Karşılaştırmalı Durağan Analiz ve Türev kavramı. 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Karşılaştırmalı Durağan Analiz ve Türev kavramı. 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri"

Transkript

1 Karşılaştırmalı Durağan Analiz ve Türev kavramı 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri 1

2 Karşılaştırmalı durağan analiz 6. Karşılaştırmalı Durağanlıklar ve Türev Kavramı 6.1 doğası Karşılaştırmalı durağan analizin 6.2 Değişim oranı ve türev 6.3 Türev ve bir eğrinin eğimi 6.4 Limit Kavramı 6.5 Eşitsizlikler ve Mutlak Değer 6.6 Limit Teoremleri 6.7 Süreklilik ve bir fonksiyonun türevinin alınabilirliği 2

3 6 Karşılaştırmalı Durağan Analiz Parametreleri ya da dışsal değişkenleri değiştirdiğimizde içsel değişkenlerin değerinde ne kadar değişme olduğu. Örnekler Tek mallı piyasa modeli (P,Q ) (shock) (P 1,Q 1 ) Milli gelir modeli (Y, C ) (shock) (Y 1, C 1 ) E1 P1 E P Talep2 Talep1 Q Q1 3

4 Örnek Varsayalım ki Starbucks firması için filtre kahve talep ve arz eğrileri için denklemleri şu şekilde olsun: Q D = 1-2P+.5Y Talep Eğrisi Q S =1+3P Arz Eğrisi P:Kahvenin Fiyatı Y:Tüketicilerin Gelirleri. Q:Miktar Varsayalım ki tüketicilerin ortalama geliri 1 TL olsun. Q D = 1-2P+.5(1)= 15-2P 4

5 Çözüm Talep Arz Denge Q T 1 2P,5Y Q S 1 3P Q D Q S QD=QS 1-2P+,5Y =1+3P 9-,5 Y =5P Q S =1+3P * P*(=28) i Talep ya da Arz denkleminde yerine koyarsak 18+,1 Y ve Y =1 ise Q S =1+3(28) P * =28 olur. Q S =Q D =94 5

6 GRAFĠK ÇALIŞMASI Q D 1 2P,5Y Y 1 Q D 15 2P P: Fiyat FĠYAT P 75 Q= ĠÇĠN P=? : =15-2P P=75 P= ĠÇĠN Q=? Q=6-3()Q=15 15 Q: Miktar 6

7 GRAFĠK ÇALIŞMASI FĠYAT P ARZ Q S 1 3P ARZ EĞRĠSĠ Q= ĠÇĠN P=-33 P= ĠÇĠN Q=1 MĠKTAR Q 7

8 GRAFĠK ÇALIŞMASI FĠYAT P ARZ EĞRĠSĠ 28 TALEP EĞRĠSĠ 1 94 MĠKTAR Q 8

9 Örnek Yukarıdaki örnekte tüketicilerin ortalama gelirleri 1TL olduğu söylenmişti. Ceteris-paribus (tüketicilerin gelirleri sabitken) denge düzeyi bulunmuştu. Eğer tüketicilerin gelirleri artar ve 12 TL olursa durum ne olur? Talep Eğrisi Q D = 1-2P+.5Y Tüketici Geliri 1 TL iken: Q D = 1-2P+.5(1) Q D = 15-2P Arz Eğrisi Q S =1+3P Tüketici Geliri 12 TL iken: Q D = 1-2P+.5(12) Q D =16-2P 9

10 Çözüm Q D =Q S = 1-2P+,5Y =1+3P P=18+,1Y VE Y =12 P=18+,1(12) P* değeri talep (ya da arz) denkleminde yerine konulursa: Q=1+3(3) Q*=1 olur. P*=3 1

11 GRAFĠK ÇALIŞMASI TALEP-1 Fiyat P TALEP-2 Arz Eğrisi Miktar 11

12 GRAFĠK ÇALIŞMASI Fiyat P 3 B 28 A 94 1 Q Miktar 12

13 Örnek IS-LM modeli:milli gelir modeli: Örneğin Milli gelir denge düzeyini bulduk. Dışsal değişkenlerden bir tanesinin değeri değişirse, denge milli gelir düzeyi nasıl değişir? Denge Milli Gelir düzeyinin hesaplanması ile ilgili olarak Bkz, Cramer yöntemi. 13

14 Örnek Y=C+I +G C=a+b(Y-T) T=T +ty (a>, <b<1) (<t<1) 14

15 Örnek: Keynes Modeli 15...(1) I G C Y...(2) a bt C by...(3) T T ty,, T a G I d ve T C Y X t b b A

16 16 CRAMER KURALINI UYGULAYALIM: A T t b a b G I C A T b a G I Y 1 1 ; bt b bt a G I Y 1 bt b bt t G I b a C 1 ) )(1 ( Çözüm

