MAK 210 SAYISAL ANALİZ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAK 210 SAYISAL ANALİZ"

Transkript

1 MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emre DEMİRCİ 1

2 4.1: Aşağıdaki verilen fonksiyonun belirten aralıklarda köklerinin olup olmadığını araştırınız. Kök varsa yarıya bölme yöntemi ile bulunuz. Çözüm 4.1: f x = e x 2x 2 = 0 x L = 1 y L = f x L = 1,2817 x R = 2 y R = f x R = 1,3890 y L y R < 0 olduğundan arada kök var. x M = X R + X L 2 f x = e x 2x 2 = 0 aralık [1,2] = 1,5 y M = f 1,5 = 0,5183 y L y M = 1,2817 0,5183 = 0,6643 > 0 x L = 1,5 y L =

3 no x L x R x M y L y R y M

4 Çözüm MATLAB: BURSA TECHNICAL UNIVERSITY (BTU) %Soru 4.1 %Yarıya Bölme ile fonksiyon kökü bulma clear,clc F=inline('exp(x)-2*x-2');% Fonksiyonu inline bir fonksiyon olarak tanimla Xl=1;Xr=2;% Verilen aralıkları gir imax=15;tol=0.01;% maximum iterasyon sayisini sec, tolerans degerini ata Yl=F(Xl);Yr=F(Xr);% fonksiyonun Xl ve Xr noktalarindaki degerini hesapla 4

5 if Yl*Yr>0 % eger isaretler ayni ise disp('belirtilen aralıkta kök yok') else disp('iter. Xl Xr Xm Yl Yr Ym tolerans') for i=1:imax % maximum iterasyon sayisinca Xm=(Xr+Xl)/2; % Xl ile Xr nin orta deðerini bul Ym=F(Xm); % fonksiyonun Xm degerini hesapla tole=abs(ym);% tolerans degerini Ym al Yl=F(Xl);Yr=F(Xr); fprintf('%3i %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f\n',i,Xl,Xr,Xm,Yl,Yr,Ym,tole) if Ym==0% Eger fonksiyonun degeri 0 a esit ise fprintf('gercek cozum x=%15.5f bulundu',xm)% Cozumu yazdir break 5

6 if tole<tol % Eger toleranstan kucuk deger bulunmus ise break % iterasyonu sonlandir if i==imax % Son iterasyon icin fprintf('%i itereasyonda cözüm elde edilemedi',imax) break % Xi ile a veya b' den hangisi arasinda isaret degisimi var ise % Diger ucu at if Yl*Ym <0 Xr=Xm;% xi' yi yeni b yap else Xl=Xm; % xi' yi yeni a yap 6

7 %Soru 4.1b %"fzero" komutunun kullanımı clear, clc F=inline('exp(x)-2*x-2'); %fonksiyonu tanımla x0=[1 2]; %Tahmin değerleri x=fzero(f,x0) 7

8 4.2: Aşağıdaki verilen fonksiyonun belirten aralıklarda köklerinin olup olmadığını araştırınız. Kök varsa lineer interpolasyon (Regula-Falsi) yöntemiyle bulunuz. TD=0,0001 Çözüm 4.1: f x = e x sin πx 3 = 0 aralık [ 3.5, 2.5] f x = e x sin πx 3 = 0 x L = 3,5 y L = f x L = 0,4698 x R = 2,5 y R = f x R = 0,5821 y L y R < 0 olduğundan arada kök var. x M = x L y R x R y L y R y L = 3,0534 y M = f 0,6079 = 0,0087 y L y M = 0,4698 0,0087 = 0,0041 > 0 x L = 3,0534 y L = 0,0087 8

9 no x L x R x M y L y R y M 1-3,5000-2,5000-3, ,5821-0, ,0534-2,5000-2,8062-0,0087 0,5821 0, ,0534-2,8062-3,0497-0,0087 0,2620-0, ,0497-2,8062-3,0420-0,0047 0,2620 0, ,0497-3,0420-3,0496-0,0047 0,0038-0, ,0496-3,0420-3,0454-0,0046 0,0038 0,0001 9

