MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev



Benzer belgeler
SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

12.Konu Rasyonel sayılar

13.Konu Reel sayılar

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

10.Konu Tam sayıların inşası

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

CEBİR ÇÖZÜMLÜ SORU BANKASI

Leyla Bugay Doktora Nisan, 2011

VEKTÖR UZAYLARI 1.GİRİŞ

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Normal Alt Gruplar ve Bölüm Grupları...37

SOYUT CEBİR ÇALIŞMA SORULARI HALKALAR I. Soru 1 Standart toplama ve : a b = 0 olarak tanımlanan işlemler altında (Z, +, ) nin

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ :

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

ÜNİVERSİTEYE HAZIRLIK

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir.

1 BAĞINTILAR VE FONKSİYONLAR

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

Boole Cebri. Muhammet Baykara

HOMOGEN OLMAYAN DENKLEMLER

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

ÜNİTE 1: TEMEL KAVRAMLAR

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BÖLÜM 2 Biçimsel Dillerin Matematiksel Temelleri

MODÜLER ARİTMETİK. Örnek:

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

BAĞINTI - FONKSİYON Test -1

4. HAFTA Boole Cebiri Uygulamaları Standart Formlar. Prof. Mehmet Akbaba

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ

Kafes Yapıları. Hatırlatma

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

BÖLÜM I MATEMATİK NEDİR? Matematik Nedir? 14


GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

Grup Homomorfizmaları ve

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

10. DİREKT ÇARPIMLAR

15. Bağıntılara Devam:

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

II. DERECEDEN DENKLEMLER Test -1

AYRIK YAPILAR. ARŞ. GÖR. SONGÜL KARAKUŞ- FıRAT ÜNIVERSITESI TEKNOLOJI FAKÜLTESI YAZıLıM MÜHENDISLIĞI BÖLÜMÜ, ELAZIĞ

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

ATATÜRK ANADOLU LİSESİ MATEMATİK. Karmaşık Sayılar Üzerine Kısa Çalışmalar

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

BLM 221 MANTIK DEVRELERİ

İNJEKTİF MODÜLLERE. Ali Pancar Burcu Nişancı Türkmen

HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Taşkın, Çetin, Abdullayeva

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

9SINIF MATEMATİK. Denklemler ve Eşitsizlikler

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

SAYILAR DOĞAL VE TAM SAYILAR

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Transkript:

MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev

5.KONU Cebiresel yapılar; Grup, Halka

1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri 6. Alt Grup 7. Halka 8. Halkanın basit özellikleri 9. Değişmeli ve birimli halkalar 10.Alıştırmalar

1. Matematik yapı Herhangi bir kümede tanımlanan bağıntılar ve işlemler bu kümede ile birlikte bir matematik yapı (matematik sistem) oluşturur. Bir A kümesinde tanımlanan bağıntılar veya işlemler α, β, γ, olsun. Bu bağıntı ve işlemler oluşturduğu matematik yapı A, α, β, γ, biçiminde gösterilir. Örnekler: 1. A kümesinde tanımlanan ve ikili işlemleri verilmiş olsun. A, ikilisi bir işlemli bir matematik yapıdır. A,, üçlüsi iki işlemli bir matematik yapıdır. 2. Doğal sayılar kümesi ile bu kümede tanımlanan toplama ve çarpma işlemleri ile sıralama bağyntısı bir matematik yapi oluşturur. N, +,,

2. Denk yapılar ve eş yapılar 1.Tanım: A kümesinde tanımlanan α bağıntısı ile B kümesinde tanımlanan β bağıntısı verilsin. Bu bağıntılardan her ikisi n-li bağıntı ise bu bağıntılara aynı türden bağıntılar denir. 1.Örnek: A={a, b, c}, α={(a,b), (a,c), (b,c)}, β={(a,a), (b,b), (c,c)} olsun. α ve β bağıntılarından her ikisi A da tanımlı ikili bağıntılardır. Buna göre bu bağıntılar aynı türdendir. 2.Tanım: A, α 1,α 2,α 3,, α n ve B, β 1, β 2,β 3,, β n matematik yapılar verilmiş olsun. {1,2,3,, n} kümesinin her i elemanı için α i ile β i aynı türden ise A, α 1,α 2,α 3,, α n ve B, β 1, β 2,β 3,, β n matematik yapılarına aynı türden matematik yapılar denir. 2.Örnek: N doğal sayılar kümesi, Z tam sayılar kümesi olsun. N, +,, ve Z, +,, matematik yapılar aynı türdendir.

