Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Uzunluklar Ölçme. Çevre. Alan. Zaman Ölçme. S v lar Ölçme. Hacmi Ölçme"

Transkript

1 MTEMT K Uzunluklr Ölçme Çevre ln Zmn Ölçme S v lr Ölçme Hcmi Ölçme

2 Temel Kynk 5 Uzunluklr Ölçme UZUNLUKLRI ÖLÇME Çevremizde metre, sntimetre, milimetre vey bunlr n herhngi ikisi ile söyledi imiz uzunluklr örnekler bull m. sketbolculr m z n boylr n n uzunlu unu hngi birimlerle ifde ederiz? En sevdi iniz üç bsketbolcumuzun boylr n n uzunlu unu rflt r n z. Pntolonunuzun pçs n 4 cm k slt yorum. Yklfl k 3 mm dir. bi, vustrly bizim evimize metrelerce uzktd r de il mi? Metrelerce de il, kilometrelerce uzkt Gözlü ümün cm sence kç mm? Uzunluk ölçüsü birimi metredir. K sc m ile gösterilir. Kilometre: Metrenin 1000 kt n kilometre denir. K sc km ile gösterilir. 1 km = 1000 m Sntimetre: Metrenin yüzde birine sntimetre denir. K sc cm ile gösterilir. 1 cm = 1 m = 0,01 m, 1 m = 1000 cm 100 Milimetre: Metrenin binde birine milimetre denir. K sc mm ile gösterilir. 1 1 mm = m = 0,001 m, 1 m = 1000 mm 1000 ÖRNEKLER 36 cm = 36 m = 0,36 m 12 cm = 12 x 10 = 120 mm km = 7 x 1000 m = 7000 m 65 mm = = 0,065 m

3 Uzunluklr Ölçme MTEMT K Ö REN KLER M Z UYGULYLIM fl dki nesnelerin boylr n n gerçek uzunluklr n thmin ediniz. ltlr nd verilen uzunluklrdn thmininize en yk n oln n yuvrlk içine l n z. 800 mm 80 mm 0,08 cm 0,8 m 6000 mm 600 cm 60 m 0,6 km cm 180 mm 1800 mm 1,8 cm 33 cm 3300 mm 0,03 m 0,33 cm 2. fl dki do ru prçlr n n uzunluklr n thmin ediniz. Her birini cetvelinizle ölçerek thmininizi kontrol ediniz. b c d e f o ru prçs Thmin Ölçüm sonucu b c d e f Yukr dki do ru prçlr ndn b do ru prçs n n f do ru prçs n orn nedir?... Yukr d buldu unuz orn, hngi iki do ru prçs rs nd d vrd r? Yz n z

4 Temel Kynk 5 Uzunluklr Ölçme 3. fl dki uzunluklr istenilen birime çevirerek yz n z. 315 m =... cm 260 mm =... m 82 cm =... mm 75,6 cm =... mm 9,4 m =... cm 840 cm =... m 6,05 m =... mm 8100 mm =... m 6700 cm =... m 95 cm =... m 175 cm =... mm 206 mm =... cm 4. fl d befl rkdfl n evleri rs ndki uzkl klr verilmifltir. ycn zize 5300 m 3700 m 3600 m 4200 m 3400 m 2600 m 2820 m 2440 m 3200 m Sinem Gökberk zize prk gidip ordn d ycn giderse kç kilometre yürümüfl olur? erky Sinem, erky gitmek istiyor. Prk u ryrk gidece i yol ile u rmdn gidece i yol rs nd kç kilometre frk vrd r? Gökberk, zize ye giderken en k s yolu kulln rs kç kilometre yol yürür? 126

5 Uzunluklr Ölçme MTEMT K 1. TEST m kç kilometre eder?. 32,5 b. 3,25 c. 3,205 d. 0, m m iflleminin sonucu kç sntimetre eder?. 12 b. 1,2 c. 0,12 d. 0, fl d verilen eflitliklerden hngisi ynl flt r? cm = 26 m b. 12 m = 0,012 mm c. 70 mm = 7 cm d. 0,06 m = 6 cm m, 6 cm ve 70 mm nin toplm kç metre eder?. 15,03 b. 15,13 c. 15,23 d. 15,33 5. Metresi 12 YTL oln kumfltn 400 cm oln bir kifli ne kdr öder?. 4 YTL 8 YKr b. 40 YTL 8 YKr c. 48 YTL d. 56 YTL 6. ir tlet 2 km 400 m lik koflu pistinin 800 m 500 cm lik bölümünü kofluyor. Pisti tmmlms için kç metre dh koflms gerekir? b c d I. 65 mm = cm 10 II. 190 cm = 1,9 m III m = 48 mm 10 IV mm = 8,008 m Yukr dki eflitliklerden do ru olnlr n tmm hngisinde verilmifltir?. I ve II b. II ve III c. III ve IV d. I, II ve IV 127

6 Temel Kynk 5 Uzunluklr Ölçme 8. Metresi 25 YTL oln tülden 2 m 60 cm ln bir kifli kç YTL öder?. 45 b. 50 c. 60 d Tmm 42 metre oln bir top kumfl n 36 metre 600 mm si kulln ld nd geriye kç sntimetre kumfl kl r?. 534 b. 540 c d Müge, Ezgi den 4 cm uzun, Melis dn 7 cm k sd r. Melis d, Murt tn 8 cm k sd r. Murt n boyu 174 cm ise Ezgi nin boyu kç sntimetredir?. 162 b. 158 c. 155 d ,06 m 4,9 m iflleminin sonucu kç sntimetredir?. 716 b. 706 c. 71,6 d. 71, m m iflleminin sonucu fl dkilerden hngisine eflittir?. 0,11 m b. 1 m 10 cm c. 1 m 100 cm d. 11 mm m, 400 cm ve 2500 mm nin toplm kç metre eder?. 26,5 b. 22,9 c. 20,29 d. 20, fl dki eflitliklerden hngisi ynl flt r? m = km 1000 b. 850 m = 0,85 km c. 365 m = 0,365 km d m = 15 km