10 Çözüm MATLAB: %Soru 4.2 %Lineer Interpolasyon ile fonksiyon kökü bulma clear,clc F=inline('exp(x)-sin(pi*x/3)');% Fonksiyonu inline bir fonksiyon olarak tanimla Xl=-3.5;Xr=-2.5;% Verilen aralıkları gir imax=15;tol=0.0001;% maximum iterasyon sayisini sec, tolerans degerini ata Yl=F(Xl);Yr=F(Xr);% fonksiyonun Xl ve Xr noktalarindaki degerini hesapla 10

11 if Yl*Yr>0 % eger isaretler ayni ise disp('belirtilen aralıkta kök yok') else disp('iter. Xl Xr Xm Yl Yr Ym tolerans') for i=1:imax % maximum iterasyon sayisinca Xm=(Xl*Yr-Xr*Yl)/(Yr-Yl); % Xm degerini hesapla Ym=F(Xm); % fonksiyonun Xm degerini hesapla tole=abs(ym);% tolerans degerini Ym al Yl=F(Xl);Yr=F(Xr); fprintf('%3i %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f\n',i,Xl,Xr,Xm,Yl,Yr,Ym,tole) if Ym==0% Eger fonksiyonun degeri 0 a esit ise fprintf('gercek cozum x=%15.5f bulundu',xm)% Cozumu yazdir break 11

12 if tole<tol % Eger toleranstan kucuk deger bulunmus ise break % iterasyonu sonlandir if i==imax % Son iterasyon icin fprintf('%i itereasyonda cözüm elde edilemedi',imax) break % Xi ile a veya b' den hangisi arasinda isaret degisimi var ise % Diger ucu at if Yl*Ym <0 Xr=Xm;% xi' yi yeni b yap else Xl=Xm; % xi' yi yeni a yap 12

13 4.3: x 2 + y 2 = 4 y 2 sin x = 0 eğrilerinin kesim noktalarından birini basit iterasyonla bulunuz. (TD=0.01) Çözüm 4.3: y = 4 x 2 x = sin 1 y 2 x = 4 x 2 sin 1 2 x 0 = π 2 = 1,5708 (Başlangıç değeri) x = sin 1 4 x2 0 2 = 0,6675 Tolerans= 0,6675-(-1,5708)=2,

14 X F TD -1,5708 0,6675 2,2382 0,6675 1,2305 0,5630 1,2305 0,9081-0,3224 0,9081 1,0995 0,1914 1,0995 0,9887-0,1107 0,9887 1,0537 0,0649 1,0537 1,0159-0,0377 1,0159 1,0379 0,0220 1,0379 1,0251-0,0128 1,0251 1,0326 0,0075 1,0326 1,0282-0,0043 1,0282 1,0308 0,0025 1,0308 1,0293-0,0014 1,0293 1,0301 0,

15 4.3: ilk hızı sıfır olarak kini boşluğa bırakan bir paraşütçünün hızı V = gm c [1 e ct/m ] olup burada yer çekimi ivmesi g = 9.81m/s 2, paraşütçünün kütlesi m = 70 kg ve hava direnci c dir. t=10 s sonunda hız 40 m/s olduğuna göre hava direncini hesaplayınız. (Tolerans değeri=10-4 ) Çözüm 4.3: c = gm V 1 e ct/m verilenler yerine konulursa: c = 9, e c 10/70 c = 17, e 0,1429c 15

16 Basit iterasyon ile çözüm yaparsak; c n+1 = 17, e 0,1429c n c 0 = 10 başlangıç değeri ile iterasyona başlayalım c = 17, e 0, = İterasyona devam edersek: n c n , , , , , , , , , ,

17 Çözüm MATLAB: %Basit Iterasyon ile denklem kökü bulma clear,clc F=inline(' *(1-exp( *x))');% Fonksiyonu inline bir fonksiyon olarak tanimla x(1)=10; % Baslangic degerini gir imax=15;td=0.0001;% maximum iterasyon sayisini sec, tolerans degerini ata disp( İter. C Tolerans') for i=1:imax x(i+1)=f(x(i)); tol=x(i+1)-x(i); fprintf('%3i %10.4f %10.4f\n',i,x(i+1), tol) if tol<td break 17

18 4.5: y = x 3 3x + 18 denkleminin bir kökünü Newton-Raphson yöntemi ile bulunuz. Çözüm 4.5: y = x 3 3x + 18 Newton-Raphson çözümü için fonksiyonun türevini alırsak: genel iterasyon denkleminde yazılırsa Başlangıç değeri olarak x 0 = 2 alalım y = 3x 2 3 x n+1 = x n x n 3 3x x n 2 3 x 1 = İterasyona devam edersek aşağıdaki değerler elde edilir: = 3,

