İ Ç İ NDEKİ LER. Jeodezik Problemlerin Çözümünde Hesap.Makinelerinden Faydalanma Y. Müh. Nazmf YILDIZ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İ Ç İ NDEKİ LER. Jeodezik Problemlerin Çözümünde Hesap.Makinelerinden Faydalanma Y. Müh. Nazmf YILDIZ"

Transkript

1 İ Ç İ NDEKİ LER Transformasyonlar ve uygulanması ~ Y. Müh. Burhan TANSÜĞ Sayfa 3 Kadastronun Yenilenmesi Müh. Şevket ARISOY 15 Jeodezik Problemlerin Çözümünde Hesap.Makinelerinden Faydalanma Y. Müh. Nazmf YILDIZ 3 Ölçülmüş Kabul Edilen Açılarla Şartlı Dengelemeye Dair Y. Müh. Muzaffer ŞERBETÇİ 5 4 Haberler

2 HURİM VE KADASTRO MÜHENDİSLİĞİ TMMOB Harita ve Kadastro Mühendisleri Odası tarafından dört ayda bir Ocak, Mayıs, Eylül aylarında yayınlanır. Sahibi : Harita ve Kadastro Mühendisleri Odası adma ' Başkan' M. Emin ERTÜRK -.», Çorumlu Müdür : Kadir PALA *, Yayın Kurulu. : Erkanli HÜSEYİN Erdoğan ÖRÜKLÜ Haldun ÖZEN Kadir PALA Ahmet YAŞAYAN yönetim ve Mü racaat yeri : Demirtepe - Sümer Sok. No : 12/2 Yenişehir - ANKARA Tel İ Piatı : 5 TL. Yıllık abonesi t 15 TL. Dizildiği ve Basıldığı yer : Güzel İstanbul Matbaası Ankara tlân tarifesi : Arka dış* kapak' 600 TL. On iç kapak = 500 TL... Arka iç kapak =450 TL. IS sahifeler = 400 TL. '. Yaran sahifeler = 250 TL., * 1/4 samfe ' 150 TL. Devamlı ilân verenlere % 20 indirim yapılır. H Yayınlanan bütün yazılara telif ve tercüme hakkı ödenir. % Gönderilen yazılar yayınlansın yayınlanmasın geri verilmez 0 Yazı ve ilânlardaki fikirler yazarlarına aittir. Odayı ve Dergiyi sorumlu kılmaz. 0 Çevirilerden doğacak hertürlü sorumluluk çevirene aittir. % Dergide yayınlanmak üzere gönderilen yazıların daktilo ile aeyrek satır olarak yazılması, şekillerin aydıngere çini mürekkeple çizilmesi, şekil yerlerinin belir tilmesi ve yazıların imzalanmış olarak iki nüsha gönderilmesi lâzımdır. Kısa yazılar tercih edilir..

3 Transformasyonlar ve Uygulanması Yazan : Y. Müh. Burhan TANSUĞ İ.Y.T.O. Öğretim Üyesi I Transformasyonun Genel Tarifi İ Transformasyon, koordinat değerlerinin belirli bir koordinat sisteminden diğer bir sisteme dönüşümüdür. Burada söz konusu edilen sistemler dik koordinat sistemleridir. Transformasyon, ı I Düzlem transformasyon II Uzay transformasyon olmak üzere iki şekilde ele alınabilir ve çözülebilir. Düzlem transformasyon, iki boyutlu sistemlerin; uzay transformasyon ise isminden de anlaşılacağı gibi üç boyutlu (x, y, z) sistemlerin dönüşümünde kullanılan bir metotdur. Düzlem transformasyon çözüm şekline göre; a)benzer veya Helmert transformasyonu b)afin transformasyonu c)konform transformasyon diye üçe ayrılır. Transformasyonların uygulanmasına değişik şekillerde rastlanmaktadır. Örneğin, ayni bir bölgede tesis edilmiş iki bağımsız nirengi ağının başlangıç değerlerinin ve semtlerinin farklı olması halinde sistemler arasında bir transformasyonla bütün sabit noktaların veya sınır noktalarının koordinatları ayni bir sisteme dönüştürülebilir. Bu sistemlerden biri memleket koordinat sisteminde (sağa, yukarı) olabilir. Daha sık rastlanan bir uygulama şekli de fotogrametridedir. Bilindiği gibi fotogrametride kullanılan koordinat sistemleri resim koordinatları, makina veya model koordinatları ve kolon koordinatlarıdır. Havadan alınmış bir resim çifti birinci sınıf bir kıymetlendirme aletine yerleştirilir. Ölçü markası işaretlenmiş (veya işaretlenmemiş) sınır noktalarına dikkatle oturtulur. Makina koordinatları okunur veya bir informasyon taşıyıcısına geçirilir. Elektronik bir hesap makinası yardımıyla bu değerler memleket koordinat sistemine dönüştürülür* Sonuç olarak bütün noktaların memleket koordinat değerleri elde edil-. a