7 Uzunluklr Ölçme MTEMT K d m 15 m oln bir kifli 165 m yolu kç d md gider?. 130 b. 170 c. 220 d Metresi 18 YTL oln kumfl n 60 cm si ne kdrd r?. 9 YTL 18 YKr b. 9 YTL 80 YKr c. 10 YTL d. 10 YTL 80 YKr m kofltuktn sonr mol veren bir kifli 1 km lik koflu pistini tmmld nd kç mol vermifl olur?. 5 b. 7 c. 8 d ir koflu pistinde yr fln iki kifli 10 dkik sonr mol veriyor. u s rd en önde bulunn hmet 370 m koflmufltur. hmet in rks nd kln eniz in pisti tmmlms n 354 m vrd r. Pistin uzunlu u 600 m oldu un göre hmet ile eniz rs nd kç metre vrd r?. 124 b. 156 c. 230 d km de 30 YKr benzin tüketen bir rç 6 YTL lik benzinle kç kilometre gider?. 30 b. 40 c. 50 d Her 4 km de 0,5 litre benzin tüketen bir rç 480 km gitti inde kç litre benzin tüketmifl olur?. 60 b. 50 c. 40 d

8 Temel Kynk 5 Çevre ÇEVRE H c = 4 cm b = 6 cm f = 5 cm e = 5 cm s = 8 cm l = 8 cm = 12 cm üçgeninin çevresi: Ç = + b + c Ç= 12 cm + 6 cm + 4 cm Ç = 22 cm E d = 4 cm EF üçgeninin çevresi: Ç = (2 x 5 cm) + 4 cm Ç = 14 cm Yukr dki üçgenlerin her birinin çevresini frkl bir yoldn bulduk. Kenr uzunluklr n bkrk sebebini ç kly n z. F L h = 8 cm HLS üçgeninin çevresi: Ç = 3 x 8 cm Ç = 24 cm S Kre = 10 cm ikdörtgen Çevre = Ç = 4 x kresinin çevresi: Ç = 4 x 10 cm = 40 cm Çevre = + b + + b Çevre = 2 x ( + b) dikdörtgeninin çevresi: Ç = 2 x (4 cm + 7 cm) = 2 x 11 cm = 22 cm Eflkenr örtgen = 6 cm Prlelkenr = 7 cm Ç = Ç = 4 x eflkenr dörtgeninin çevresi: Ç = 4 x 6 cm = 24 cm Ç = + b + + b Ç = (2 x ) + (2 x b) = 2 x ( + b) prlelkenr n n çevresi: Ç = 2 x (8 cm + 3 cm) = 2 x 11 cm = 22 cm b = 8 cm b b = 4 cm = 3 cm 130

9 Çevre MTEMT K Ymuk c = 9 cm b = 5 cm = 13 cm d = 4 cm Çevre = + b + c + d ymu unun çevresi: Ç = 5 cm + 4 cm + 13 cm + 9 cm Ç = 31 cm Çember r = 3 cm T Çevre = Çp x π Çevre = 2 x π x r π = 3 Ç = 2 x 3 x 3 Ç = 18 cm fl dki flekillerin çevre uzunluklr n bulunuz. K L 11 cm N M 12 cm 7 cm 15 cm 13 cm 7 cm L 9 cm N 6 cm 11 cm 7 cm M 12 cm 2 cm G L 4 cm Z 7 cm 131

10 Temel Kynk 5 Çevre Ö REN KLER M Z UYGULYLIM Yndki boyl bölgenin çevre uzunlu u kç sntimetredir? 9 cm 16 cm 2. 2 cm 2 cm 2 cm 2 cm 8 cm 2 cm 2 cm Yukr d kenr uzunluklr verilen kre, dikdörtgen ve üçgen kulln lrk frkl flekiller oluflturulmufltur. Her fleklin çevre uzunlu unu bulunuz. 3. fiekildeki kresinin çevresinin uzunlu u 96 cm dir. oyl bölgenin çevresinin uzunlu u 70 cm dir. oyl olmyn bölgenin çevresinin uzunlu unu bulunuz. 4. Yukr dki flekil birbirine efl iki eflkenr üçgen ile birbirine efl iki kreden oluflmufltur. Krelerle üçgenler yn çevre uzunlu un shiptir. Krenin çevresi 24 cm ise boyl fleklin çevre uzunlu u kç sntimetredir? 132

11 Çevre MTEMT K 5. Yndki krenin çevresi 40 cm dir. Çp oln bir çemberin çevresi kç sntimetre olur? (π = 3 l n z.) 6. fl d yr çplr verilen çemberlerin çevre uzunluklr n bulunuz. (π = 3 l n z.) K r=7 cm r=3 cm R M r=9 cm Ç = Ç = Ç = 7. Yndki O merkezli çemberde yr çp 6 cm dir. oyl bölgenin çevresi kç sntimetredir? O 8. Yukr dki dikdörtgenin çevresi 44 cm dir. oyl bölge, çp oln bir direnin yr s d r. un göre boyl bölgenin çevresi kç sntimetredir? 133