19 n x n , , , ,0 5-3,0 19

20 Çözüm MATLAB: BURSA TECHNICAL UNIVERSITY (BTU) %Newton Raphson yöntemi ile lineer olmayan denklem çözümü clear,clc syms x f=x^3-3*x+18;% Fonksiyonu tanimla ff=diff(f,x); %Fonksiyonun turevini al x0=-2; %Baslangic degeri TD=0.0001; %Tolerans Degeri tole=100; k=0; disp('iter. x tolerans') while abs(tole)>td X=x0-(subs(f,x,x0)/subs(ff,x,x0)); tole=x0-x; x0=x; k=k+1; fprintf('%2.0f %10.4f %10.4f\n',k,X,tole) 20

21 4.6: Bir otomobilin V hızıyla gitmesi için gerekli olan güç P = V V 2.8 (P kw, V[m/s]) ifadesiyle verilmektedir. 12m/s den daha büyük hızlarda bir motorun verdiği güç ise P = V 0.16V 2 Denklemiyle temsil edilebilmektedir. Bu motorla aracın hareket hızını ve motorun vereceği gücü %2 hassasiyetle hesaplayınız. Aracın tüketeceği maksimum gücü nasıl bulabileceğinizi belirtiniz. Çözüm 4.6: Problemi Genelleştirilmiş Newton Raphson yöntemi ile çözelim f 1 = P 4,2 0.45V 0,0025V 2,8 f 1P = 1 f 1V f 2 = P 60 8V + 0,16V 2 f 2P = 1 f 2V = 0,45 0,007V1,8 = 8 + 0,32V 21

22 Başlangıç değerleri olarak P 0 = 100 ve V 0 = 50 alalım f 1 = 69,06089 f 1P = 1 f 1V = 8,4528 f 2 = 40 f 2P = 1 f 2V = 8 olarak bulunur. Buna göre yeni P ve V değerleri P i+1 = P i + x = , , , = 113,2961 V i+1 = V i + x = , , = 43,3380 olarak elde edilir. Yeni bulunan değerler ile aynı işlemler tekrarlanır: 22

23 f 1 = 6,1635 f 1P = 1 f 1V = 6,6367 f 2 = 7,1013 f 2P = 1 f 2V = 5,8682 olarak bulunur. Buna göre yeni P ve V değerleri P i+1 = P i + x = 113,2961 6,1635 5,8682 6,6367 7, ,8682 6, = 112,4196 V i+1 = V i + x = 43, , , ,8682 6,367 1 = 42,2772 Bulduğumuz son değerler %2 tolerans değerini sağlamaktadır. Buna göre aracın hareket hızı V = 42,2772 m/s, motorun vereceği güç P = 112,4196 kw olarak bulunur. 23

24 4.7: f x = x 5 3.5x x x x Polinomu veriliyor. Bu polinomun türevini, x = 1 noktasındaki değerini ve köklerini Matlab kodu yazarak bulunuz. 24

25 Çözüm MATLAB: BURSA TECHNICAL UNIVERSITY (BTU) %Soru 4.7 %Polinom hesaplama, polinom türevi alma, polinom kökü bulma clear,clc P=[ ]; % Polinomun katasayıları sısrası ile tanımlanır disp('polinomun türevi:') turev=polyder(p) %"polyder" komutu ile polinomun türevi alınır disp('polinomun x=1''deki deðeri:') A=polyval(P,1) %"polyval" komutu ile polinomun istenilen noktadaki degeri bulunur disp('polinomun kökleri:') kokler=roots(p) %"roots" komutu ile polinomun kökleri bulunur 25

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

NEWTON RAPHSON YÖNTEMİ

NEWTON RAPHSON YÖNTEMİ NEWTON RAPHSON YÖNTEMİ Genel olarak ff(xx) 0 gerek şartını sağlamak doğrusal olmayan ifadelerde oldukça zordur ve bu sebeple çözümler zor olabilir. Newton-Raphson yöntemi, doğrusal olmayan denklemlerin

Detaylı

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ asondas@kocaeli.edu.tr 0262-303 22 58 1 SAYISAL ÇÖZÜMLEME 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözüm aşamasında kullanılan sayısal