17 Çözüm 1 b 1 1 I a G T t A T T T ( 1 b) at t( I G ) 1 b bt 17

18 Çözüm Y I G a bt Y 1 b bt I? 1--DIŞSAL BİR DEĞİŞKEN OLAN I DEĞİŞİRSE DENGE MİLLİ GELİR DÜZEYİ NE OLUR? C a b( I G )(1 t) 1 b bt bt C T 2-- T (Örneğin) artarsa bu artış tüketim harcamalarını nasıl etkiler? T T ( 1 b) at t( I G ) 1 b bt T b 3 Marjinal tüketim eğilimi (örneğin) artarsa, bu artış vergi gelirlerine nasıl etki eder? 18

19 Karşılaştırmalı Statik Analiz harcama Y=E E 1 B E A 45 gelir Y Y 1 19

20 6.1 Karşılaştırmalı durağan analizin doğası İlk denge durumunu varsayarak başlar ve yeni dengeyi eskisi ile karşılaştırırız Bu karşılaştırma nicel (değişimin miktarı) olabileceği gibi nitel (değişimin yönü) de olabilir Problemin özü değişim oranının bulunmasıdır Türev kavramı 2

21 6.2 Değişim Oranı ve Türev Durağan analizde elimizde bir fonksiyon vardır: y = f(x) Karşılaştırmalı durağan analizde ise aynı obje ya da manzara iki ayrı durumda (ya da zamanda) fotoğraflanmakta ve karşılaştırılmaktadır: y1 - y = f(x1) - f(x) Bu obje ya da manzaraya Y=f(x) dersek, bu manzaranın ya da objenin durumu için elimizdeki resmi y = f(x) Ve 1 durumu için elimizdeki resmi y1 = f(x1) dir. İşte karşılaştırmalı durağan analizde amaç bu değişimleri daha anlaşır yapmaktan başka bir şey değildir. 21

22 6.2 Değişim Oranı ve Türev Burada X ve Y deki değişmeler: y 1 - y = f(x 1 )- f(x )...(4) y 1 - y = y..(5) x 1 - x = x.(6) 6 Numaralı Denklemi yeniden yazacak olursak: x 1 = x+ x...(7) 4 Numaralı denkleme 5 ve 7 numaralı denklemleri entegre edersek: y 1 - y = f(x+ x )- f(x )...(8) Olur. 22

23 6.2 Değişim Oranı ve Türev 8 Numaralı denklemin her iki tarafını X e bölelim: 9 numaralı denklemin limitini alacak olursak: X (sıfıra giderek daha çok yaklaşır, ama gerçekte hiçbir zaman sıfır olmaz anlamında) sıfıra yaklaşırken f(x) fonksiyonunun değerine biz türev diyoruz. 23

24 6.2 Değişim Oranı ve Türev 24

25 ÖRNEK 25

26 ÖRNEK 26

27 ÖRNEK 27

28 6.3. TÜREV: BİR EĞRİNİN EĞİMİ Türevle ilgili altı çizilmesi gereken önemli bir nokta türev bir fonksiyondur; gerçekten de türev sözcüğü türetilmiş fonksiyon anlamında kullanılmaktadır. 28

29 6.3. TÜREV: BİR EĞRİNİN EĞİMİ TÜREV AYRICA BĠR FONKSĠYONUN BELĠRLĠ BĠR NOKTADAKĠ EĞĠMĠDĠR: 29

30 3

31 31

32 32

33 33

34 34

35 35

36 6.4. LİMİT KAVRAMI Bir değişken, diyelim ki x değişkeni belli bir değere yaklaşırken ( gibi) başka bir değişken y hangi değere yaklaşır Bu sorunun anlamlı olabilmesi için y, x in bir fonksiyonu olmalı Bir fonksiyonun limiti her zaman var olmayabilir. Limitin var olabilmesi için x değişkeni, x a sağdan ya da soldan yaklaşırken fonksiyonun aldığı değer aynı olmalı. 36

37 6.4. LİMİT KAVRAMI lim lim xx xx L 37

38 6.6. LİMİT TEOREMELERİ Tek fonksiyona ait Teoremler İki fonksiyonlu Durumlara İlişkin Teoremler Çok Terimli (Polinomsal) Fonksiyonların Limiteri 38

39 39

40 ÖRNEK f ( x) y lim 2x 2 6x 3? x2 lim f ( x) 2(2) 2 6.(2) 3 23 x2 4

41 41

42 42

43 43

44 44

45 45

46 6.7. Bir Fonksiyonun Türevinin Alınabilme Koşulları Bir fonksiyonun x noktasında türevinin alınabilmesi için o noktada limitinin var olması gereklidir. 46 Eğer bir fonksiyonun x=a noktasında limiti varsa o noktada türevi alınabilir. Bu da gereklidir. x x f x x f dx dy x f x ) ( ) ( lim ) ( x a f x a f x a f x a f x x ) ( ) ( lim ) ( ) ( lim