12 Temel Kynk 5 Çevre TEST Yndki üçgeni eflkenr üçgendir. = 6 cm ise üçgeninin çevresi kç sntimetredir?. 17 b. 18 c. 19 d Kenr uzunluklr 14 cm, 22 cm ve çevresinin uzunlu u 55 cm oln bir üçgenin üçüncü kenr uzunlu u kç sntimetredir?. 18 b. 19 c. 20 d Yndki üçgeninin çevre uzunlu u 50 cm dir. = ve = 18 cm ise kç sntimetredir?. 14 b. 15 c. 16 d cm 4. Çevresi 47 cm oln bir üçgende, en büyük kenr di er kenrlr n birinden 6 cm, di erinden 4 cm büyük ise bu üçgenin en küçük kenr kç sntimetredir?. 11 b. 13 c. 15 d Çevresi 61 cm oln bir ikizkenr üçgenin eflit kenrlr ndn biri ile eflit olmyn kenr n n toplm 40 cm dir. un göre eflit kenrlrdn birinin uzunlu u kç sntimetredir?. 19 b. 20 c. 21 d Yndki üçgenlerin her biri eflkenr üçgendir. = 18 cm ise üçgenlerden birinin çevre uzunlu u kç sntimetredir?. 6 b. 9 c. 18 d Yndki flekilde kenr uzunluklr verilen 24 cm üçgeninin çevresinin uzunlu u 73 cm dir. un göre üçgeninin çevresinin uzunlu u 18 cm 19 cm kç sntimetredir?. 72 b cm c. 77 d

13 Çevre MTEMT K 8. Yndki flekilde çevresinin uzunlu u 24 cm oln kresinin kenrlr n eflkenr üçgenler çizilmifltir. un göre boyl fleklin çevresinin uzunlu u kç sntimetredir?. 42 b. 48 c. 54 d fiekildeki kresinin içine k s kenr n n uzunlu u 3 cm H S oln bir HSTL dikdörtgeni çizilmifltir. Krenin çevre uzunlu u 60 cm ise boyl bölgelerin çevre uzunluklr toplm kç sntimetredir?. 84 b. 64 c. 54 d. 24 L T 10. Yndki flekil efl krelerden oluflmufltur. oyl bölgenin çevre uzunlu u 8 cm ise dikdörtgeninin çevresi kç sntimetredir?. 24 b. 21 c. 19 d Yndki flekilde dikdörtgeniyle E eflkenr üçgeni verilmifltir. ikdörtgenin çevresi 58 cm ve eflkenr üçgenin çevresi 27 cm dir. un göre kç sntimetredir?. 17 b. 19 E c. 20 d Yndki flekilde F = 12 cm ve = 21 cm ise boyl F E fleklin çevresi kç sntimetredir?. 60 b. 62 c. 64 d cm 21 cm 135

14 Temel Kynk 5 Çevre 13. Yndki kenr uzunluklr verilen prlelkenr n n k s kenrlr sbit b rk l p uzun kenrlr yn do rultud ve yn yönde befler sntimetre uzt lrk EFGH prlelkenr oluflturuluyor. u iki prlelkenr n çevre uzunluklr 12 cm 7 cm rs ndki frk kç sntimetre olur?. 10 b. 20 c. 30 d Yndki flekilde prlelkenr EF eflkenr dörtgendir. Eflkenr dörtgenin çevresi prlelkenr n çevresinin yr s ve F = 2 cm E oldu un göre kç sntimetredir?. 4 b. 6 F c. 8 d Ynd kenr uzunluklr verilen ymu un çevre uzunlu u kç sntimetredir?. 86 b. 74 c. 72 d cm 24 cm 36 cm 12 cm 16. Yndki ymuk kresi ve E üçgeninden oluflmufltur. Krenin çevresi 48 cm ve üçgenin çevresi 36 cm dir. E = 9 cm ise E ymu unun çevresi kç sntimetredir?. 84 b. 72 c. 70 d cm E 17. Yr çp 6 cm oln çemberin çevre uzunlu u kç sntimetredir? (π = 3). 18 b. 20 c. 24 d

15 Çevre MTEMT K 18. Yndki flekilde çevresi 40 cm oln krenin içine bir çember çizilmifltir. Çemberin çevresi kç sntimetredir? (π = 3 l n z.). 10 b. 20 c. 30 d ir rbn n tekerle inin yr çp 35 cm dir. u tekerlek kç def döndü ü zmn rb 294 m yol l r? (π = 3 l n z.). 140 b. 150 c. 160 d Yukr dki flekilde çevresi 36 cm oln dikdörtgenin içine yr çplr eflit iki çember çizilmifltir. un göre çemberlerden birinin çevre uzunlu u kç sntimetredir? (π = 3). 16 b. 18 c. 20 d

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 4.

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki TEMEL MATEMAT K TEST  bölümüne iflaretleyiniz. 4. TEMEL MTEMT K TEST KKT! + u bölümde cevplyc n z soru sy s 40 t r + u bölümdeki cevplr n z cevp k d ndki "TEMEL MTEMT K TEST " bölümüne iflretleyiniz.. ( + )y + = 0 (b ) + 4y 6 = 0 denklem sisteminin çözüm

Detaylı

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise GMR erginin bu sy s nd Çokgenler ve örtgenler konusund çözümlü sorulr yer lmktd r. u konud, ÖSS de ç kn sorulr n çözümü için gerekli temel bilgileri ve prtik yollr, sorulr m z n çözümü içinde ht rltmy

Detaylı

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz.