4 miş olur. Kadastroda çok kullanılan ve nümerik kadastro ismi verilen bu çalışma metodu kıymetli arazilerde uygulanmakta ve ölçü hassasiyetini oldukça arttırmaktadır. Diğer bir uygulama şekli de bir stereokomparator aracılığı ile resim koordinatlarının okunması (1-2 p, m hassasiyetinde) ve bir uzay transformasyonla kolon koordinatlarına ve burdan ikinci bir uzay transformasyonla memleket koordinatlarına geçilmesidir. Pratikte değişik aşamalardan sonra ancak iterasyonlarla gerçekleştirilen ve oldukça uzun olan bu işleme analitik kıymetlendirme ismi verilmektedir. Bu yazıda uzay ve konform dönüşüm ele alınmayacak yalnız Helmert ve Afin transformasyon metotlarının çözümüne değinmekle yetinilecektir. 2 Transformasyonun matematik temelleri : > ; ıf Benzer Transformasyonlar: 1 Verilen iki koordinat sistemi x, y (örneğin makina koordinatlav ' n ) ve X/ Y (memleket koordinatları) eksenleriyle belirtelim. Sistem* ler evvelâ aynı yönlü olsunlar. (Şekil : 1) 4 Burada, C,, C 2 sistemlerin başlangıç farkları m sistemler arasındaki ölçek kat sayısı a sistemlerin dönüklüğü (semt farkı) ne tekabül etsin. Şekil 1 den faydalanarak aşağıdaki bağıntılar kolayca yazılabilir. X = d -j- m x cos a -f- m y sin a Y = C 2 -f-m y cosa m x sin«... (1)

5 m ve a bir dönüşüm için sabit kalacaklarından alınarak m cosa = a m sin«= b X = C! + ax + by Y= C 2 + ay bx... (2) yazılır. Eğer sistemler ters yönlü olsalardı, yani şekil 2 de görüldüğü gibi x ve i eksenlerinin yönleri birbirine karşıt olmasaydı (2) eşitliğinde x ve y yer değiştireceğinden, değişik kombinasyonlar için :, X = Cı + ay+bx Y = C 2 + ax^by...,... ( 3 ) * x = c ı + a y b x» * Y = C 2 + ax + by... (4) X = Q + ax by Y= C 2 + ay + bx... (5) eşitlikleri yazılabilir. (2) eşitliğinde C l7 C 2, a ve b olmak üzere dört bilinmeyen vardır. Bu demektir ki en az iki noktanın her iki sistemde de koordinatlarıyla verilmesi halinde bu iki bilinmeyenli iki denklem çözülebilir ve bilinmeyenler elde edilebilir. Fotogrametride olduğu gibi ikiden fazla koordinatlarıyla bilinen sabit noktaların mevcut olması halinde değişik sonuçlar elde edilir ki, bu bize bîr dengeleme imkânı sağlar. İlk hamlede Q ve C 2 den kurtulmak için ağırlık merkezlerine indirgenmiş koordinatlara geçelim. Ağırlık merkezine indirgenmiş koordinatları x'/ Y' ve x', y'; ağırlık merkezlerinin koordinatlarını ise x m 'Y m ve x rt 'ym '' e gösterirsek [Y] [,Xİ Y m = Xm C= n n [y] ' [x] n n yazabiliriz. Burada «n» koordinatlarıyla verilmiş sabit nokta sayısıdır. Ağırlık merkezine indirgenmiş koordinatlar, Y ', ' Y, Y Y' 2 = Y 2 Y m v ', v, v x ' 2==X2 Xm ı n = ' n»m X n : X" X"i ' ' 5

6 y'l = Yi '/m *'l = Xv-----X m y'a = ya y m x' 2 = x 2 x m.. Y n - Yn-----ym X n = X n X m hesaplanır ve teşkil edilen (2) eşitliğinde C u C 2 kaybolur ve X' = ax' + by f Y' = ay' bx'... (6) denklemleri bulunur. Hata denklemlerine geçilerek v xl =ax',+ by',-x', v y ı=.ay',-bx', Y', ' v xs = ax' 2 + by' 2 -x' 2 v y2 = a y' 2 b x' 2 Y' 2 ' * A xn = a x' n + b y'n x'n v yn = a y' n - b x' n Y' n 1 elde edilir... [v x v x ] + [v y v y ] nin minumum olabilmesi için bu ifadenin değişkenmiş gibi kabul edilen f a ve b ye göre türevlerinin sıfır olması gerekir. ' ' S S = o s s = 0 Jb cîb türevleri alındığında 2vxix', + 2vijx'j v yl y' 1 + 2v y2 y' =0 2v Jt ı/, + 2vx2y' v y1 xv 2 v y2 x' 2... =0.. (8) (7) yardımıyla (8) eşitlikleri teşkil edilir. [x' x'] a + [x' y'] b - [x' X'] + [y /] a [x' y] b - [/ Y'] = 0 [x' /] a + [y /] b [y X'] [x' y'] a + [x' x']-b + [x' Y'] =0 v e. _ E>c'X'] + [y'y'] _. [x'x'] + [/y'] ~ III [y'x'] [x'y'i II...(9) b = = - [x'x.'] + [y'y'] bulunur. ; 6 III