47 SÜREKLİLİK Süreklilik: y=f(x) gibi bir fonksiyonun x noktasında limiti varsa ve bu f(x ) a eşit ise f(x) fonksiyonu x noktasında süreklidir. Bir fonksiyonun x noktasında sürekli olması için aşağıdaki üç şartın yerine getirilmesi gerekir: 47

48 TÜREV ALINABİLME ŞARTLARI Süreklilik türevlenebilirlik için gerekli şarttır ama yeterli değildir. Sürekli olup türevi alınamayan fonksiyonlarda vardır Bir fonksiyonun belirli bir noktada türevlenebilir olması için aşağıdaki limitin olması gerekir. Yani fonksiyon o noktada smooth geçişli olması gerekir. f f ( x x) f ( x) ( x) lim x x 48

49 49

KARŞILAŞTIRMALI DURAĞANLIK VE TÜREV

KARŞILAŞTIRMALI DURAĞANLIK VE TÜREV KARŞILA ILAŞTIRMALI DURAĞANLIK ANLIK VE TÜREV Karşılaştırmalı durağanlık, dışsal değişkenlerin ya da parametrelerin farklı değerler alması durumunda oluşabilecek farklı denge değerlerini karşılaştırılarak

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

İNTEGRAL İŞLEMLER LEMLERİ

İNTEGRAL İŞLEMLER LEMLERİ İKTİSADİ DİNAMİKLİK K VE İNTEGRAL İŞLEMLER LEMLERİ 2 İktisat biliminde dinamiklik kavramı, değişkenlerin değişim süreçlerini, dengeye geliş ya da uzaklaşmalarını içeren bir analiz tipidir. Daha önce karşılaştırmalı

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

MATRİS İŞLEMLER LEMLERİ

MATRİS İŞLEMLER LEMLERİ MTRİS İŞLEMLER LEMLERİ Temel matris işlemlerinin doğrudan matematik açılımını 2 yapmadan önce, bir eşanlı denklem sisteminin matris işlemleri kullanılarak nasıl daha kolay ve sistematik bir çözüm verdiğini,

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

TOPLAM TALEP I: IS-LM MODELİNİN OLUŞTURULMASI

TOPLAM TALEP I: IS-LM MODELİNİN OLUŞTURULMASI BÖLÜM 10 TOPLAM TALEP I: IS-LM MODELİNİN OLUŞTURULMASI IS-LM Modelinin Oluşturulması Klasik teori 1929 ekonomik krizine çare üretemedi Teoriye göre çıktı, faktör arzına ve teknolojiye bağlıydı Bunlar ise

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

PARA, FAİZ VE MİLLİ GELİR: IS-LM MODELİ

PARA, FAİZ VE MİLLİ GELİR: IS-LM MODELİ PARA, FAİZ VE MİLLİ GELİR: IS-LM MODELİ Bu bölümde faiz oranlarının belirlenmesi ile faizin denge milli gelir düzeyinin belirlenmesi üzerindeki rolü incelenecektir. IS LM modeli, İngiliz iktisatçılar John

Detaylı

ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI

ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI ÇALIŞMA SORULARI TOPLAM TALEP I: MAL-HİZMET (IS) VE PARA (LM) PİYASALARI 1. John Maynard Keynes e göre, konjonktürün daralma dönemlerinde görülen düşük gelir ve yüksek işsizliğin nedeni aşağıdakilerden

Detaylı

1. Yatırımın Faiz Esnekliği

1. Yatırımın Faiz Esnekliği DERS NOTU 08 YATIRIMIN FAİZ ESNEKLİĞİ, PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ, TOPLAM TALEP (AD) EĞRİSİNİN ELDE EDİLİŞİ Bugünki dersin içeriği: 1. YATIRIMIN FAİZ ESNEKLİĞİ... 1 2. PARA VE MALİYE POLİTİKALARININ

Detaylı

İçindekiler kısa tablosu

İçindekiler kısa tablosu İçindekiler kısa tablosu Önsöz x Rehberli Tur xii Kutulanmış Malzeme xiv Yazarlar Hakkında xx BİRİNCİ KISIM Giriş 1 İktisat ve ekonomi 2 2 Ekonomik analiz araçları 22 3 Arz, talep ve piyasa 42 İKİNCİ KISIM

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Makro İktisat II Örnek Sorular. 1. Tüketim fonksiyonu ise otonom vergi çarpanı nedir? (718 78) 2. GSYİH=120

Makro İktisat II Örnek Sorular. 1. Tüketim fonksiyonu ise otonom vergi çarpanı nedir? (718 78) 2. GSYİH=120 Makro İktisat II Örnek Sorular 1. Tüketim fonksiyonu ise otonom vergi çarpanı nedir? (718 78) 2. GSYİH=120 Tüketim harcamaları = 85 İhracat = 6 İthalat = 4 Hükümet harcamaları = 14 Dolaylı vergiler = 12

Detaylı

Tasarruf Paradoksu bir çiçek alın, ekonomiye can verin

Tasarruf Paradoksu bir çiçek alın, ekonomiye can verin Tasarruf Paradoksu Bir ekonomide bireylerin gelir seviyelerinde bir değişme olmadan daha fazla tasarrufta bulunmak istemeleri, yani halkın tutumluluğunun artması, tasarrufları artırmayacak, tasarruflar

Detaylı

1. Toplam Harcama ve Denge Çıktı

1. Toplam Harcama ve Denge Çıktı DERS NOTU 03 TOPLAM HARCAMALAR VE DENGE ÇIKTI - I Bugünki dersin içeriği: 1. TOPLAM HARCAMA VE DENGE ÇIKTI... 1 HANEHALKI TÜKETİM VE TASARRUFU... 2 PLANLANAN YATIRIM (I)... 6 2. DENGE TOPLAM ÇIKTI (GELİR)...

Detaylı

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir. LİMİT VE SÜREKLİLİK A- LİMİTLER Bir top 10 metre yükseklikten bırakılmaktadır. Top yere vurduktan sonra ilk yüksekliğin 2/5 i kadar sıçramakta ve bunu her yükseliş için devam ettirmektedir. Topun sıçrayacağı

Detaylı

İKTİSAT. İktisata Giriş Test Dolmuş ile otobüs aşağıdaki mal türlerinden

İKTİSAT. İktisata Giriş Test Dolmuş ile otobüs aşağıdaki mal türlerinden İktisata Giriş Test - 1 1. Doğada insan ihtiyaçlarına oranla kıt olan elde etmek için çaba sarf edilen ve fiyatı olan mallara ne ad verilir? A) Serbest mallar B) İktisadi mallar C) Nihai mallar D) Üretici

Detaylı

DERS NOTU 01 TÜKETİCİ TEORİSİ

DERS NOTU 01 TÜKETİCİ TEORİSİ DERS NOTU 01 TÜKETİCİ TEORİSİ Bugünki dersin işleniş planı: I. Hanehalkı Karar Problemi... 1 A. Bütçe Doğrusu... 1 II. Seçimin Temeli: Fayda... 5 A. Azalan Marjinal Fayda... 5 B. Fayda Fonksiyonu... 9

Detaylı

Fonksiyonun Limiti. Fonksiyonun Limiti. Fonksiyonun Limiti. Fonksiyonun Limiti

Fonksiyonun Limiti. Fonksiyonun Limiti. Fonksiyonun Limiti. Fonksiyonun Limiti Fonksiyonun Limiti x in 2 sayısına yakın değerleri için f(x) = x 2 x+2 ile tanımlanan f fonksiyonun davranışını inceleye. Aşağıdaki tablo, x in 2 ye yakın fakat 2 den farklı değerleri için f(x) değerlerini

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı

PARA, FAİZ VE MİLLİ GELİR: IS-LM MODELİ

PARA, FAİZ VE MİLLİ GELİR: IS-LM MODELİ PARA, FAİZ VE MİLLİ GELİR: IS-LM MODELİ Bu ünite tamamlandığında; Alternatif yöntemleri kullanarak IS eğrisini elde edebileceğiz IS eğrisinin eğiminin hangi faktörlere bağlı olduğunu ifade edebileceğiz

Detaylı

Massachusetts teknoloji Enstitüsüsü- Profesörler Berndt, Chapman, Doyle ve Stoker

Massachusetts teknoloji Enstitüsüsü- Profesörler Berndt, Chapman, Doyle ve Stoker Sloan Yönetim Okulu 15.010/15.011 Massachusetts teknoloji Enstitüsüsü- Profesörler Berndt, Chapman, Doyle ve Stoker NOTLARI #1 Piyasa Tanımı, Esneklik ve Rantlar Cuma- Eylül 10, 2004 BUGÜNÜN PROBLEM ÇÖZME

Detaylı

MİKRO İKTİSAT. Kariyermemur.com Sayfa 1

MİKRO İKTİSAT. Kariyermemur.com Sayfa 1 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini tamamlayabilirler C) Subjektiftir D) Kesinlikle parayla ifade edilmelidirler

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

MİKRO İKTİSAT 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini

MİKRO İKTİSAT 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini MİKRO İKTİSAT 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini tamamlayabilirler C) Subjektiftir D) Kesinlikle parayla

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

SAY 203 MİKRO İKTİSAT

SAY 203 MİKRO İKTİSAT SAY 203 MİKRO İKTİSAT Esneklikler YRD. DOÇ. DR. EMRE ATILGAN SAY 203 MİKRO İKTİSAT - YRD. DOÇ. DR. EMRE ATILGAN 1 ESNEKLİKLER Talep Esneklikleri Talep esneklikleri: Bir malın talebinin talebi etkileyen

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

1. Mal Piyasası ve Para Piyasası

1. Mal Piyasası ve Para Piyasası DERS NOTU 06 IS/LM MODELİ Bugünki dersin içeriği: 1. MAL PİYASASI VE PARA PİYASASI... 1 2. MAL PİYASASI İLE PARA PİYASASININ İLİŞKİSİ... 1 3. FAİZ ORANI, YATIRIM VE IS EĞRİSİ... 2 IS EĞRİSİNİN CEBİRSEL

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

SORU SETİ 11 MİKTAR TEORİSİ TOPLAM ARZ VE TALEP ENFLASYON KLASİK VE KEYNEZYEN YAKLAŞIMLAR PARA

SORU SETİ 11 MİKTAR TEORİSİ TOPLAM ARZ VE TALEP ENFLASYON KLASİK VE KEYNEZYEN YAKLAŞIMLAR PARA SORU SETİ 11 MİKTAR TEORİSİ TOPLAM ARZ VE TALEP ENFLASYON KLASİK VE KEYNEZYEN YAKLAŞIMLAR PARA Problem 1 (KMS-2001) Kısa dönem toplam arz eğrisinin pozitif eğimli olmasının nedeni aşağıdakilerden hangisidir?

Detaylı

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır. TÜREV UYGULAMALARI Bölüm içinde maksimum, minimum, artan ve azalan fonksiyonlar, büküm noktası, teğet, normal ve belirsizliğin türev yardımıyla giderilmesi işlenmektedir. 11.1 Maksimum ve Minimum (Ekstremum)

Detaylı

Maltepe Üniversitesi [İktisadi ve İdari Bilimler Fakültesi] [MAT 151 Genel Matematik I] 2013-2014 Güz Yarıyılı Final Soruları

Maltepe Üniversitesi [İktisadi ve İdari Bilimler Fakültesi] [MAT 151 Genel Matematik I] 2013-2014 Güz Yarıyılı Final Soruları Öğrenci Numarası: Adı Soyadı: Bölümü: 1) Bütçe artarsa üretim artar ve Üretim artarsa toplam gelir artar bileşik önermelerinin doğru olduğu bilindiğine göre aşağıdaki bileşik önermelerden hangisi doğrudur.

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

15.010/15.011 Örnek Ara sınav Cevap Kâğıdı - 1999. 1) Doğru, Yanlış, Belirsiz

15.010/15.011 Örnek Ara sınav Cevap Kâğıdı - 1999. 1) Doğru, Yanlış, Belirsiz 15.010/15.011 Örnek Ara sınav Cevap Kâğıdı - 1999 1) Doğru, Yanlış, Belirsiz a) DOĞRU. İki mağaza tarafından arz edilen videolar birbirlerine ikame. Somerville deki Hollywood mağazasındaki videoların fiyatı

Detaylı

(1a) Palm Pilotları. Bir periyodda karlı olmaz: talep üzerinde SR gelir etkisi 8% büyüme.

(1a) Palm Pilotları. Bir periyodda karlı olmaz: talep üzerinde SR gelir etkisi 8% büyüme. Sloan Yönetim Okulu 15.010/ 15.011 Massachusetts Teknoloji Enstitüsü Đş Kararları için Đktisadi Analiz Profesör McAdams, Montero, Stoker ve van den Steen 1999 Final Sınavı Cevapları: Asistanların Notlandırması

Detaylı

Komisyon İKTİSAT ÇEK KOPAR YAPRAK TESTİ ISBN 978-605-364-577-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir.

Komisyon İKTİSAT ÇEK KOPAR YAPRAK TESTİ ISBN 978-605-364-577-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. Komisyon İKTİSAT ÇEK KOPAR YAPRAK TESTİ ISBN 978-605-364-577-1 Kitapta yer alan bölümlerin tüm sorumluluğu yazarlarına aittir. 2014 Pegem Akademi Bu kitabın basım, yayın ve satış hakları Pegem Akademi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Öğr. Gör. Barış Alpaslan

Öğr. Gör. Barış Alpaslan Dersin Adı DERS ÖĞRETİM PLANI Matematik I Dersin Kodu ECO 05/04 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık

Detaylı

BÖLÜM 9. Ekonomik Dalgalanmalara Giriş

BÖLÜM 9. Ekonomik Dalgalanmalara Giriş BÖLÜM 9 Ekonomik Dalgalanmalara Giriş Çıktı ve istihdamdaki kısa dönemli dalgalanmalara iş çevrimleri diyoruz Bu bölümde ekonomik dalgalanmaları açıklamaya çalışıyoruz ve nasıl kontrol edilebileceklerini

Detaylı

Üretim Girdilerinin lması

Üretim Girdilerinin lması Üretim Girdilerinin Fiyatlandırılmas lması 2 Tam Rekabet Piyasasında Girdi Talebi Tek Değişken Girdi Durumu İlk olarak firmanın tek girdisinin işgücü () olduğu durumu inceleyelim. Değişken üretim girdisi

Detaylı

B. Sermaye stoğunun durağan durum değerini bulunuz. C. Bu ekonomi için altın kural sermaye stoğu ne kadardır?

B. Sermaye stoğunun durağan durum değerini bulunuz. C. Bu ekonomi için altın kural sermaye stoğu ne kadardır? A.Ü. SBE 2015-2016 Bahar Dönemi Makro İktisat - II Çalışma Soruları - 2 1. Nüfus artışı veya teknolojik ilerlemenin olmadığı Solow Modeli nde bazı parametreler şu şekilde olsun: s = 0.2(tasarruf oranı)

Detaylı

A İKTİSAT KPSS-AB-PS/2007

A İKTİSAT KPSS-AB-PS/2007 1. Büyüme Kutupları nın, altyapı yatırımları ve dışsal ekonomiler yoluyla yaratacağı etkiler nedeniyle kalkınmanın önünde bir engel olduğunu belirten iktisatçı aşağıdakilerden hangisidir? A) F. Perroux

Detaylı

KPSS SORU BANKASI İKTİSAT YENİ. Pegem. Pegem Pegem Pegem Pegem. Pegem. Pegem Pegem. Pegem. Pegem

KPSS SORU BANKASI İKTİSAT YENİ. Pegem. Pegem Pegem Pegem Pegem. Pegem. Pegem Pegem. Pegem. Pegem A GRUBU KADROLAR İÇİN KPSS SORU BANKASI İKTİSAT YENİ Komisyon KPSS İKTİSAT Çek Kopar Soru Bankası ISBN 978-605-364-208-4 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2011, Akademi Bu kitabın

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

2.BÖLÜM ÇOKTAN SEÇMELİ

2.BÖLÜM ÇOKTAN SEÇMELİ CEVAP ANAHTARI 1.BÖLÜM ÇOKTAN SEÇMELİ 1.(e) 2.(d) 3.(a) 4.(c) 5.(e) 6.(d) 7.(e) 8.(d) 9.(b) 10.(e) 11.(a) 12.(b) 13.(a) 14.(c) 15.(c) 16.(e) 17.(e) 18.(b) 19.(d) 20.(a) 1.BÖLÜM BOŞLUK DOLDURMA 1. gereksinme

Detaylı

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3 Soru Seti 3 1) Q D = 100 2P talep denklemi ve Q S = P 20 arz denklemi verilmiştir. Üretici ve tüketici rantlarını hesaplayınız. Cevap: Öncelikle arz ve talep denklemlerini eşitleyerek denge fiyat ve miktarı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Dengede; sızıntılar ve enjeksiyonlar eşit olacaktır:

Dengede; sızıntılar ve enjeksiyonlar eşit olacaktır: Sızıntılar: Harcama akımından çıkanlar olup, kapalı ekonomide tasarruflar (S) ve vergilerden (TA) oluşmaktadır. Enjeksiyonlar: Harcama akımına yapılan ilaveler olup, kapalı bir ekonomide yatırımlar (I),

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

IS-LM MODELİNİN UYGULANMASI

IS-LM MODELİNİN UYGULANMASI IS-LM MODELİNİN UYGULANMASI IS ve LM eğrilerinin kesiştiği nokta milli geliri belirliyor. Birinin kayması kısa dönem dengeyi değiştiriyordu. Maliye politikası Hükümet harcamaları artışı IS eğrisi sağa

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

SORU SETİ 7 IS-LM MODELİ

SORU SETİ 7 IS-LM MODELİ SORU SETİ 7 IS-LM MODELİ Problem 1 (KMS-2001) Marjinal tüketim eğiliminin düşük olması aşağıdakilerden hangisini gösterir? A) LM eğrisinin göreli olarak yatık olduğunu B) LM eğrisinin göreli olarak dik

Detaylı

Tufan Samet ÖZDURAK THEMIS MAKRO İKTİSAT

Tufan Samet ÖZDURAK THEMIS MAKRO İKTİSAT Tufan Samet ÖZDURAK THEMIS MAKRO İKTİSAT İÇİNDEKİLER ÖNSÖZ... VII BİRİNCİ BÖLÜM Makro İktisat 1. MAKRO İKTİSATIN ANLAMI... 1 2. MAKRO İKTİSATTA KARAR BİRİMLERİ (SEKTÖRLER)... 2 3. MAKRO İKTİSATTA PİYASA

Detaylı

SORU SETİ 7 IS-LM MODELİ

SORU SETİ 7 IS-LM MODELİ SORU SETİ 7 IS-LM MODELİ Problem 1 (KMS-2001) Marjinal tüketim eğiliminin düşük olması aşağıdakilerden hangisini gösterir? A) LM eğrisinin göreli olarak yatık olduğunu B) LM eğrisinin göreli olarak dik

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

8. DERS: IS/LM MODELİ

8. DERS: IS/LM MODELİ 8. DERS: IS/LM MODELİ 1 Mal Piyasası ve Para Piyasası...2 2. Faiz Oranı, Yatırım ve IS Eğrisi...2 A.IS eğrisi nin özellikleri:...3 B.Maliye Politikası IS Eğrisini Nasıl Kaydırır?...5 3. Para Piyasası ve

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.9. TEKEL (MONOPOL) Piyasada bir satıcı ve çok sayıda alıcının bulunmasıdır. Piyasaya başka

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

İKTİSAT SORU BANKASI E C O N O M I C U S KOPART ÇÖZ TEK KİTAP

İKTİSAT SORU BANKASI E C O N O M I C U S KOPART ÇÖZ TEK KİTAP E C O N O M I C U S İKTİSAT SORU BANKASI KOPART ÇÖZ Mikro İktisat Makro İktisat Para-Banka-Kredi Uluslararası İktisat Büyüme ve Kalkınma Türkiye Ekonomisi İktisadi Doktrinler Tarihi KPSS ve kurum sınavları

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Kavramı Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramını anlayacak, türev alma kurallarını öğrenecek, türevin geometrik ve fiziksel anlamını kavrayacak,

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz.

Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. Kısmi Türevler Genel olarak, f, x ve y değişkenlerinin iki değişkenli bir fonksiyonu olsun ve b bir sabit olmak üzere, y = b olacak şekilde y yi sabit tutalım ve yalnızca x in değişmesine izin verelim.

Detaylı

Talep teorisi, talebi etkileyen çeşitli faktörlerin. Talep, çok çeşitli faktörlerce eş anlı olarak belirlenir :

Talep teorisi, talebi etkileyen çeşitli faktörlerin. Talep, çok çeşitli faktörlerce eş anlı olarak belirlenir : TALEP TEORİSİ 2 Talep teorisi, talebi etkileyen çeşitli faktörlerin belirlenmesini amaçlar. Talep, çok çeşitli faktörlerce eş anlı olarak belirlenir : Malın kendi fiyatı Tüketici geliri Diğer malların

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ SORU 1: Tam rekabet ortamında faaliyet gösteren bir firmanın kısa dönem toplam maliyet fonksiyonu; STC = 5Q 2 + 5Q + 10 dur. Bu firma tarafından piyasaya sürülen ürünün

Detaylı

Maltepe Üniversitesi [Fen Edebiyat Fakültesi] MAT 159 Matematikte Temel Kavramlar ve Sorunlar 2013-2014 Güz Yarıyılı Final Soruları

Maltepe Üniversitesi [Fen Edebiyat Fakültesi] MAT 159 Matematikte Temel Kavramlar ve Sorunlar 2013-2014 Güz Yarıyılı Final Soruları Öğrenci Numarası: Adı Soyadı: Bölümü: 1) Hangi Amerikan başkanı Pisagor teoreminin değişik bir ispatını vermiştir? A) George Washington B) Theodore Roosevelt, Jr C) John Fitzgerald Kennedy D) James Abram

Detaylı

IKTI 101 (Yaz Okulu) 04 Ağustos, 2010 Gazi Üniversitesi İktisat Bölümü DERS NOTU 05 ÜRETİCİ TEORİSİ

IKTI 101 (Yaz Okulu) 04 Ağustos, 2010 Gazi Üniversitesi İktisat Bölümü DERS NOTU 05 ÜRETİCİ TEORİSİ DERS NOTU 05 ÜRETİCİ TEORİSİ Bugünki dersin işleniş planı: 1. Kârını Maksimize Eden Firma Davranışı... 1 2. Üretim Fonksiyonu ve Üretici Dengesi... 5 3. Maliyeti Minimize Eden Denge Koşulu... 15 4. Eşürün

Detaylı

g(a + h) g(a) g (a) = lim Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. olduğundan, Denklem 1

g(a + h) g(a) g (a) = lim Bu durumda, g(x) = f(x, b) fonksiyonunu göz önüne almış oluruz. olduğundan, Denklem 1 Kısmi Türevler Kısmi Türevler Genel olarak, f, x ve y değişkenlerinin iki değişkenli bir fonksiyonu olsun ve b bir sabit olmak üzere, y = b olacak şekilde y yi sabit tutalım ve yalnızca x in değişmesine

Detaylı

A İKTİSAT KPSS-AB-PS / 2008 5. Mikroiktisadi analizde, esas olarak reel ücretlerin dikkate alınmasının en önemli nedeni aşağıdakilerden

A İKTİSAT KPSS-AB-PS / 2008 5. Mikroiktisadi analizde, esas olarak reel ücretlerin dikkate alınmasının en önemli nedeni aşağıdakilerden 1. Her arz kendi talebini yaratır. şeklindeki Say Yasasını aşağıdaki iktisatçılardan hangisi kabul etmiştir? A İKTİSAT 5. Mikroiktisadi analizde, esas olarak reel ücretlerin dikkate alınmasının en önemli

Detaylı

DERS NOTU 09 DIŞLAMA ETKİSİ UYUMLU MALİYE VE PARA POLİTİKALARI PARA ARZI TANIMLARI KLASİK PARA VE FAİZ TEORİLERİ

DERS NOTU 09 DIŞLAMA ETKİSİ UYUMLU MALİYE VE PARA POLİTİKALARI PARA ARZI TANIMLARI KLASİK PARA VE FAİZ TEORİLERİ DERS NOTU 09 DIŞLAMA ETKİSİ UYUMLU MALİYE VE PARA POLİTİKALARI PARA ARZI TANIMLARI KLASİK PARA VE FAİZ TEORİLERİ Bugünki dersin içeriği: 1. MALİYE POLİTİKASI VE DIŞLAMA ETKİSİ... 1 2. UYUMLU MALİYE VE

Detaylı

1 MAKRO EKONOMİNİN DOĞUŞU

1 MAKRO EKONOMİNİN DOĞUŞU İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MAKRO EKONOMİNİN DOĞUŞU ve TEMEL KAVRAMLAR 11 1.1.Makro Ekonominin Doğuşu 12 1.1.1.Makro Ekonominin Doğuş Süreci 12 1.1.2.Mikro ve Makro Ekonomi Ayrımı 15 1.1.3.Makro Analiz

Detaylı

K ve L arasında ikame yoktur. Bu üretim fonksiyonu Şekil

K ve L arasında ikame yoktur. Bu üretim fonksiyonu Şekil MALİYET TEORİSİ 2 Maliyet fonksiyonunun biçimi, üretim fonksiyonunun biçimine bağlıdır. Bir an için reçel üreticisinin, bir birim kavanoz ve bir birim meyve toplayıcısı ile bir birim çıktı elde ettiği

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

I. Piyasa ve Piyasa Çeşitleri

I. Piyasa ve Piyasa Çeşitleri DERS NOTU 02 PİYASA TALEP VE ARZ KAVRAMLARI PİYASA DENGESİ Bugünki dersin işleniş planı: I. Piyasa ve Piyasa Çeşitleri... 1 1. Mal ve hizmet piyasaları... 1 2. Faktör Piyasaları... 2 II. Talep Kavramı...

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

MİLLİ GELİRİ BELİRLEYEN FAKTÖRLER: TÜKETİM, TASARRUF VE YATIRIM FONKSİYONLARI

MİLLİ GELİRİ BELİRLEYEN FAKTÖRLER: TÜKETİM, TASARRUF VE YATIRIM FONKSİYONLARI MİLLİ GELİRİ BELİRLEYEN FAKTÖRLER: TÜKETİM, TASARRUF VE YATIRIM FONKSİYONLARI Harcama yöntemine göre yapılan GSYİH hesaplaması GSYİH = C + I + G şeklinde idi. Biz burada GSYİH ile MG arasındaki farkı bir

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

dir. Fonksiyonun (a,b) aralığında integrali ise, her aralıkta alınan integral değerlerini toplanarak, aşağıda verilen şekilde elde edilir.

dir. Fonksiyonun (a,b) aralığında integrali ise, her aralıkta alınan integral değerlerini toplanarak, aşağıda verilen şekilde elde edilir. SAYISAL İNTEGRASYON TEK KATLI İNTEGRASYON Sayısal integrasyon çok geniş bir konudur. Burada problemli olmayan (genelde integrantın tekilliği olmayan, fazla salınım yapmayan, yaklaşım problemi bulunmayan)

Detaylı

TAM REKABET PİYASASINDA DENGE FİYATININ OLUŞUMU (KISMÎ DENGE)

TAM REKABET PİYASASINDA DENGE FİYATININ OLUŞUMU (KISMÎ DENGE) Ünite 10: TAM REKABET PİYASASINDA DENGE FİYATININ OLUŞUMU (KISMÎ DENGE) Tam rekabetçi bir piyasada halen çalışmakta olan firmalar kısa dönemde normal kârın üzerinde kâr elde ediyorlarsa piyasaya yeni firmalar

Detaylı