Ö rendiklerimizi Nerelerde Kullanabiliriz? Alan tahmin etmede kullanabiliriz. 4.1 Aln Neler Ö renece iz? Geometrik flekillerin lnlr n hesplyc z. Ö rendiklerimizi Nerelerde Kullnbiliriz? Aln thmin etmede kullnbiliriz. Söz Vrl Prlelkenrsl bölge Bir y içinde yklfl k lt metre krelik

Detaylı

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16 Orn Ornt Özellikleri TEST : 91 1. 0,44 0,5 = 0,22 5. + 3 = 5 2 2. 3. 4. oldu un göre, kçt r? A) 0,2 B) 0,25 C) 0,5 D) 0,6 E) 0,75 y = 3 4 + y oldu un göre, y orn kçt r? A) 7 B) 1 C) 1 D) 7 E) 10 oldu un

Detaylı

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir?

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir? 1.BÖLÜM MATEMAT K Derginin u s s nd kinci Dereceden Denklemler, Eflitsizlikler ve Prol konusund çözümlü sorulr er lmktd r. Bu konud, ÖSS de ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik ollr,

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Yukar daki kare ve dikdörtgene göre eflitlikleri tan mlay n z. AB =... =... =... =...

Yukar daki kare ve dikdörtgene göre eflitlikleri tan mlay n z. AB =... =... =... =... Üçgen, Kare ve ikdörtgen MTEMT K KRE VE KÖRTGEN Kare ve ikdörtgenin Özellikleri F E Kare ve dikdörtgenin her kenar uzunlu u birer do ru parças d r. Kare ve dikdörtgenin kenar, köfle ve aç say lar eflittir.

Detaylı

Çokgenler. Dörtgenler. Çember. Simetri. Örüntü ve Süslemeler. Düzlem. Geometrik Cisimler

Çokgenler. Dörtgenler. Çember. Simetri. Örüntü ve Süslemeler. Düzlem. Geometrik Cisimler MTEMT K Çokgenler örtgenler Çember Simetri Örüntü ve Süslemeler üzlem Geometrik isimler Temel Kaynak 5 Çokgenler ÇOKGENLER E F En az üç do ru parças n n, birer uçlar ortak olacak flekilde ard fl k olarak

Detaylı

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5

Komisyon. ALES EŞİT AĞRILIK ve SAYISAL ADAYLARA TAMAMI ÇÖZÜMLÜ 10 DENEME ISBN 978-605-364-214-5 Komisyon LES EŞİT ĞRILIK ve SYISL DYLR TMMI ÇÖZÜMLÜ 10 DENEME ISBN 97-605-36-1-5 Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem kdemi Bu kitın sım, yyın ve stış hklrı Pegem kdemi Yy. Eğt. Dn.

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir.

ÇÖZÜM SORU. Küpün yan yüzünü açal m. En k sa yol, do rusal uzakl k oldu undan, Bir dikdörtgenler prizmas n n ayr tlar a, b, c dir. GMTR eginin bu sy s nd Uzy Geometi, isimlein ln ve Hcimlei konusund çözümlü soul ye lmktd. u konud, ÖSS de ç kn soul n çözümü için geekli temel bilgilei ve ptik yoll, soul m z n çözümü içinde t ltmy mçld

Detaylı

Geometri Köflesi. Napoléon un bilimi ve matemati i sevdi i, hatta. Napoléon ve Van Aubel Teoremleri. Mustafa Ya c

Geometri Köflesi. Napoléon un bilimi ve matemati i sevdi i, hatta. Napoléon ve Van Aubel Teoremleri. Mustafa Ya c temtik ünys, 2004 z Npoléon ve n uel Teoremleri Npoléon un ilimi ve mtemti i sevdi i, htt ir ölçüde yetenekli oldu u d ilinir. ünyy fethetmeye çl flmktn ve imprtorluk mesle inden rt kln zmnlr nd, sürekli

Detaylı

Aç ve Aç Ölçüsü. Üçgen, Kare ve Dikdörtgen. Geometrik Cisimler. Simetri. Örüntü ve Süslemeler

Aç ve Aç Ölçüsü. Üçgen, Kare ve Dikdörtgen. Geometrik Cisimler. Simetri. Örüntü ve Süslemeler MTEMT K ç ve ç Ölçüsü Üçgen, Kare ve ikdörtgen Geometrik Cisimler Simetri Örüntü ve Süslemeler Temel Kaynak 4 ç ve ç Ölçüsü ÇI VE ÇI ÖLÇÜSÜ ç lar n dland r lmas C Resimde aç oluflturulan yerlerin baz lar

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri

Yükseköğretime Geçiş Sınavı (Ygs) / 1 Nisan 2012. Matematik Soruları ve Çözümleri Yükseköğretime Geçiş Sınvı (Ygs) / Nisn 0 Mtemtik Sorulrı ve Çözümleri. 0,5, işleminin sonuu kçtır? 0,5 0, A) 5 B) 5,5 C) 6 D) 6,5 E) 7 Çözüm 0,5 0,5, 0, 05 50 5.5.4 5.5. 4 4 0 5 .. 4.6 6 işleminin sonuu

Detaylı

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D)

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D) Ad : Soyad : S n f : Nu. : Okulu : Çokgenler Dörtgenler MATEMAT K TEST 15 1. Afla dakilerden hangisi çokgen de ildir? 4. Afla daki çokgenlerden hangisi düzgün çokgen de ildir? 2. Afla daki çokgenlerden

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından Milli ğitim knlığı, Tlim ve Terbie urulu knlığı'nın 0.1.010 trih ve 0 sılı krrı ile kbul edilen ve 011 01 Öğretim Yılındn itibren ugulnck progrm göz önüne lınrk hzırlnmıştır. u kitb n her hkk skl d r ve

Detaylı

MATEMATİK VE MESLEK MATEMATİĞİ

MATEMATİK VE MESLEK MATEMATİĞİ ÇIRKLIK VE YYGIN EĞİTİM KURUMLRI MTEMTİK VE MESLEK MTEMTİĞİ 2 YZRLR Cfer Tyyr DEMİRHN Cndn Dilek ÖZBEK DEVLET KİTPLRI LTINCI BSKI..., 2012 MİLLÎ EĞİTİM BKNLIĞI YYINLRI... : 4348 DERS KİTPLRI DİZİSİ...

Detaylı

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre,

TEST - 1 KATI BASINCI. I. yarg do rudur. II. yarg yanl flt r. Buna göre, fiekil-i de K ve L cisimlerinin yere yapt klar bas nçlar eflit oldu una göre, TI BSINCI TEST - 1 1 1 π dir π Bun göre, 4 > 1 CEV B de ve cisimlerinin e ypt klr s nçlr eflit oldu un göre, SX S Z + 4 8 S Y I II III CEV B Tu llr n X, Y ve Z noktlr n ypt s nç, X S Y S Z S dir Bun göre,

Detaylı

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim JOVO STEFNOVSKİ NUM CELKOSKİ Sekizyıllık İlköğretim Syın Öğrenci! u kitp, ders proğrmınd öngörülen ders mlzemesini öğrenmek için yrdımcı olcktır. Vektörler, öteleme ve dönme hkkınd yeni ilginç bilgiler

Detaylı

Bahçe Mah. Soğuksu Cad. No:73 MERSİN www.sratanitim.com info@sratnitim.com. Tel :0.324 336 41 24 :0.324 336 41 26 Gsm :0.

Bahçe Mah. Soğuksu Cad. No:73 MERSİN www.sratanitim.com info@sratnitim.com. Tel :0.324 336 41 24 :0.324 336 41 26 Gsm :0. Tnıtım Bhçe Mh. Soğuksu Cd. No:73 MERSİN www.srtnitim.com info@srtnitim.com Tel :0.324 336 41 24 :0.324 336 41 26 Gsm :0.532 592 60 05 çık hvdki prestijiniz 1 Tnıtım ,Büfe Durk Rket 118 x 178 cm Gintbord

Detaylı

Veri, Sayma ve Olasılık. Test / 30. soru 1. soru 5. soru 2. soru 6. soru 3. soru 7. soru 8. soru 4

Veri, Sayma ve Olasılık. Test / 30. soru 1. soru 5. soru 2. soru 6. soru 3. soru 7. soru 8. soru 4 Test / 0 soru soru Bir zr t ld nd üste gelen sy n n tek oldu u ilindi ine göre, sy n n sl sy olm Bir çift zr t ld nd üste gelen sy lr n toplm n n 0 oldu u ilindi ine göre, zrlrdn irinin olm soru soru Bir

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

Yol (km) a) 50 cm 2 m b) 140 km 1040 m c) 8000 m 8 km

Yol (km) a) 50 cm 2 m b) 140 km 1040 m c) 8000 m 8 km .2 Uzunluklar Ölçme Kilometre 1. Grafik: Servis Arac n n Ald Yollar 1. Yandaki grafik, okul servis arac n n bir hafta boyunca ald yolu (km) göstermektedir. Grafi e göre afla daki sorular cevaplay n z.

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

SIVILARI ÖLÇME. Marketten litreyle al nan ürünlerden baz lar afla da verilmifltir.

SIVILARI ÖLÇME. Marketten litreyle al nan ürünlerden baz lar afla da verilmifltir. S v lar Ölçme MATEMAT K SIVILARI ÖLÇME Marketten litreyle al nan ürünlerden baz lar afla da verilmifltir. Baflka hangi ürünleri litreyle al rs n z? S v lar ölçme birimi litredir. Litre = L Arda, evlerindeki

Detaylı

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI

7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI 7.SINIF: PRLLKNRIN ve ÜÇGNİN LNI ikdörtgen şeklindeki ir krtonu şekildeki gii işretlenen yerden kesip diğer trf eklediğimizde krtonun eksilmediğini,sdece görüntüsünün değiştiğini görürüz. Prlelkenrd Yükseklik

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br.

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br. YU ( YU TII ORT T YU LI İİZR YU İ YU ) YU TII ORT T Y l n ı z ik i k e n r ı b i r b i r i n e p r l e l l n d ö r t g e n e Y U d e n i r. [ ] / / [ ] i s e y m u k t u r. y m u ğ u n d, ve L kenr rt

Detaylı

fleklinde okuruz. Pay paydas ndan büyük veya eflit olan kesirlere bileflik kesirler denir.

fleklinde okuruz. Pay paydas ndan büyük veya eflit olan kesirlere bileflik kesirler denir. Kesirler MATEMAT K KES RLER pay kesir çizgisi payda kesri tane tir. Bu kesri beflte iki ya da iki bölü befl fleklinde okuruz. kesrinde, bütünün ayr ld parça say s n gösterir. Yani paydad r. ise al nan

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

MATEMAT K. Hacmi Ölçme

MATEMAT K. Hacmi Ölçme Hacmi Ölçme MATEMAT K HACM ÖLÇME Yandaki yap n n hacmini birim küp cinsinden bulal m. Yap 5 s radan oluflmufltur. Her s ras nda 3 x 2 = 6 birim küp vard r. 5 s rada; 5 x 6 = 30 birim küp olur. Bu yap n

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

Yukarıdaki bilgi ağacındaki bilgiler doğru (D) ve yanlış (Y) olarak değerlendirilip verilen yollar takipedildiğinde kaç numaralı pula ulaşılır?

Yukarıdaki bilgi ağacındaki bilgiler doğru (D) ve yanlış (Y) olarak değerlendirilip verilen yollar takipedildiğinde kaç numaralı pula ulaşılır? 2600 cm kaç dam dir? Küçük olan birimden büyük birime dönüşüm yapıldığında ölçüm değeri her defası nda 10 a bölünür.bu da aşağıda gösterilmiştir. 2600 : 1000 = 2,6 olduğundan, 2600 cm = 2,6 dam olur. Yanıt

Detaylı

Kontak İbreli Termometreler

Kontak İbreli Termometreler E-mil: Fx: +49 661 6003-607 www.jumo.net www.jumo.co.uk www.jumo.us Veri Syfsı 608523 Syf 1/8 Kontk İbreli Termometreler Özellikler Pnel montj vey ek cihz gibi proses değeri göstergeli sıcklık kontrolörü

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Yukar daki rakamlardan kaç tanesinde dikey do ru modeli vard r?

1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Yukar daki rakamlardan kaç tanesinde dikey do ru modeli vard r? Ad : Soyad : S n f : Nu. : Okulu : 1. Yukar daki çubuk makarna afla dakilerden hangisinin modelidir? Do ru Düzlem Nokta 5. MATEMAT K TEST 19 Ifl n Do ru Do ru parças 2. Afla daki hangi do runun çizgi modeli

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK-GEOMETRİ SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI

LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK-GEOMETRİ SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI LİSANS YERLEŞTİRME SINAVI- MATEMATİK-GEOMETRİ SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 09 BU SORU KİTAPÇIĞI LYS- MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. . Bu testte 0 soru vrdýr. MATEMATİK TESTİ. Cevplrýnýzý,

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

ALES / SONBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

ALES / SONBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınvın bu bölümünden lcğınız stndrt pun, Syısl Ağırlıklı ALES Punınızın (ALES-SAY) hesplnmsınd

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

SAYI KÜMELERİ. Örnek...1 :

SAYI KÜMELERİ. Örnek...1 : SAYILAR SAYI KÜMELERİ RAKAM S yı l r ı i f d e e t m ek i ç i n k u l l n d ı ğ ı m ız 0,,,,,,6,7,8,9 semollerine rkm denir. DOĞAL SAYILAR N={0,,,...,n,...} k üm e s i n e d o ğ l s yı l r k üm e s i d

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor.

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor. .BÖLÜM MATEMAT K Derginin u sy s n fllem ve Moüler Aritmetik konusun çözümlü sorulr yer lmkt r. Bu konu, ÖSS e ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik yollr, sorulr m z n çözümü içine

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

GeoUmetri Notları Mustafa YAĞCI, Deltoit

GeoUmetri Notları Mustafa YAĞCI, Deltoit www.mustfgci.cm.tr, 01 GeUmetri Ntlrı Mustf YĞI, gcimustf@h.cm eltit n z ir köşegenine göre simetrik ln dörtgene deltit denir. = ve = lmsı deltidin iki ikizkenr üçgen rındırdığını nltır. Şöle de izh edeiliriz

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

Ö rendiklerimizi Nerelerde Kullanabiliriz? Bahçe çiti ve çerçeve yap m nda kullanabiliriz. 17,23 16,84 17,62

Ö rendiklerimizi Nerelerde Kullanabiliriz? Bahçe çiti ve çerçeve yap m nda kullanabiliriz. 17,23 16,84 17,62 . Çevre Neler Ö renece iz? Ö rendiklerimizi Nerelerde Kullnbiliriz? Söz Vrl Geometrik flekillerin çevrelerini ö renece iz. Çemberin Uzunlu u Bhçe çiti ve çerçeve yp m nd kullnbiliriz. Çevre Prm n z uygun

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN

2 olur. ADI: SOYADI: DERS: MATEMATĐK KONU: KESĐK PĐRAMĐT KONU ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN 1)KESĐK PĐRAMĐT: Bir pirmit, tbn prlel bir düzlem ile kesildiğinde, tbn düzlemi ile kesit üzei rsınd kln kısım kesik pirmit denir. KESĐK PĐRAMĐDĐN YANAL YÜZ ALANI: Bir düzgün kesik pirmidin nl lnı, lt

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MATEMAT K TEST KKAT! + Bu bölümde cevaplayaca n z soru say s 40 t r + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 2 4. 4. 0,5 2. iflleminin sonucu

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

Homoteti (Homothety) DÖNÜfiÜMLERLE GEOMETR. Düzlemde M sabit bir nokta ve k bir reel say olmak

Homoteti (Homothety) DÖNÜfiÜMLERLE GEOMETR. Düzlemde M sabit bir nokta ve k bir reel say olmak ÖNÜfiÜLRL GTR ¾ Homoteti (Homothet) üzlemde sabit bir nokta ve k bir reel sa olmak üzere; P = + k.(p ) ÖRNK üzlemde (5, 6) noktas n n (, 7) merkezli ve k = oranl homoteti ini bulal m. eflitli ini sa laan

Detaylı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı

Sistem Dinamiği ve Modellemesi. Doğrusal Sistemlerin Sınıflandırılması Doğrusal Sistemlerin Zaman Davranışı Sim Dinmiği v Modllmi Doğrul Simlrin Sınıflndırılmı Doğrul Simlrin Zmn Dvrnışı Giriş: Sim dinmiği çözümlmind, frklı fizikl özlliklr şıyn doğrul imlrin krkriiklrini blirlyn ml bğınılr rınd bnzrlik noloji

Detaylı

Do ufl Üniversitesi Matematik Kulübü nün

Do ufl Üniversitesi Matematik Kulübü nün Matematik ünas, 003 Güz o ufl Üniversitesi Matematik Kulübü Matematik Yar flmas /. ölüm o ufl Üniversitesi Matematik Kulübü nün üniversitenin ö retim üelerinin de katk - lar la düzenledi i liseleraras

Detaylı

1. Afla daki flekillerin boyal k s mlar n bütün, yar m ve çeyrek olarak belirtiniz.

1. Afla daki flekillerin boyal k s mlar n bütün, yar m ve çeyrek olarak belirtiniz. Ad : Soyad : S n f : 2. SINIF Nu. : Kesirler 53 Uygulamal Etkinlik 1. Afla daki flekillerin boyal k s mlar n bütün, yar m ve çeyrek olarak belirtiniz. 4. Afla daki boflluklar uygun ifadelerle tamamlay

Detaylı

ZARLARLA OYNAYALIM. Önden = = + = Arkadan = = + + = = + + =

ZARLARLA OYNAYALIM. Önden = = + = Arkadan = = + + = = + + = ZARLARLA OYNAYALIM Zar kullanarak toplama ve ç karma ifllemleri yapabiliriz. Zarda karfl l kl iki yüzdeki say lar n toplam daima 7 dir. Zarda 2 gözüküyorsa karfl s ndaki yüzeyin 7 2 = 5 oldu unu bulabilirsiniz.

Detaylı

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde %

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde % Çemberde çılar 7. Sınıf Matematik Soru ankası 58. Yandaki merkezli s ( ) = 50c 4. Yandaki saat şekildeki gibi 04.00 ı gösterdiğinde akrep ile yelkovan arasında oluşan x açısı kaç derecedir? ' olduğuna

Detaylı

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN SAYLAR Do al Say lar Parças ve fl n 6. SNF MATEMAT K DERS ÜN TELEND R LM fi YLLK PLAN Süre/ KAZANMLAR Ders AÇKLAMALAR 1. Do al say larla ifllemler yapmay gerektiren problemleri çözer ve kurar. Do al say

Detaylı

BİLİMSEL SÜREÇLERİN KAZANIMINA YÖNELİK BİR PROGRAM ÇALIŞMASI

BİLİMSEL SÜREÇLERİN KAZANIMINA YÖNELİK BİR PROGRAM ÇALIŞMASI BİLİMSEL SÜREÇLERİN KAZANIMINA YÖNELİK BİR PROGRAM ÇALIŞMASI Dilek ARDAÇ, Ebru MUĞALOĞLU Boğziçi Üniversitesi, Eğitim Fkültesi, OFMA Eğitimi Bölümü, İSTANBUL ÖZET: Çlışm bilimsel süreçlerin kznımını mçlyn

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

ÖLÇME TEKNĠKLERĠ DERSĠ

ÖLÇME TEKNĠKLERĠ DERSĠ 1 Konu Ģlıklrı ÖLÇME TEKNĠKLERĠ DERSĠ 1) Ölçme ilgisi İle İlgili çıklmlr 2) sit ölçme letleri 3) Doğrulrın elirtilmesi 4) Uzunluklrın Ölçülmesi 5) ln Hesplrı 6) Thomson Yolu İle ln Hesbı 7) Koordint Yrdımı

Detaylı

PLAJLARDA ÇEVRE BİLİNÇLENDİRME PROJESİ. (19-22 Ağustos 2013 Akyaka)

PLAJLARDA ÇEVRE BİLİNÇLENDİRME PROJESİ. (19-22 Ağustos 2013 Akyaka) PLAJLARDA ÇEVRE BİLİNÇLENDİRME PROJESİ (19-22 Ağustos 213 Akyk) Pljlr Çevre Bilinçlenirme Projesi 19-22 Ağustos trihleri rsın TÜRÇEV Muğl Şuesi ve Akyk Beleiyesi iş irliği ile gerçekleştirili. Proje TÜRÇEV

Detaylı

arşılıklı kenar uzunlukları ve açılarının ölçüleri birbirine eşit olan çokgenlere eş çokgenler denir şlik sembolü dir m () m () 3 cm m () m () m(g) m(h) m() m() 4 2 cm GH H 3 cm G 4 2 cm GH H G Yukarıdaki

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

5. a ve b pozitif tamsay lard r say taban olmak üzere,

5. a ve b pozitif tamsay lard r say taban olmak üzere, 1. ve b pozitif tmsy lrd r. + b = 13 oldu un göre, + 3b toplm n n en büyük de eri kçt r? 5. ve b pozitif tmsy lrd r. Yndki bölme iflleminde, n n lbilece i en büyük de er kçt r? b 8 b 8 ) 4 ) 8 ) 34 ) 37

Detaylı

İÇİNDEKİLER ÇEMBERDE TEMEL KAVRAMLAR ÇEMBERDE ALAN CEMBERDE UZUNLUK

İÇİNDEKİLER ÇEMBERDE TEMEL KAVRAMLAR ÇEMBERDE ALAN CEMBERDE UZUNLUK ÇMRLR, GMRİK YR V ÇİZİMLR İÇİNKİLR Sayfa No est No ÇMR ML KVRMLR... 001-00... 01-01 ÇMR LN... 003-00... 0-10 MR UZUNLUK... 01-06... 11-3 ÇMR Ğ V KİRİŞ ÖZLLİKLRİ... 07-068... -3 ÇMR ÇILR... 069-09... 35-7

Detaylı

Limit. Kapak Konusu: Gerçel Say lar V: Süreklilik ve Limit

Limit. Kapak Konusu: Gerçel Say lar V: Süreklilik ve Limit Kpk Konusu: Gerçel S lr V: Süreklilik Limit Limit v = ƒ() Bir bflk örne e bkl m. < c < b olsun. ƒ: [, b] \ {c}, grfi i fl dki gibi oln bir fonksion olsun. Fonksion c nokts nd tn mlnmm fl. Os fonksion c

Detaylı

6. 5 portakaldan 600 ml portakal suyu ç km flt r. Buna göre, 2 L 400 ml portakal suyu kaç portakaldan ç kar?

6. 5 portakaldan 600 ml portakal suyu ç km flt r. Buna göre, 2 L 400 ml portakal suyu kaç portakaldan ç kar? Ad : Soyad : S n f : Nu. : Okulu : S v lar Ölçme Sütun Grafi i Olas l k TEST. 920 ml = L ml Yukar da verilen eflitli e göre + iflleminin sonucu kaçt r? A) 29 B) 60 C) 69 D) 9 2. Çiftçi Ak n bahçesinden

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MTEMT K TEST KKT! + u bölümde cevaplayaca n z soru say s 40 t r + u bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MTEMT K TEST " bölümüne iflaretleyiniz. 1. 1 3 1 3 1 2 1 2. 5 + 7 iflleminin sonucu

Detaylı

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k u kit n her hkk skl d r ve kstrem Y nc l k ittir. Kit it metin ve sorulr, knk gösterilerek de ols kulln lmz. Kit n hz rln fl öntemi tklit edilemez. ISN: 978 0 9 8 9 steme dresi kstrem Yıncılık Tlf: (0)

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ÜNİTE DÖRTGENLER VE ÇOKGENLER. 5.1 : Dörtgenler ve Özellikleri 5.2 : Özel Dörtgenler 5.3 : Çokgenler

ÜNİTE DÖRTGENLER VE ÇOKGENLER. 5.1 : Dörtgenler ve Özellikleri 5.2 : Özel Dörtgenler 5.3 : Çokgenler 5 ÜNİT ÖRTGNLR V ÇOGNLR 51 : örtgenler ve Özellikleri 5 : Özel örtgenler 53 : Çokgenler 50 50 0 ünymız yklşık olrk küre biçimindedir Onun üzerinde bir üçgen çizmeye klktığımızd o üçgenin iç çılrının toplmı

Detaylı

ÜN TE I. A) TEKRAR EDEN, YANSIYAN VE DÖNEN fiek LLER a) Fraktallar b) Yans yan ve Dönen fiekiller ALIfiTIRMALAR ÖZET TEST I-I

ÜN TE I. A) TEKRAR EDEN, YANSIYAN VE DÖNEN fiek LLER a) Fraktallar b) Yans yan ve Dönen fiekiller ALIfiTIRMALAR ÖZET TEST I-I ÜN TE I A) TEKRAR EDEN, YANSIYAN VE DÖNEN fiek LLER a) Fraktallar b) Yans yan ve Dönen fiekiller ALIfiTIRMALAR ÖZET TEST I-I B) ÜSLÜ SAYILAR a) Bir Tam Say n n Negatif Kuvveti b) Tekrarl Çarp mlar Üslü

Detaylı

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k u kit n her hkk skl d r ve kstrem Y nc l k ittir. Kit it metin ve sorulr, knk gösterilerek de ols kulln lmz. Kit n hz rln fl öntemi tklit edilemez. ISN: 978 0 9 8 9 steme dresi kstrem Yıncılık Tlf: (0)

Detaylı

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır?

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır? 00 ÖSS Soruları 3,4.,34 0, 34,34 işleminin sonucu kaçtır? ) 0 ) 0, ) 9,9 ) 0, E),. a, b, c, d pozitif tam sayılar ve a 7 a 4 : = c, : = d b 0 b 4 olduğuna göre, c + d nin alabileceği en küçük değer kaçtır?

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı ÜÇN NZRLİK enzerlik eometride benzerlik kvrmı görsel olrk birbiri ile ynı oln şekiller için kullnılır. enzer iki şeklin krşılıklı kenrlrı rsınd sbit bir orn vrdır. iz bu bölümde sdece üçgenler rsındki

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

* Bir üçgende büyük açý karþýsýndaki kenar. 4. A m(ëb) = 76

* Bir üçgende büyük açý karþýsýndaki kenar. 4. A m(ëb) = 76 . ÖLÜM ÇI - KENR ÐINTILRI LIÞTIRM: 1 * ir üçgenin iki çýsý eþit ise; krþýlýklý kenrlrýd eþittir. * ir üçgende büyük çý krþýsýndki kenr büyüktür. b m(ë) = m(ë) ise m(ë) < m(ë) < m(ë) ise; b = dir. < b

Detaylı

say s kaç basamakl d r? 2. Bir düzlemde verilen 8 noktadan 4 tanesi ayn do ru üzerindedir. Di er 4 noktadan. 3. n do al say olmak üzere;

say s kaç basamakl d r? 2. Bir düzlemde verilen 8 noktadan 4 tanesi ayn do ru üzerindedir. Di er 4 noktadan. 3. n do al say olmak üzere; . 7 8 say s kaç basamakl d r? ) 2 B) 0 ) 9 ) 8 E) 7 2. Bir düzlemde verilen 8 noktadan 4 tanesi ayn do ru üzerindedir. i er 4 noktadan hiçbiri bu do ru üzerinde bulunmamaktad r ve bu 4 noktadan herhangi

Detaylı