3.Tanım: A kümesinde tanımlanan α bağıntısı ile B kümesinde tanımlanan β bağıntısı verilmiş olsun. Bu bağıntıların her ikisi n-li bağıntı olmak üzere x 1,x 2,x 3,, x n α f(x 1 ),f(x 2 ),f(x 3 ),, f(x n ) β Önermesi doğru olacak biçimde A dan B ye bir f fonksiyonu varsa, f fonksiyonuna α bağıntısını β bağıntısına dönüştüren bir fonksiyon denir. 4.Tanım: A, α 1,α 2,α 3,, α n ve B, β 1, β 2,β 3,, β n aynı türden iki matematik yapı, f:a B bir fonksiyon olsun. Eğer f fonksiyonu {1,2,3,, n} kümesinin her i elemanı için α i bağıntısını β i bağıntısına dönüştürüyorsa, f fonksiyonuna denk yapı dönüşümü (homomorfizm) denir. Birebir ve örten bir denk yapı dönüşümüne eş yapı dönüşümü (izomorfizm) denir. 5.Tanım: Aynı türden iki matematik yapı arasında bir denk yapı dönüşümü (homomorfizm) varsa bu matematik yapılarına denk yapılar (homomorf yapılar) denir. Aynı türden iki matematik yapı arasında bir eş yapı dönüşümü (izomorfizm) varsa bu matematik yapılarına eş yapılar (izomorf) yapılar denir.

3. Grup 1.Tanım: G kümesinde tanımlanan o işlemi verilmiş olsun. G kümesi o işlemine göre kapalı ve o işleminin birleşme özelliği varsa (G,o) matematik yapısına yarı grup denir. 2.Tanım: (G,o) matematik yapısı aşağıdaki aksiyomları sağlarsa bu matematik yapıya grup denir. G1) G kümesi o işlemine göre kapalıdır. G2) o işleminin birleşme özelliği vardır. G3) G kümesinin o işlemine göre etkisiz (birim) elemanı vardır. G4) G nın her elemanının o işlemine göre tersi vardır. Bu tanıma göre (G,o) matematik yapısının grup olması için, G1) x, y G xoy G G2) x, y, z G xo yoz = xoy oz G3) x G ve e G xoe = eox = x G4) x G ve y G xoy = yox = e önermelerinin doğru olması gerektir ve yeterdir.

1.Örnek: Pozitif rasyonel sayılar kümesi Q ile gösteriliyor. x, y Q icin x y = xy 2 olduğuna göre Q, matematik yapısı gruptur. G1) x, y Q x y Q xy 2 Q x y Q G2) x, y, z Q x y z = xy xy z z = = 2 4 G3) x Q ve e Q : x e = e x = x xe Etkisiz eleman 2 dir. 2 x yz = x yz = x y z 4 2 = x xe=2x e=2. G4) x Q ve y Q x y = y x = 2 xy 2 =2 xy=4 y=4 x x Q için 4 x x=x 4 x =2. Buna göre Q kümesinin her x elemanının işlemine göre tersi vardır. 3.Tanım: (G,o) bir grup olsun. o işleminin değişme özelliği varsa (G,o) grubuna değişmeli grup veya Abel grubu denir. 1.Örnek: Q, 4.Tanım: (G,.) bir grup olsun. G kümesi sonlu bir küme ise gruba sonlu sıradan grup, G kümesi sonsuz cümle ise gruba sonsuz sıradan grup denir.

4. Grubun basit özellikleri 1.Teorem: (G,.) bir grup olsun. G nin. işlemine göre bir tek etkisiz (birim) elemanı vardır. 2.Teorem: (G,.) bir grup olsun. G nin her elemanının. işlemine göre bir tek tersi vardır. 3.Teorem: Herhangi bir grupta grup işleminin grup işleminin sadeleştirme özelliği vardır. İspat: (G,.) bir grup olsun. x, y, z G için x. z = y. z x = y ve x, y, z G için z. x = z. y x = y önermelerinin doğru olduğunu göstermek gerektir ve yeter. x. z = y. z (x. z). z 1 = y. z. z 1 x. z. z 1 = y. (z. z 1 ) birleşme özelliği x. e = y. e x = y

4.Teorem: (G,.) bir grup, a,b G olduğuna göre a.x=b ve y.a=b denklemlerinden her birinin G de bir ve yalniz bir çözümü vardır. İspat: a.x=b a 1. (a.x)=a 1.b (a 1. a).x=a 1.b x=a 1.b Bu önermelerin doğru olması a.x=b denkleminin G de bir ve yalnız bir çözümü olduğunu gösterir. Bu çözüm a 1.b dir. y.a=b (y. a). a 1 =b.a 1 y. (a 1. a)=b. a 1 y=b. a 1 5.Teorem: (G,.) bir grup, a G ise a 1 1 = a dır. İspat: G nin çarpma işlemine göre etkisiz elemanı e olsun. Buna göre a. a 1 =e ve a 1 1. a 1 =e önermeleri doğru olur. Buradan a. a 1 = a 1 1. a 1 elde edilir. Son önermede a 1 ile sadeleştirme yapılırsa, a = a 1 1 bulunur. 6.Teorem: (G,.) bir grup, a, b G ise a. b 1 = b 1. a 1 İspat: (a.b).(b 1. a 1 )=a.(b.b 1 ). a 1 =(a.e).a 1 =a.a 1 = e (b 1. a 1 ). (a.b)=b 1.(a 1. a). b )=b 1 (e.b)=b 1 b = e Bir (G,.) grubunda G nin her elemanının bir tek tersi olduğundan a. b 1 = b 1. a 1 elde edilir.