7 Eğer sistemler ters yönlü olsaydı _ [x' r] + [y x'] Cx'x'] + [//] [X' X'] - [y Y'] b = : [x x'] + [y y'] bulunacaktı. Son olarak...no) m = y a 2 + b 2... (11) ve '. ' " * b m sin a tga = = ,.(12), ' a m cos a * formülüyle ölçek kat sayısı ve dönüklük açısı hesaplanır-. Cı ve C 2 yi bulmak için (2) den faydalanılır. Cı = X m a x m b y m * * C 2 = Y m ay m + bx m... (13) Bu şekilde elde edilen bilinmeyenler ve (2) formülleri ile dönüştürme yapılır. Dönüştürülen yeni koordinat değerlerine X", Y" denerek, v x =X X", Vy = Y Y". hataları bulunur. En sonunda [V 2 y].+ [V 2 X ] " m 2 = : (14) 2(n 2) hakkında bilgi edi- formülüyle ortalama hata ve transformasyon sıhhati nilmiş olur. Fotdgrametrî pratiğinde çalışılan aletin makina koordinatları için kabul edilen pozitif yönlere göre kullanılacak formülleri seçmek mümkündür Afin Transformasyonu: izdüşüm geometrisinde afin izdüşüm paralel bir projeksiyonda izdüşüm düzlemlerinin paralel olmaması halidir. Ayni şekilde dönüşümü düşünülen sistemlerin bulundukları düzlemler afin iseler artık bir benzer transformasyon söz konusu olamaz. Bir üçgen ağının daha üst dereceff bir ağa bağlanması için en uygun dönüştürme afin transformasyonudur. '. 7

8 Afin transformasyonda kullanılan genel formül X = C, + a, x + b, y Y= C 2 + b2x + a 2 y...(15) dîr. Fakat biz ilerideki formül çıkarmalarında şekil benzerliği bakımından (15) yerine (5) e benzeyen bir eşitliği alacağız. X = C, + a ı x b,y Y= C 2 + b2x + a 2 y...(16) (15) ve (16) eşitliklerinde, afin durumdan dolayı a! ve a 2, bı ve b^ katsayıları farklıdırlar. Problemin çözülebilmesi ve izdüşümün tersinir olabilmesi için kolayca görüleceği gibi ** ~~J ^ 0 veya a, b 2 + a 2 b, 0 a 2 D 2» olması gerekir. (16) eşitliklerinde bilinmeyen sayısı altı tanedir. O halde çözüm için en az altı tane denkleme ihtiyaç vardır. Bu ise bir doğru üzerinde olmayan üç noktanın koordihatlarıyla verilmesi gerekir anlamına gelir. (Üçer noktası ile bilinen düzlemler) < Afin transformasyonda ölçek herbir doğrultu için ayrıdır. Doğrultunun yönü değiştikçe ölçek de değişir. Açı koruyan (konform) değildir. Açıların deformasyonu, açı kenarlarının doğrultusuna bağlıdır. Tepe noktasının konumuna bağlı değildir. Diğer taraftan afin transformasyonda, 1 Bir doğrunun izdüşümü gene bir doğrudur, 2 Paralel doğruların izdüşümleri gene paraleldir 3 Orijinal üçgenle izdüşürülen üçgenin yüzölçümleri arasındaki oran transformasyon detarmînantına eşittir 4 Armonik ve anormonîk bölüm aynen kalır Basit çözüm : Bilinmeyenlerin çözülmesi için evvela yalnız üç noktanın koordînatlanyla verildiğini varsayalım. (16) eşitliğinden faydalanarak, Xj = C, + a, x, b, y, X 2 = Q + aı x 2 b, y 2 X 3 ±= C, + a,x 3 b,y 3....;...(17) Y, = Q + b 2 x, + a 2 Yi Y 2 = Cj + b 2 x 2 -f a 2 y 2 Y 3 = C 2 + b 2 Xa + a 2 y 3 yazılır. Buradan da, 3 : '

9 $

10 10

11 ve ortalama hata için bulunur. y V X VX + VyVy (27) 2(n 3) Örnek: İ.Y.T.O. Fotogrametri Laboratuarında A 5 kıymetlendirme aletinde ayni resim çiftinde bilinen koordinat değerleri aşağıda verilen sabit noktalar yardımıyla Helmert ve Afin transformasyon hesapları ayrı ekipler tarafından yapılmış ve örnekleri ekli hesaplar sonucunda aşağıdaki ortalama hatalar elde edilmiştir. Not : Fotogrametride alınan bu örnek herhangibir keyfi sistem veya şehir sisteminin memleket nirengisine dönüşümü için düşünülebilir.), ' Verilen değerler: Resim boyutları 18x18 cm * Kamera sabitesi f = 114,06 Uçuş yüksekliği h = 2530 m Resim ölçeği 1/17000 Model ölçeği 1/5000 Resimler, oldukça düz bir arazi bahis konusu olduğundan Haliert / metoduyla cihetlendirilmiş ve resim koordinatları iki devirde ikişer defa yapılan okumaların ortalamasından alınmıştır. Transformasyon bilinmeyenlerinin hesabı dengelemeli olarak 4 nokta yardımıyla yapılmıştır. Beşinci noktası ve yeni alınan bir A, noktasının 8 koordinatları Helmert ve Afin formülleriyle, hesaplanarak kıyaslama yapılmıştır. Sabit noktaların koordinat değerleri : Nokta No. Y X h , ,25 413, , ,98 413, , ,84 412, , ,00 414, , ,86 415,41 Alette.okunan model koordinatları (Ortalama) Nokta No.. y f x^ h , ,51 414, , ,19 413, , ,37 413, , ,42 412, , ,13 414,60 A 5152, ,73 413,

12 Cetvel 1 de Helmert transformasyon (cetve! A 5 için hazırlanmıştır) işlemi yürütülmüş ve Helmert transformasyonu için ortalama hata m H rumuzuyla belirtilerek

13 _ J 4117 mn V = İ/T029 =+0,33 m bulunmuştur. 8 4 Cetvel 2 de Afin transformasyon bilinmeyenleri hesaplanmış ve ortalama, hata ITIA için Nokta Y X * A XA v y V* , , , , , , , , , , , , , , , , , , , , ~Â , ,18 nia V = ^/98 =+0,10 m bulunmuştur. 13

14 1942 numaralı noktanın koordinatlarında bulunan f y = 0,38 ve f x = 0,24 m lik fark sabit nokta tayinindeki tecviz sınırlarının içinde kalmaktadır, (1/5000 ölçekli kadastral - topoğrafik memleket haritaları standartları 2 Mart-17 Nisan 1962). İkinci bir ekip' tarafından ayni noktalar ve ayni modelde yapılan yeni bir ölçü ve hesapla m H = zt 0/^5 m m A = + 0,33 m bulunmuştur. %. L İ TERATÜR, İ Claus,. Z.f.V s/579 " 2 Merkel, Blass,. A.V.N JLehmaım,. Z.f.V s/ Lehmann, Z.f.V Szangoîies, K. Dre Arbeit mitdem Coordımeter. 6 Wolf, H. Ausglerehimg navh der Meth. der kleinsten Quadrate. s/442. DUYURU Odamız çalınma merkezi, satırı ahnan yeni daireye taşvnrm ttr. Her türlü yazışmaların bu adrese yapılması rica olunur. Yönetim Kurulu Yeni adresimiz :. TMM.0.B. ' Harita ve Kadastro Mühendisleri Odası Demirtepe - Sümer Sök'. No : 12/2 Tel: Yenişehir - Ankara U

BİLİNMEYENLİ ŞART DENKLEMLERİ VE EKSİK ÖLÇÜLÜ NİRENÇİ AÖLARI

BİLİNMEYENLİ ŞART DENKLEMLERİ VE EKSİK ÖLÇÜLÜ NİRENÇİ AÖLARI BİLİNMEYENLİ ŞART DENKLEMLERİ VE EKSİK ÖLÇÜLÜ NİRENÇİ AÖLARI Prof. Ekrem ULSOY».----İçlerinde bilinmeyenlerin bulunduğu şart denklemleri, dengeleme li- ^: terâtüründe dengelemenin.en genel şeklî olarak

Detaylı

Fotogrametride işlem adımları

Fotogrametride işlem adımları Fotogrametride işlem adımları Uçuş planının hazırlanması Arazide yer kontrol noktalarının tesisi Resim çekimi Değerlendirme Analitik değerlendirme Dijital değerlendirme Değerlendirme Analog değerlendirme

Detaylı

ÎÇÎNDEKÎLER. 1 : 500 Ölçekli Topografik Plânların Sıhhati... 3. Çevirem : Erdoğan ÖRÜKLÜ

ÎÇÎNDEKÎLER. 1 : 500 Ölçekli Topografik Plânların Sıhhati... 3. Çevirem : Erdoğan ÖRÜKLÜ ÎÇÎNDEKÎLER Sayfa 1 : 500 Ölçekli Topografik Plânların Sıhhati... 3 Çevirem : Erdoğan ÖRÜKLÜ Münih Olimpiyat Tesislerinin Çatılarının Açınımlarının Çıkarılması... 16 Çeviren : Âlaellin MİMSİN Deformasyon

Detaylı

HARİTA VE KADASTRO MÜHENDİSLİĞİ

HARİTA VE KADASTRO MÜHENDİSLİĞİ HARİTA VE KADASTRO MÜHENDİSLİĞİ TMMOB Harita ve Kadastro Mühendisleri Odası tarafından üç ayda bir Ocak, Mayıs, Eylül aylarında yayınlanır. Sahibi : Harita ve Kadastro Mühendisleri Odası Adına Başkan M.

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Fotogrametride Koordinat Sistemleri

Fotogrametride Koordinat Sistemleri Fotogrametride Koordinat Sistemleri Komparator koordinat sistemi, Resim koordinat sistemi / piksel koordinat sistemi, Model veya çekim koordinat sistemi, Jeodezik koordinat sistemi 08 Ocak 2014 Çarşamba

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

JEODEZİDE KULLANILAN KOORDİNATLAR, BUNLARIN BİRBİRLERİNE DÖNÜŞÜMLERİ ve PROJEKSİYON

JEODEZİDE KULLANILAN KOORDİNATLAR, BUNLARIN BİRBİRLERİNE DÖNÜŞÜMLERİ ve PROJEKSİYON JEODEZİDE KULLANILAN KOORDİNATLAR, BUNLARIN BİRBİRLERİNE DÖNÜŞÜMLERİ ve PROJEKSİYON Ekrem ULSOY (İstanbul) I KOORDİNATLAR. Jeodezide koordinatlar, yer yüzündeki noktaların belirlenmesinde kullanılır. Bu

Detaylı

KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ

KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ KÜRESEL VE ELİPSOİDAL KOORDİNATLARIN KARŞİLAŞTİRİLMASİ Doç. Dr. İsmail Hakkı GÜNEŞ İstanbul Teknik Üniversitesi ÖZET Küresel ve Elipsoidal koordinatların.karşılaştırılması amacı ile bir noktasında astronomik

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

Projeksiyon Kavramı. Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap

Projeksiyon Kavramı. Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap Projeksiyon Kavramı Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap ) α: harita üzerinde meridyenler arasındaki açıyı ifade eder. m = α =

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE

JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU. Yrd. Doç. Dr. Hüseyin KEMALDERE JDF 242 JEODEZİK ÖLÇMELER 2. HAFTA DERS SUNUSU Yrd. Doç. Dr. Hüseyin KEMALDERE 3 boyutlu uzayda Jeoit Z Y X Dünyaya en uygun elipsoid modeli ve yer merkezli dik koordinat sistemi Ülkemizde 2005

Detaylı

NÎRENÇİ NOKTALARININ ARANMASI

NÎRENÇİ NOKTALARININ ARANMASI NÎRENÇİ NOKTALARININ ARANMASI Yazan ; -.. İsmail Hakkı GÜNEŞ 1, '. ' ' (Ankara) Haritaları yapılmış meskun ve meskun olmayan alanlarda bulunamıyan ve taşları kaybolan nirengilerin yeraltındaki sigorta

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm İki Boyutlu Koordinat sistemleri Arası Dönüşüm Amaç, bir koordinat sistemine göre elde edilmiş olan koordinatların, diğer bir koordinat sistemindeki koordinat değerlerini elde etmektir. İki haritanın koordinat

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

İSTANBUL DA FARKLI TARİHLERDE YAPILMIŞ DOĞALGAZ ALT YAPI HARİTALARININ DOĞRULUK YÖNÜNDEN BİR KARŞILAŞTIRMASI

İSTANBUL DA FARKLI TARİHLERDE YAPILMIŞ DOĞALGAZ ALT YAPI HARİTALARININ DOĞRULUK YÖNÜNDEN BİR KARŞILAŞTIRMASI İSTANBUL DA FARKLI TARİHLERDE YAPILMIŞ DOĞALGAZ ALT YAPI HARİTALARININ DOĞRULUK YÖNÜNDEN BİR KARŞILAŞTIRMASI H. KURŞUN 1, Y. KALKAN 2 1 İstanbul Gaz Dağıtım Anonim Şirketi, Etüd Proje harita Müdürlüğü,İstanbul.

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

HARİTA VE KADASTRO MÜHENDİSLİĞİ

HARİTA VE KADASTRO MÜHENDİSLİĞİ HARİTA VE KADASTRO MÜHENDİSLİĞİ TMMOB Harita ve Kadastro Mühendisleri Odası tarafından her yılın İlkbahar, yaz, sonbahar, kış dönemlerinde yayınlanır. Sahibi : Harita ve Kadastro Mühendisleri Odası Adına

Detaylı

Kenar Ağlarının Dengelenmesi 4 '*" E. ULSOY ~TM;.".;'_...; Dünyanın Şekli ve Yükseklikler Hakkında 8 ".''"_... Dr.; A. AIÎŞOY' ' " '/ \ "...

Kenar Ağlarının Dengelenmesi 4 '* E. ULSOY ~TM;..;'_...; Dünyanın Şekli ve Yükseklikler Hakkında 8 .''_... Dr.; A. AIÎŞOY' '  '/ \ ... r^'-v : -' i ç-1»m> E-k-î : -L~E-R -... - ; - : - : - - Sayfa Kenar Ağlarının Dengelenmesi 4 '*" E. ULSOY ~TM;.".;'_...; Dünyanın Şekli ve Yükseklikler Hakkında 8 ".''"_.... Dr.; A. AIÎŞOY' ' " '/ \ "...

Detaylı

Âna nirengi doğrultuları için p = 1 m 2 o Ara nirengi doğrultuları için p a =------------ m\

Âna nirengi doğrultuları için p = 1 m 2 o Ara nirengi doğrultuları için p a =------------ m\ 4. ÖLÇÜLERİN AĞIRLIKLARININ SAPTANMASI Ana, ara ve tamamlayıcı nirengi doğrultularının herbiri gruplar halinde ele alınarak bunların ortalama hatalarının öncül (a priori) değerleri, üçgen kapanmalarından

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

KORELASYONLU ÖLÇÜLER DENÇELEMESİNE AİT BİR ÖRNEK

KORELASYONLU ÖLÇÜLER DENÇELEMESİNE AİT BİR ÖRNEK KORELASYONLU ÖLÇÜLER DENÇELEMESİNE AİT BİR ÖRNEK Ekrem ULSOY Korelasyonlu ölçüler; müstakil olmayan, birbiri ile ilgili ölçülerdir. «Korelasyon derecesi» dengeleme hesabındaki ağırlık katsayıları ile tarif

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

BEÜ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ

BEÜ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ BEÜ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ KOORDİNAT DÖNÜŞÜMÜ, DATUM TRANSFORMASYONU Prof.Dr.RASİM DENİZ MAYS 2014 ZONGULDAK KOORDİNAT DÖNÜŞÜMÜ,DATUM TRANSFORMASYONU 1-Genel Bilgiler Aynı datumdaki koordinatların

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Özellikler Harita Projeksiyonları Bölüm 3: Silindirik Projeksiyonlar İzdüşüm yüzeyi, küreyi saran ya da kesen bir silindir seçilir. Silindirik projeksiyonlar genellikle normal konumda ekvator bölgesinde

Detaylı

Parametrik doğru denklemleri 1

Parametrik doğru denklemleri 1 Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P

Detaylı

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Eminnur AYHAN* 1. Giriş Fotogrametrik nirengi çeşitli ölçütlere göre sınıflandırılabilir. Bu ölçütler dengelemede kullanılan

Detaylı

ÖLÇME BİLGİSİ. Sunu 1- Yatay Ölçme. Yrd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin YURTSEVEN

ÖLÇME BİLGİSİ. Sunu 1- Yatay Ölçme. Yrd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin YURTSEVEN ÖÇME BİGİİ unu - atay Ölçme rd. Doç. Dr. Muhittin İNAN & Arş. Gör. Hüseyin URTEVEN COĞRAFİ BİGİ İTEMİNİ OUŞTURABİMEK İÇİN BİGİ TOPAMA ÖNTEMERİ ATA ÖÇMEER (,) ATA AÇIAR VE MEAFEERİN ÖÇÜMEİ ERE ÖÇMEER DÜŞE

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

FOTO'.GRAMERİ - KARTOGRAFYA

FOTO'.GRAMERİ - KARTOGRAFYA FOTO'.GRAMERİ - KARTOGRAFYA ILLINOIS ÜNİVERSİTESİNDE STEREOMEÎRIK KAMERALARLA YAPILAN ÇALIŞMALAR ' VE SONUÇLARI Yazan : H. M. KARARA Illinois Üniversitesi Urbana - ABD ÖZ: «Stereometrik kameralar ile çekilen

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

İKİ BOYUTLU AĞLARDA AĞIRLIK SEÇİMİNİN DENGELEME SONUÇLARINA ETKİSİ VE GPS KOORDİNATLARI İLE KARŞILAŞTIRILMASI

İKİ BOYUTLU AĞLARDA AĞIRLIK SEÇİMİNİN DENGELEME SONUÇLARINA ETKİSİ VE GPS KOORDİNATLARI İLE KARŞILAŞTIRILMASI SELÇUK TEKNİK ONLİNE DERGİSİ / ISSN 1302 6178 Volume 1, Number: 3 2001 İKİ BOYUTLU AĞLARDA AĞIRLIK SEÇİMİNİN DENGELEME SONUÇLARINA ETKİSİ VE GPS KOORDİNATLARI İLE KARŞILAŞTIRILMASI Doç Dr. Cevat İNAL S.Ü.

Detaylı

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi Koordinat sistemleri Coğrafik objelerin haritaya aktarılması, objelerin detaylarına ait koordinatların düzleme aktarılması ile oluşur. Koordinat sistemleri kendi içlerinde kartezyen koordinat sistemi,

Detaylı

deniyle - birden çok aletin aynı anda bir tek derleme bilgisayarmca denetlenmesi bazı aksakıklara neden olmaktadır.

deniyle - birden çok aletin aynı anda bir tek derleme bilgisayarmca denetlenmesi bazı aksakıklara neden olmaktadır. deniyle - birden çok aletin aynı anda bir tek derleme bilgisayarmca denetlenmesi bazı aksakıklara neden olmaktadır. 7) Fotogrametrik modellerden harita üretim amacına yönelik olarak derlenen veriler, mikrobilgisayarların

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi Koordinat sistemleri Coğrafik objelerin haritaya aktarılması, objelerin detaylarına ait koordinatların düzleme aktarılması ile oluşur. Koordinat sistemleri kendi içlerinde kartezyen koordinat sistemi,

Detaylı

lerin tesirinden hesaplanacak şakul sapması Ölçülen şakul sapmasından çıkartılır :

lerin tesirinden hesaplanacak şakul sapması Ölçülen şakul sapmasından çıkartılır : lerin tesirinden hesaplanacak şakul sapması Ölçülen şakul sapmasından çıkartılır : 3 (8) formülüne göre elde edilen indirgenmiş A% şakul sapması Md bölümden oluşur : Formülde kıyas düzleminin altındaki

Detaylı

T] = (a- A) cotgş (6) şeklindedir. (1) ve (6) formüllerinin bir araya getirilmesi ile (a A) = (X L) sincp (7) Laplace denklemi elde edilir.

T] = (a- A) cotgş (6) şeklindedir. (1) ve (6) formüllerinin bir araya getirilmesi ile (a A) = (X L) sincp (7) Laplace denklemi elde edilir. * = 2 + rf (3) \ cos AQ, r\ % sin A o (4) \ cos A o + IQ sin A o = % (5) bağıntılarıda yazılabilir. (1) eşitliğine göre elde edilen r\ doğu-batı bileşeni astronomik ve leşenleri elde edilmiş oldu. MZ A

Detaylı

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir.

Kafes Sistemler. Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Kafes Sistemler Birçok uygulama alanları vardır. Çatı sistemlerinde, Köprülerde, Kulelerde, Ve benzeri

Detaylı

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu JEODEZİ9 1 Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu u ve v Gauss parametrelerine bağlı olarak r r ( u, v) yer vektörü ile verilmiş bir Ω yüzeyinin, u*, v* Gauss parametreleri ile verilmiş

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

GPS/INS Destekli Havai Nirengi

GPS/INS Destekli Havai Nirengi GPS/INS Destekli Havai Nirengi GPS/INS (IMU) destekli hava nirengide izdüşüm merkezi koordinatları (WGS84) ve dönüklükler direk ölçülür. İzdüşüm merkezi koordinatları kinematik GPS ile ölçülür. GPS ile

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

dir. Fonksiyonun (a,b) aralığında integrali ise, her aralıkta alınan integral değerlerini toplanarak, aşağıda verilen şekilde elde edilir.

dir. Fonksiyonun (a,b) aralığında integrali ise, her aralıkta alınan integral değerlerini toplanarak, aşağıda verilen şekilde elde edilir. SAYISAL İNTEGRASYON TEK KATLI İNTEGRASYON Sayısal integrasyon çok geniş bir konudur. Burada problemli olmayan (genelde integrantın tekilliği olmayan, fazla salınım yapmayan, yaklaşım problemi bulunmayan)

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

DENGELEME HESABI-I DERS NOTLARI

DENGELEME HESABI-I DERS NOTLARI DENGELEME HESABI-I DERS NOTLARI Dengeleme Hesabı Adımları, En Küçük Kareler İlkesine Giriş, Korelasyon Prof. Dr. Mualla YALÇINKAYA Yrd. Doç. Dr. Emine TANIR KAYIKÇI Karadeniz Teknik Üniversitesi, Harita

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

V. KAFES SİSTEMLER: Düzlemde en az üç adet çubuğun birbirlerine mafsala birleştirilmesiyle elde edilmiş taşıyıcı sistemdir.

V. KAFES SİSTEMLER: Düzlemde en az üç adet çubuğun birbirlerine mafsala birleştirilmesiyle elde edilmiş taşıyıcı sistemdir. 78 V. KES SİSTEMLER: Düzlemde en az üç adet çubuğun birbirlerine mafsala birleştirilmesiyle elde edilmiş taşıyıcı sistemdir. Uzayda ise en az 6 çubuk gereklidir. 79 İhtiyaçlara göre yeni çubukların ilavesiyle

Detaylı

8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi

8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi 14 8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi İçerisinde 2 tane bilinmeyen bulunan ve bilinmeyenlerin derecesi en fazla 1 olan eşitliklere birinci dereceden iki bilinmeyenli denklem sistemleri denir. Çözüm

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bubölümdebirnoktayaetkiyen vebelli bir koordinat ekseni/düzlemi ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi/başka bir düzlem ile ilişkili

Detaylı

DİK KOORDİNAT SİSTEMİ VE

DİK KOORDİNAT SİSTEMİ VE Ölçme Bilgisi DERS 6 DİK KOORDİNAT SİSTEMİ VE TEMEL ÖDEVLER Kaynak: İ.ASRİ (Gümüşhane Ü) M. Zeki COŞKUN ( İTÜ ) TEODOLİT Teodolitler, yatay ve düşey açıları yeteri incelikte ölçmeye yarayan optik aletlerdir.

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

5. 5. 5.3 5.4 5.5 5.6 5.7 5.8 Rijit Cisimde Denge Düzlem Kuvvetlerde Denge Hali Düzlemde Serbestlik Derecesi Bağ Çeşitleri Pandül Ayak Düzlem Taşıyıcı Sistemler Düzlem Taşıyıcı Sistemlerde Yükleme Durumları

Detaylı

MOTORLAR VE TRAKTÖRLER Dersi 10

MOTORLAR VE TRAKTÖRLER Dersi 10 MOTORLAR VE TRAKTÖRLER Dersi 10 Traktör Mekaniği Traktörlerde ağırlık merkezi yerinin tayini Hareketsiz durumdaki traktörde kuvvetler Arka dingili muharrik traktörlerde kuvvetler Çeki Kancası ve Çeki Demirine

Detaylı

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır.

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Uzayda Simetri Hazırlayan Halit Çelik Matematik Öğretmeni Noktaya Göre Simetri: A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Buna göre şeklinde

Detaylı

Elipsoid Yüzünde Jeodezik Dik Koordinatlar (Soldner Koordinatları) ve Temel Ödev Hesapları

Elipsoid Yüzünde Jeodezik Dik Koordinatlar (Soldner Koordinatları) ve Temel Ödev Hesapları JEODEZİ8 1 Elipsoid Yüzünde Jeodezik Dik Koordinatlar (Soldner Koordinatları) ve Temel Ödev Hesapları Jeodezik dik koordinatları tanımlamak için önce bir meridyen x ekseni olarak alınır. Bunun üzerinde

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - TEK RESİM DEĞERLENDİRMESİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI 36 İNCELEME - ARAŞTIRMA BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI Erdal KOÇAIC*^ ÖZET Büyük ölçekli harita yapımında G İ R İŞ uygulanabilen "Stereografik çift Stereografik

Detaylı

Kontrol noktaları (X,Y,Z) Şekil 1- Stereodeğerlendirme ve tek resim değerlendirmesi için kontrol noktaları gereksinimi.

Kontrol noktaları (X,Y,Z) Şekil 1- Stereodeğerlendirme ve tek resim değerlendirmesi için kontrol noktaları gereksinimi. FOTOGRAMETRİK NİRENGİ 1.GEREKÇE VE TANIM Stereodeğerlendirme yapabilmek için, stereo model alanında, en az üç, olabilirse köşelere gelecek şekilde dört kontrol noktasına gerek vardır. Tek resim değerlendirmesi

Detaylı

Özel Kasımoğlu Coşkun Fen Lisesi

Özel Kasımoğlu Coşkun Fen Lisesi 4.04.0 tarihinde Okan Üniversitesi Matematik Bölümü tarafından düzenlenen Liselerarası Matematik Yarışması na aşağıda listelenen on iki lise katıldı. Özel Kasımoğlu Coşkun Fen Lisesi Habire Yahşi Anadolu

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı lan Hesapları lan hesabının doğruluğu alım şekline ve istenile hassasiyet derecesine göre değişir. lan hesapları üç kısma ayrılmıştır. Ölçü değerlerine göre alan hesabı Ölçü ve plan değerlerine göre alan

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. FEN LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 8 6 6.. Yönlü Açılar

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi

Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi JEODEZİ 6 1 Gözlemlerin Referans Elipsoid Yüzüne İndirgenmesi Jeodezik gözlemler, hesaplamalarda kullanılmadan önce, referans elipsoidin yüzeyine indirgenir. Bu işlem, arazide yapılan gözlemler l jeoidin

Detaylı

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar

11. SINIF. No Konular Kazanım Sayısı GEOMETRİ TRİGONOMETRİ Yönlü Açılar Trigonometrik Fonksiyonlar 11. SINIF No Konular Kazanım Sayısı GEOMETRİ Ders Saati Ağırlık (%) 11.1. TRİGONOMETRİ 7 56 26 11.1.1. Yönlü Açılar 2 10 5 11.1.2. Trigonometrik Fonksiyonlar 5 46 21 11.2. ANALİTİK GEOMETRİ 4 24 11 11.2.1.

Detaylı

ARAZİ ÖLÇMELERİ. Coğrafik Objenin Alan Bilgisinin Bulunması

ARAZİ ÖLÇMELERİ. Coğrafik Objenin Alan Bilgisinin Bulunması Coğrafik Objenin Alan Bilgisinin Bulunması Bina, kadastro / İmar parseli, göl gibi kapalı alan obje tipinde ki coğrafik objelere ait en önemli bilgi alandır. Coğrafik objelerin alan bilgileri farklı yollarla

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

1. HAFTA. Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler.

1. HAFTA. Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler. 1. HAFTA Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler. Statikte üç temel büyüklük vardır. Uzay: Fiziksel olayların meydana geldiği geometrik bir bölgedir. İncelenen problemin

Detaylı

AEAZÎ DÜZENLEMELERİ KONUSUNDA MATEMATİKSEL BÎR YAKLAŞIM

AEAZÎ DÜZENLEMELERİ KONUSUNDA MATEMATİKSEL BÎR YAKLAŞIM 3 DERGİDEN MEKTUP Sayın üyemiz, amacımız üyelerimize mesleki sorunlara cevap veren, güncel bilgileri aktarmaktır. Ancak, bütün çabalarımıza rağmen, dergimizde zaman zaman dizgi hatalan olmakta bütün titizliğimize

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK NİRENGİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK Giriş Yer Kontrol Noktaları

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 11.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI 11.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. TRİGONOMETRİ 7 6 6.. Yönlü

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

PAFTA BÖLÜMLENDİRİLMESİ

PAFTA BÖLÜMLENDİRİLMESİ PAFTA BÖLÜMLENDİRİLMESİ Türkiye kadastrosunda yukarıda değinilen ada sistemi pafta bölümleme ve adlandırma sistemi dışında çeşitli pafta bölümleme ve adlandırma sistemleri kullanılmıştır ve Yapım Yönetmeliği

Detaylı

Uzay Geriden Kestirme

Uzay Geriden Kestirme Uzay Geriden Kestirme (Eğik Uzunluklarla veya Düşey Açılarla Üçboyutlu Konum Belirleme ) Sebahattin BEKTAŞ* GİRİŞ Konum belirleme problemi günümüzde de jeodezinin en önemli problemi olmaya devam etmektedir.

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı