındaki fark çifttir. Özel olarak, görüyoruz ki K indirgenemezdir ve ağırlıkları J = { m, m + 2,..., m 2, m} dir, burada m tek ya da çifttir. Yine de, q ve r negatif olmayan öyle tam sayılar olsun ki β(h χ ) + 2q = m, K nin maksimal ağırlığı ve β(h χ ) 2r = m de en küçük ağırlığı olsun. Bu yüzden, (β rχ)(h χ ) = (β + qχ)(h χ ), β(h χ ) = r q Z yi verir. Dahası, eğer r i q ise β(h χ ) + 2i { m, m + 2,..., m} olur ve dolayısıyla β + iχ bir köktür. K nin indirgenemezliğinin başka bir sonucu da χ + β 0 olması halinde [g χ, g β ] = g χ+β olmasıdır. 3
4 Son olarak 6 yı ispatlıyoruz: Önceki dersten biliyoruz ki Φ, h i gerer, denk olarak, {h χ h : χ Φ}, h yi gerer. [g χ, g χ ], h χ ile gerildiğinden, görürüz ki {g χ : χ Φ}, g yi bir Lie cebir olarak gerer. 2 Kök Sistemleri Φ nin temel özelliklerini (bir kez daha) listeliyoruz: 1. Φ sıfırdan farklı vektörlerin sonlu bir kümesidir. 2. h, Φ ile gerilir. 3. Eğer χ Φ ise, χ ın Φ de kalan tam sayı katları sadece χ ve χ dır. 4 (v.0). Eğer χ, β Φ ise β(h χ ) Z ve β β(h χ )χ Φ olur. Son madde (4) ü öyle bir değiştireceğiz ki g ye bağlı gibi gözükmesin. Bunu yapmak için, h in Φ ile gerilen altuzayını E ile gösterelim; E = χ Φ Rχ. E üzerinde doğal bir iç çarpım tanımlayacağız. Hatırlayınız ki Killing formu B, h üzerinde dejenere değildi. Bu yüzden E ye taşımak için iyi bir adayımız var. h daki iki keyfi vektör χ, β için, (χ, β) := B(t χ, t β ) olarak tanımlayalım, burada t χ, h nin χ(h) = B(t χ, h) (h h) ile tanımlanan tek elemanı (Bu mümkün çünkü Killing formu dejenere değil). üzerinde bir iç çarpım olduğunu ispatlamak direkt hesaplama ile mümkündür. Ayrıca, ( ) 2tχ β(h χ ) = β B(t χ, t χ ) olduğunu kontrol etmek de kolaydır. = 2 B(t β, t χ ) B(t χ, t χ ) = 2(β, χ) (χ, χ) (, ) ın E Ancak temel lineer cebirden biliyoruz ki (β,χ) χ, β nın χ tarafından gerilen doğruya izdüşümüdür. (χ,χ) Dolayısıyla, normal vektörü χ olan hiperdüzleme göre yansıma operatörü s χ : E E, ile verilir. (β, χ) s χ (β) = β 2 (χ, χ) χ Dördüncü maddeyi tekrar ifade etmek için hazırız: 4
5 4 (v.1). Eğer χ, β Φ ise 2 (β,χ) (χ,χ) Z ve s χ(β) = β 2 (β,χ) (χ,χ) χ Φ olur. Bir Öklid uzayındaki yukarıdaki özellikleri (1 3 ve 4(v.1)) sağlayan bir vektörler kümesine kök sistemi denir. Son koşul 4 (v.1), bir kök sistemine 4. katı yapısal özelliği getirir. Φ deki vektörlerin arasında mümkün olan açılara önemli bir kısıtlama getirir. (Hatırlayınız iki vektörün arasındaki açı θ, χ β cos θ = (χ, β) ile hesaplanabilir.) Notasyonu kolaylaştırmak için, 2 (β,χ) yı, β, χ ile gösterelim. (Dolayısıyla, β, χ = (χ,χ) β(h χ ) olur.) Bu yüzden, β, χ χ, β = 4(β, χ)2 (β, β)(χ, χ) = 4(β, χ)2 β 2 χ 2 = 4 cos2 θ olur. Bu sayı bir tam sayı olduğundan ancak asağıdaki olasılıklar mümkündür: Açı χ, β β, χ π/2 0 0 π/ π/ π/ π/ π/ π/ Tablodan ve s χ ın tanımından görebiliriz ki iki tane birbiriyle orantılı olmayan kök χ, β Φ için, eğer (χ, β) < 0 ise χ + β Φ olur; eğer (χ, β) > 0 ise χ β Φ olur. Tablo bize ayrıca der ki, eğer χ sabitse, o zaman her β Φ için 3 β, χ 3 olur. Buradan da görebiliriz ki eğer χ ve β sabitlenmişse, β + iχ şeklinde görülen vektörlerden en fazla 4 tanesi Φ de kalır. (4, G 2 kök sistemi tarafından sağlanır. Bu kök sistemini yakında vereceğiz.) 5
6 3 Weyl Grupları Φ bir kök sistemi olsun. Yansıma operatörleri s χ, χ Φ ile gerilen sonlu gruba Φ nin (ve g nin) Weyl grubu denir. Weyl grupları daha genel olan Coxeter gruplarının özel halleridir. Kabaca ifade etmek gerekirse, bir grup W, kıvrılmalardan (derecesi 2 olan elemanlardan) oluşan bir alt kümesi S W tarafından üretiliyorsa W ya Coxeter grubu denir. Daha açık bir şekilde, W nun gösterimi s 2 = id her s S için, ve (ss ) m ss = id, burada W = s S : m ss {2, 3,..., } her birbirinden farklı s, s S için şeklindeyse, Coxeter grubu olarak adlandırılır. Coxeter gruplarıyla ilgili bir ek bölüm İngilizce olarak hazırdır. Bu dersin geri kalanı o notlarda bulunmaktadır. References [1] Humphreys, J. Introduction to Lie Algebras and Representation Theory 6
9. Ders. Mahir Bilen Can. Mayıs 19, 2016
9. Ders Mahir Bilen Can Mayıs 19, 2016 1 Yarıbasit Bir Lie Cebirinin Yapısı Bu derste bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği sıfır olan k cismi üzerine tanımlı olduğunu varsayıyoruz.
12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.
12. Ders Mahir Bilen Can Mayıs 24, 2016 1 Yerel Kaldırma Özellikleri Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon ι : Sym(g) n 0 U n /U n+1 bize bir derecelendirilmiş
13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü
13. Ders Mahir Bilen Can Mayı 25, 2016 1 Kök Sistemlerine Bir Örnek Hatırlayacağımız üzere basit kökler kümesi = {α 1,..., α l } Φ ya karşılık gelen temel baskın kökler olan ω 1,..., ω l leri aşağıdaki
6. Ders. Mahir Bilen Can. Mayıs 16, 2016
6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği
3. Ders. Mahir Bilen Can. Mayıs 11, Önceki Dersteki Sorular ile İlgili Açıklamalar
3. Ders Mahir Bilen Can Mayıs 11, 2016 1 Önceki Dersteki Sorular ile İlgili Açıklamalar Lie nin üçüncü teoremi oarak bilinen ve Cartan tarafından asağıdaki gibi güçlendirilmiş bir teorem ile başlayalım:
11. Ders. Mahir Bilen Can. Mayıs 23, 2016
11. Ders Mahir Bilen Can Mayıs 23, 2016 1 Önceki Ders Üzerine Bazı Notlar Wikipedia dan Killing ile ilgili bir alıntıyla başlayalım. "1880 civarında, Killing Sophus Lie den bağımsız olarak Lie cebirlerini
7. Ders. Mahir Bilen Can. Mayıs 17, 2016
7. Ders Mahir Bilen Can Mayıs 17, 2016 Bu derste bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği sıfır olan k cismi üzerine tanımlı olduğunu varsayıyoruz. 1 Tekrar Gözden Geçirme: Basitlik,
Lecture 2. Mahir Bilen Can. Mayıs 10, 2016
Lecture 2 Mahir Bilen Can Mayıs 10, 2016 1 Klasik Lie Cebirleri Klasik Lie cebirlerinin hepsi içinde son derece büyük öneme sahip dört sonsuz aile vardır. Bunlar A, B, C, D harfleri ile indekslenmekte
10. DİREKT ÇARPIMLAR
10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü
VEKTÖR UZAYLARI 1.GİRİŞ
1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.
Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50
Modül Teori Modüller Prof. Dr. Neşet AYDIN ÇOMÜ - Matematik Bölümü [01/07] Mart 2012 Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart 2012 1 / 50 Giriş M bir toplamsal değişmeli
KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1
SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?
Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak
10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.
9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı
9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,
DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI
T.C ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI ÖĞRETİM ÜYELERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR:
İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN
İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.
ÖZDEĞERLER- ÖZVEKTÖRLER
ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler
18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu
MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A
2.2 Ölçüler SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X kuvvet kümesi veriliyor. P (X üzerinde 0 ; A (A : 1 ; A şeklinde tanımlanan dönüşümü ölçü müdür? ÇÖZÜM 1: (i Tanımdan ( 0. (ii A
1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.
1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN
Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,
Özdeğer ve Özvektörler
Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin
13.Konu Reel sayılar
13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık
. [ ] vektörünü S deki vektörlerin bir lineer
11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin
5. Ders. 1 Notasyon. Mahir Bilen Can. Mayıs 13, Bu derste klasik basit Lie cebirlerinin kompakt reel formlarının listesini tekrarlayacağız.
5. Ders Mahir Bilen Can Mayıs 3, 206 Bu derste klasik basit Lie cebirlerinin kompakt reel formlarının listesini tekrarlayacağız. Notasyon A, n n lik kompleks matris olsun. A ya ters-simetrik diyeceğiz
Math 103 Lineer Cebir Dersi Final Sınavı
Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı
olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa
1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)
A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS
. Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product
Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.
Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla
10.Konu Tam sayıların inşası
10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir
Ders 8: Konikler - Doğrularla kesişim
Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu
8.Konu Vektör uzayları, Alt Uzaylar
8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye
Math 103 Lineer Cebir Dersi Ara Sınavı
Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 6 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4: Toplam Süre: 6 Dakika Lütfen adınızı ve soyadınızı
T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ
T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN
Normal Alt Gruplar ve Bölüm Grupları...37
İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41
Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve
Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz
LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö
LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı
MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.
MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu
SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme
2. ÖLÇÜLER 2.1 BazıKüme Sınıfları SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin bir sınıfıolsun. A sınıfıx üzerinde bir σ cebir midir? ÇÖZÜM 1: A := {B P (X) : B sonlu} X / A
{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde
1. Aşağıdaki kümelerden hangisi sonsuz küme belirtir? A) A = { x 4 < x < 36,x N} B) B = { x 19 < x,x asal sayı} C) C = { x x = 5k,0 < x < 100,k Z} D) D = { x x = 5, x Z} E) E = { x x < 19,x N}. A, B ve
MAT 321SOYUT CEBİR I KONU TEKRAR SORULARI. ise < A > nedir?
MAT 321SOYUT CEBİR I KONU TEKRAR SORULARI 1. Pozitif rasyonel sayılar kümesi Q + üzerinde x y = xy 2 işlemi tanımlansın. (Q+, ) bir grup mudur? Gösteriniz. 2. (G, ) bir grup olsun. a G olmak üzere her
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret
Soru Toplam Puanlama Alınan Puan
18.11.2013 No: Ad-Soyad: İmza: Soru 1. 2. 3. 4. 5. 6. 7. 8. Toplam Puanlama 20 20 20 20 20 20 20 20 100 Alınan Puan 405024142006.1 CEBİRSEL TOPOLOJİ ARASINAVI CEVAP ANAHTARI (ÖRGÜN ÖĞRETİM) Not: Süre 90
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H
Hamel Taban ve Boyut Teoremi
Hamel Taban ve Boyut Teoremi Mert ÇAĞLAR 1 VE Zafer ERCAN 2 1 Amaç Baştan söyleyelim: vektör uzay, vektör altuzay, doğrusal dönüşüm, izomorfik (eş yapılı) vektör uzaylar kavramlarına başlangıç seviyesinde
1. Ders. Mahir Bilen Can. May 9, 2016
1. Ders Mahir Bilen Can May 9, 2016 1 Lie Grup nedir? Kabaca Lie grubu denilen şey bir C -çokkatlısıdır ve aynı zamanda grup yapısına sahiptir öyle ki üzerindeki işlem ve ters alma operasyonu C -fonksiyonlardır.
Soyut Cebir. Prof. Dr. Dursun TAŞCI
Soyut Cebir Prof. Dr. Dursun TAŞCI Ankara 2007 674 ÖNSÖZ Bu kitap; Selçuk Üniversitesi ve Gazi Üniversitesinde uzun yıllar okutmuş olduğum Soyut Cebir ve Cebire Giriş ders notlarının düzenlenmesi ve daha
Math 103 Lineer Cebir Dersi Ara Sınavı
Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret
TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar
TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c
7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;
İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit
BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ
BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü
13. Karakteristik kökler ve özvektörler
13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik
TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.
UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ
Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.
1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z
Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2
SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI
MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =
MAT 302 SOYUT CEBİR II SORULAR 1. : bir dönüşüm, olsunlar. a) ( ) = ( ) ( ) b) ( ) ( ) ( ) olduğunu c) ( ) nin eşitliğinin sağlanması için gerekli ve yeterli bir koşulun nin 1 1 olması ile mümkün olduğunu
0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c
0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret
Math 103 Lineer Cebir Dersi Final Sınavı
Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı
Sayı 31, Ağustos 2013 ISSN Lie Cebirleri İçin (Ön)Çaprazlanmış Modüller Üzerine. On (Pre)crossed Modules Over Lie Algebras
Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi ISSN 1302 3055 Ahmet Faruk ASLAN Eskişehir Osmangazi Üniversitesi, Fen Edebiyat Fakültesi, Matematik-Bilgisayar Bölümü, Eskişehir, afaslan@ogu.edu.tr
Lineer Bağımlılık ve Lineer Bağımsızlık
Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin
Leyla Bugay Doktora Nisan, 2011
ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904
İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48
İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri
Cebir Notları. Kümeler. Gökhan DEMĐR, KÜME KAVRAMI
, 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Kümeler KÜME KVRMI Kümenin tanım yoktur. undan dolayı kümeyi tanıtmaya çalışalım. Küme kavramında bir topluluk, bir kolleksiyon ifadesi vardır.
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret
3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10
Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
x 2i + A)( 1 yj 2 + B) u (v + B), y 1
Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak
İNJEKTİF MODÜLLERE. Ali Pancar Burcu Nişancı Türkmen
İNJEKTİF MODÜLLERE GİRİŞ Ali Pancar Burcu Nişancı Türkmen Ali PANCAR Burcu NİŞANCI TÜRKMEN İNJEKTİF MODÜLLERE GİRİŞ ISBN 978-605-364-896-3 Kitap içeriğinin tüm sorumluluğu yazarlarına aittir. 2014, Pegem
18.702 Cebir II 2008 Bahar
MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu
Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve
HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI
12.04.2011 HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI 1. f : A B modül homomorfizması, i : Ker f A kapsama homomorfizması ve p : B B/Im f doğal epimorfizma olmak üzere 0 Ker f A B B/Im f 0 dizisinin
sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye
KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile
SAYILAR DOĞAL VE TAM SAYILAR
1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret
ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10
ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI
Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur
Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli
Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok
Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret
x 0 = A(t)x + B(t) (2.1.2)
ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme
Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)
Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek
NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi
NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP FONKS IYONLARA YAKLAŞIM Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 4 7! FONKS IYONLARA YAKLAŞIM 1 / 21 1 Polinom Interpolasyonu Newton Formu
İKİNCİ DERECEDEN DENKLEMLER
İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE
ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.
Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.
Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü
Ders 9: Bézout teoremi
Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar
30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )
3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x
Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.
ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı
Hemen Hemen Her Sonlu Çizge Asimetriktir
Çizgeler Kuram Hemen Hemen Her Sonlu Çizge Asimetriktir Kayhan Zemin E er bir çizgenin özdefllik, yani Id fonksiyonundan baflka otomorfizmas yoksa, bu çizgeye denir. flte en küçük asimetrik çizge: Asimetrik
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Denklik Bağıntıları 5 Bibliography 13 1 Denklik Bağıntıları 1 1denklik 1.1 Eşitlik Günlük
Contents. Bu notlar Feza Gürsey Enstitüsü nde düzenlenen Grup/Temsil kuramından kesitler başlıklı programda verdiğim dersin notlarıdır.
İKILI KÜME İZLEÇLERINE GIRIŞ OLCAY COŞKN Contents 1. Giriş 1 2. İkili Kümeler 1 3. İkili Küme İzleçleri: Tanım 4 4. Örnekler 5 5. Basit ikili küme izleçlerinin sınıflandırılması 6 References 7 1. Giriş
Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n
DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi
MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı
MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod
Önsöz. Mustafa Özdemir Antalya 2016
Önsöz Bu kitap üniversitelerimizin Mühendislik Fakültelerinde, Doğrusal Cebir veya Lineer Cebir adıyla okutulan lisans dersine yardımcı bir kaynak olması amacıyla hazırlanmıştır. Konular, teorik anlatımdan