Detaylı

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç. Dr. Cüneyt BAYILMIŞ 1 SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME 1 SAYISAL ÇÖZÜMLEME 4. Hafta DENKLEM ÇÖZÜMLERİ 2 İÇİNDEKİLER Denklem Çözümleri Doğrusal Olmayan Denklem Çözümleri Grafik Yöntemleri Kapalı Yöntemler İkiye Bölme (Bisection) Yöntemi Adım

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

MATLAB de. Programlama. Kontrol Yapıları. Döngü Yapıları. Doç. Dr. İrfan KAYMAZ Matlab Ders Notları

MATLAB de. Programlama. Kontrol Yapıları. Döngü Yapıları. Doç. Dr. İrfan KAYMAZ Matlab Ders Notları MATLAB de Programlama Kontrol Yapıları Döngü Yapıları Doç. Dr. İrfan KAYMAZ if Şartlı deyimi: Bir mantıksal ifadeyi kontrol ederek bunun sonucuna göre mümkün seçeneklerden birini icra edebilen bir komuttur.

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı (30)1.a) İki reel sayının mantissa ları (gövde kısımları) eşit ve mantissa1 = mantissa2

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

Denklemdeki E ve F değerleri kökün aranacağı ÒEßFÓ sınır değerleri veya ilk değerler olarak tanımlanabilir. Denklem (1.12) de kök

Denklemdeki E ve F değerleri kökün aranacağı ÒEßFÓ sınır değerleri veya ilk değerler olarak tanımlanabilir. Denklem (1.12) de kök 1.. RGULA-FALSI veya SKANT YÖNTMİ u yöntem regula-falsi, sekant veya kiriş yöntemi olarak adlandırılmaktadır. Yöntem, öteleme işlemleri sonucunda kök değerine yani fonksiyonu sıfır yapmaya çalışan değere

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Sayısal Analiz. Prof. Dr. Erhan Coşkun. Karadeniz Teknik Üniversitesi, Fen Fakültesi, Ekim, 2018

Sayısal Analiz. Prof. Dr. Erhan Coşkun. Karadeniz Teknik Üniversitesi, Fen Fakültesi, Ekim, 2018 Sayısal Analiz Prof. Dr. Erhan Coşkun Karadeniz Teknik Üniversitesi, Fen Fakültesi, Matematik Bölümü E-posta:erhan@ktu.edu.tr Ekim, 2018 E. Coşkun (KTÜ) Bölüm 1 Ekim, 2018 1 / 40 Matematiksel Analiz Analitik

Detaylı

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir.

bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir. 37 Newton-Raphson Yöntemi İle Çözüme Ulaşma Bu yöntem özellikle fonksiyonun türevinin analitik olarak elde edilebildiği durumlarda kullanışlıdır. Fonksiyonel ilişkinin ifade edilmesinde daha uygun bir

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler

Detaylı

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.)

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.) 7. Diferensiyel Denklemlerin Çözümünde Matlab Uygulamaları MATLAB, Matrislere dayanan ve problemlerin çözümlerinde kullanılan Matematik metotların bilgisayar ortamında kullanılmasını sağlayan yazılım paketidir.

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS ENDÜSTRİ MÜH. İÇİN SAYISAL YÖNTEMLER FEB-321 3/ 2.YY 3+0+0 3 3 Dersin Dili

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

2.1 Kayan Nokta aritmetiği: Nümerik Analizde Operatorler Genişletme (Kaydırma) Operatörü µ Ortalama Operatörü...

2.1 Kayan Nokta aritmetiği: Nümerik Analizde Operatorler Genişletme (Kaydırma) Operatörü µ Ortalama Operatörü... Contents GİRİŞ 5 Hata Çeşitleri 5. Kayan Nokta aritmetiği:..................................... 6. Aritmetik İşlemlerde Hata Analizi............................... 7 Nümerik Analizde Operatorler 8. İleri

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU Mesleki Terminoloji DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK Sayısal Analiz MEHMET EMRE ÖNDER - 12011061 DOĞAÇ CEM İŞOĞLU - 11011074 Sayısal Analiz Nedir? Sayısal analiz, yada diğer adıyla numerik analiz,

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci

Detaylı

Regresyon ve İnterpolasyon. Rıdvan YAKUT

Regresyon ve İnterpolasyon. Rıdvan YAKUT Regresyon ve İnterpolasyon Rıdvan YAKUT Eğri Uydurma Yöntemleri Regresyon En Küçük Kareler Yöntemi Doğru Uydurma Polinom Uydurma Üstel Fonksiyonlara Eğri Uydurma İnterpolasyon Lagrange İnterpolasyonu (Polinomal

Detaylı

BM202 SAYISAL ÇÖZÜMLEME

BM202 SAYISAL ÇÖZÜMLEME BM202 SAYISAL ÇÖZÜMLEME DOÇ.DR. CİHAN KARAKUZU DERS-2 1 Ders2-Sayısal Hesaplamalarda Gerek Duyulabilecek Matlab İşlemleri MATLAB, çok paradigmalı (bir şeyin nasıl üretileceği konusunda örnek, model) sayısal

Detaylı

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 3. HAFTA SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi TAYLOR TEOREMİ Eğer f C n [a,b] ve f n+1 [a,b] de mevcut ise, x

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal Ara Değer Hesabı Lagrance Polinom İnterpolasyonu

Detaylı

1- Temel MATLAB Fonksiyonları ve Programlama

1- Temel MATLAB Fonksiyonları ve Programlama 1- Temel MATLAB Fonksiyonları ve Programlama >> help elfun ile kategorilere ayrılmış biçimde temel MATLAB fonksiyonlarını görebilirsiniz. Bazı temel MATLAB fonksiyonları aşağıda verilmiştir. Trigonometrik

Detaylı

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Bilgisayar Programlama Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK disp komutu: Ekrana mesaj veya bir değişken değeri yazdırmak için kullanılan komuttur.

Detaylı

Altın Oran Arama Metodu(Golden Search)

Altın Oran Arama Metodu(Golden Search) Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

BÖLÜM 2- HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA

BÖLÜM 2- HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Dpartmnt o Mchanical Enginring MAK 0 MÜHENDİSLİKTE SAYISAL YÖNTEMLER BÖLÜM - HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emr DEMİRCİ 7.0.0 7.0.0 MAK

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Elemanter fonksiyonlarla yaklaşım ve hata

Elemanter fonksiyonlarla yaklaşım ve hata Elemanter fonksiyonlarla yaklaşım ve hata Prof. Dr. Erhan Coşkun Karadeniz Teknik Üniversitesi, Fen Fakültesi Matematik Bölümü Kasım, 2018 e 5 Kasım, 2018 1 / 48 Elemanter fonksiyonlarla yaklaşım ve hata

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FEB-311 3/ 1.YY 2+0+0 2 3 Dersin Dili Dersin Seviyesi

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

10. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

10. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. . HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2- İTERATİF YÖNTEMLER Doğrusal denklem sistemlerinin çözümünde

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

GÖRÜNTÜ İŞLEME MATLAB DERS-3

GÖRÜNTÜ İŞLEME MATLAB DERS-3 GÖRÜNTÜ İŞLEME MATLAB DERS-3 Matris İşlemleri: Verilen bir X matrisi için:» X=[ 2-1; 5 8] X = 2-1 5 8 Determinant:» DETERMINANT=det(X) DETERMINANT= 21 MATRİSLER 27.2.2017 2 MATRİSLER B = 2 3 4-2 2 5 Matrisinin

Detaylı

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız?

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız? MAK 05 SAYISAL ÇÖZÜMLEME S Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R S Ġ T E S Ġ M Ü H E N D Ġ S L Ġ K F A K Ü L T E S Ġ M A K Ġ N A M Ü H E N D Ġ S L Ġ Ğ Ġ B Ö L Ü M Ü I. öğretim II. öğretim A şubesi B

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 Toleranslar ve Yüzey Kalitesi Doç. Dr. Ali Rıza Yıldız 1 BU DERS SUNUMUNDAN EDİNİLMESİ BEKLENEN BİLGİLER Tolerans kavramının anlaşılması ISO Tolerans Sistemi Geçmeler Toleransın

Detaylı

Sayısal Analiz(Prof. Dr. Erhan Coşkun, KTU,

Sayısal Analiz(Prof. Dr. Erhan Coşkun, KTU, Bölüm 1 Sayısal Analiz(Prof. Dr. Erhan Coşkun, KTU, erhan@ktu.edu.tr) Bu bölümde matematiksel analiz türleri olarak bilinen analitik, sayısal, kalitatif ve sembolik analiz yöntemlerini kısaca tanıtarak,