5. Bir elemanın kuvvetleri 1.Tanım: (G,.) bir grup, a G ve n N olsun. G nin çarpma işlemine göre etkisiz elemanı e olduguna göre: a) a 0 = e b) a 1 = a c) n>1 için a n = a n 1. a d) n>1 için a n = (a 1 ) n dir. 1.Teorem: (G,.) bir grup a G olsun. n N için (a n ) 1 = (a 1 ) n dir. 2.Teorem: (G,.) bir grup olsun. a G ve n, m Z olduğuna göre, a m. a n =a m+n ve (a m ) n = a mn dir.

6. Alt Grup 1.Tanım: (G,.) bir grup, H kümesi G nin boş olmayan bir alt kümesi olsun. (H,.) bir grup ise bu gruba(g,.) grubunun bir alt grubu denir. 1. Örnek: Z, + grubu R, + grubunun bir alt grubudur. 2. (G,.) bir grup olsun. G nin. işlemine göre etkisiz elemanı e olduguna göre (G,.) ve ({e},.) gruplarından her biri (G,.) grubunun birer alt grubudur. 2.Tanım: (G,.) bir grup,g nin. işlemine göre etkisiz elemanı e olsun. (G,.) ve ({e},.) gruplarına (G,.) grubunun basit alt grupları denir. (G,.) grubunun basit alt gruplarından farklı bir alt grubu varsa buna grubun öz alt grubu denir. 1.Teorem: Herhangi bir alt grupta etkisiz eleman esas gruptaki etkisiz elemana eşittir. Alt grubun kümesine alt bir elemanın grup işlemine göre tersi bu elemanın esas grupta grup işlemine göre tersine eşittir. İspat: (H,.) grubu (G,.) grubunun bir alt grubu olsun. G nin. işlemine göre etkisiz elemanı e, H nin. işlemine göre etkisiz elemanı e olsun. e. e = e = e.e dir. Buradan sadeleştirme ile e =e edilir. H nın x elemanının. işlemine göre H deki tersi x, G deki tersi x 1 olsun. x. x = x. x 1 = e dir. Buradan sadeleştirme ile x = x 1 elde edilir. 2.Teorem: (G,.) bir grup, H kümesi G nin boş olmayan bir alt kümesi olsun. ((H,.) alt gruptur) ( x, y H, x. y 1 H) dir. İspat: ( ): ((H,.) alt grup (H,.) grup ( x, y H, x, y 1 H) ( x, y H, x. y 1 H) ( ): ( x, y H, x. y 1 H) önermesinin doğru olduğunu varsayalım. Bu önermede y yerine x alınırsa x. x 1 H yani e H elde edilir. Bu önermede x yerine e alınırsa, y H, y 1 H elde edilir. ( x, y H (x H ve y 1 H) x. (y 1 ) 1 H x.y H olduğundan H kümesi. işlemine göre kapalıdır.. işleminin birleşme özelliği acıktır. Öleyse, (H,.) bir gruptur. H G oldugundan (H,.) grubu (G,.) grubunun alt grubudur.

7. Halka 1.Tanım: Boş olmayan bir H kümesinde toplama ve çarpma diye adlandırılan ve sıra ile + ve. işaretleri ile gösterilen iki işlem tanımlanmış olsun. İki işlemli (H,+,.) matematik yapısı için aşağıdaki önermeler doğru ise bu matematik yapıya halka denir. H1) (H,+) değişmeli gruptur. H2) H kümesi çarpma işlemine göre kapalıdır. H3) Çarpma işleminin birleşme özelliği vardır. H4) Çarpma işleminin toplama işlemine göre dağıtma özelliği vardır. 1.Örnek: H={a,b}. H kümesinde toplama ve çarpma işlemleri aşağıdaki çizelgelerde tanımlanmış tanımlanmış olsun. (H,+,.) bir halkadır. + a b a a b b b a. a b a a a b a b 2.Örnek: Z tam sayılar kümesi olsun. (Z,+,.) bir halkadır. 2.Tanım: (H,+,.) bir halka olsun. H kümesinin toplama işlemine göre etkisiz elemanına halkanın sıfırı denir. Bir halkanın sıfırı O veya e ile gösterilir. H nın bir x elemanının toplama işlemine göre tersi x ile gösterilir.

8. Halkanın basit özellikleri 1.Teorem: (H,+,.) halkasının sıfırı 0 olduğuna göre x H için x. 0 = 0. x = 0 İspat: 0+0=0 (0+0).x=0.x 0.x+0.x=0.x 0.x=0 x.(0+0)=x.0 x.0+x.0=x.0 x.0=0 2.Teorem: (H,+,.) bir halka olsun. a) x H için ( x) = x dir. b) x, y H için x + y = x + ( y) dir. c) x, y H için x. y = x. y = (x. y) dir. d) x, y H için x). ( y = x. y dir. İspat: Halkanın sıfırı 0 olsun. a) x H için x + ( x)=0 olduğundan x in toplama işlemine göre tersi (-x) dir. x H için x + ( x)=0 olduğundan x in toplama işlemine göre tersi x dir. (H,+) bir grup olduğundan H nın her x elemanının toplama işlemine göre bir ve yalnız bir tersi vardır. Buna göre x H için ( x) = x dir. b) x+y nin toplam işlemine göre tersi (x+y) dir. ((-x)+x)+((-y)+y)=0 (-x+x+(-y))+y=o (-x+(x+(-y)))+y=o ((-x)+(-y+x))+y=o [(-x)+(-y)]+(x+y)=o olduğundan x+y nin toplama işlemine göre tersi (-x)+(-y) dir. Bir grupta toplama işlemine göre bir tek tersi olduğundan -(x+y)=(-x)+(-y) dir. c) x.y nin toplama işlemine göre tersi (x.y) dir. Öte yandan y+(-y)=0 x.(y+(-y))=x.0 x.y + x.(-y)=x.0=0 olduğundan x.y nin toplama işlemine göre tersi x.(-y) dir. x.y nin toplama işlemine göre bir tek tersi olduğundan, x.(-y)=-(x.y) dir. (-x).y=-(x.y) oluğu benzer biçimde ispatlanır. d) (x.y)=x.(-y) -[(-x).y]=(-x).(-y) ve (x.y)=(-x).y -[(-x).y]=(-(-x)).(-y) dir. (-x)=x olduğuna göre [(-x).y]=(-x).(-y)=(-(-x)).y=x.y elde edilir. Yani (-x).(-y)=x.y

9. Değişmeli ve birimli halkalar 1.Tanım: (H,+,.) bir halka olsun. Çarpma işleminin değişme özelliği varsa halkaya değişmeli halka denir. 2.Tanım: (H,+,.) bir halka olsun. H nın çarpma işlemine göre etkisiz elemanı varsa halkaya birimli halka denir. Birimli halkanın birimi 1 veya e ile göstrerilir. H nın x elemanının çarpma işlemine göre tersi varsa bu eleman x 1 ile gösterilir. 1.Örnek: (Z,+,.) halkası değişmeli ve birimli bir halkadır. Bu halkanın birimi 1 dir. Z nin sadece 1 ve -1 elemanlarının çarpma işlemine göre tersi vardır. 2.Örnek: Çirt tam sayılar kümesi Ç olsun. (Ç,+,.) matematik yapısı değişmeli bir halkadır. Bu halka birimli değildir. Ç de çarpma işlemine göre tersi olan eleman yoktur.

10. Alıştırmalar 1.A={1} olduğuna göre, (A,.) matematik yapısının grup olduğunu gösteriniz. 2.G={a} ve a*a=a olduğuna göre, (G,*) matematik yapısının grup olduğunu gösteriniz. 3.G={a,b} ve a*a=a olmak üzere, G kümesinde * işlemi a*a=a,a*b=b, b*a=b ve b*b=a eşitlikler ile tanımlanıyor. (G,*) matematik yapısının grup olduğunu gösteriniz. 4.A={1,2,3,4} olmak üzere A kümesinde o işlemi «x y= xy nin 5 e bölümünden elde edilen kalan» biçiminde tanımlanıyor. (A, ) bir grup mudur? 5. x, y Z için x y=x+y-xy olduğuna göre, (Z, ) matematik yapısı grup mudur? 6. x, y Z için x y=x+y-1 olduğuna göre, (Z, ) matematik yapısı grup mudur? 7. G={3 x x Z} ve x, y Z için 3 x 3 y =3 x+y olduğuna göre, (G,*) matematik yapısının grup olduğunu gösteriniz. 8. x, y Z için x y=x+y-1, x y=x+y-xy olduğuna göre, (Z,, ) matematik yapısı halka mıdır? 9. Aşağıdaki kümelerden hangileri reel sayılar kümesinde tanımlanan toplama ve çarpma işlemlerine göre halkadır? a) 5n n Z} b) 1 2 m m Z} c) m 2n m, n Z} d) a + b 3 a, b Q}