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Ders Adı : Bilgisayar Mühendisliğinde Matematik Uygulamaları

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

PROGRAMLAMA ve YAZILIM. Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK

PROGRAMLAMA ve YAZILIM. Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK PROGRAMLAMA ve YAZILIM Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK PROGRAMLAMA ve YAZILIM Paraçütçünü düşme hızını belirlemek için geliştirdiğimiz model diferansiyel bir denklem şeklini almıştı dv dt =

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / 1 Denklemlerin Köklerini Bulma Giriş Denklemlerin Köklerini Bulma

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Sayısal Yöntemler (MFGE 301) Ders Detayları

Sayısal Yöntemler (MFGE 301) Ders Detayları Sayısal Yöntemler (MFGE 301) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Yöntemler MFGE 301 Güz 2 2 0 3 4 Ön Koşul Ders(ler)i MATH 275 Lineer

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

Şekilde görülen integralin hesaplanmasında, fonksiyonun her verilen bir noktası için kümülatif alan hesabı yapılır.

Şekilde görülen integralin hesaplanmasında, fonksiyonun her verilen bir noktası için kümülatif alan hesabı yapılır. NÜMERİK İNTEGRASYON Şekilde görülen integralin hesaplanmasında, onksiyonun her verilen bir noktası için kümülati alan hesabı yapılır. Nümerik integrasyonda, integralin analitik değerine, çeşitli yöntemlerle

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

İM 205-İnşaat Mühendisleri için MATLAB. Irfan Turk Fatih Üniversitesi,

İM 205-İnşaat Mühendisleri için MATLAB. Irfan Turk Fatih Üniversitesi, İM 205-İnşaat Mühendisleri için MATLAB Irfan Turk Fatih Üniversitesi, 2013-14 Konular 1) İnterpolasyon 2) Polinom Fonksiyonu 3) Sayısal İntegral Fonksiyonları 4) Sayısal İntegral Alma 5) Diferansiyel Denklemleri

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TANIM : a, a, a, a,..., a R ve n N olmak üzere,

TANIM : a, a, a, a,..., a R ve n N olmak üzere, MATEMAT K TANIM : a, a, a, a,..., a R ve n N olmak üzere, 0 1 2 3 n P(x) = a x n a x n 1... a x 3 a x 2 a x n n 1 3 2 1 a ifadesine reel katsay l POL NOM denir. 0 a, a, a,..., a say lar na KATSAYILAR,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2018 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

Ders 5 : MATLAB ile Grafik Uygulamaları

Ders 5 : MATLAB ile Grafik Uygulamaları Ders 5 : MATLAB ile Grafik Uygulamaları Kapsam Polinomlar Enterpolasyon Grafikler 5.1. Polinomlar 5.1.1. Polinom Girişi Matlab de polinomlar katsayılarının vektörü ile tanımlanır. Örnek: P(x) = -6x 5 +4x

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Ders İkinci Ara Sınavı 29 Kasım 2010 Hazırlayan: Yamaç Pehlivan Başlama saati: 13:00 Bitiş Saati: 14:30 Toplam Süre: 90 Dakika Lütfen adınızı

Detaylı

BAHAR YARIYILI FİZİK 2 DERSİ. Yrd. Doç. Dr. Hakan YAKUT. Fizik Bölümü

BAHAR YARIYILI FİZİK 2 DERSİ. Yrd. Doç. Dr. Hakan YAKUT. Fizik Bölümü 2015-2016 BAHAR YARIYILI FİZİK 2 DERSİ Yrd. Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 3. Kat, Oda No: 812, İş tel.: 6092 (+90 264 295 6092) BÖLÜM 6 DOĞRU AKIM DEVRELERİ

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 2017-2018 Bahar Dr. Nurdan Bilgin Virtüel İş Yöntemi-Giriş Bu zamana kadar Newton yasaları ve D alambert prensibine dayanarak hareket özellikleri her konumda bilinen bir makinanın

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

MATLAB/Programı Dallandıran İfadeler

MATLAB/Programı Dallandıran İfadeler MATLAB/Programı Dallandıran İfadeler Dal yapıları, program kodlarından istenilenleri seçen ve onları işleten, istenilen kodları ise değerlirme dışı bırakabilen MATLAB ifadeleridir. if Switch, case try/catch

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı