Bu ders materyali :17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir."

Transkript

1 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini sağlayan x kökü kaçtır? UYGULAMA-00 Cevap: Ç={ } UYGULAMA-00 Cevap: Ç={ } UYGULAMA-005 Cevap: Ç=R-{ -,} a ve b sıfırdan farklı reel sayılar, x x + = + b a a b denklemini sağlayan çözüm kümesini bulunuz. x Z olmak üzere, x- x- x-6 x- - = - x-7 x- x- x-7 denklemini sağlayan çözüm kümesini bulunuz. x R olmak üzere, x+ 7 5 = + x +x-6 x+ x- denklemini sağlayan çözüm kümesini bulunuz.

2 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-006 Cevap: 0,5 x y, x y denklemleri veriliyor.buna göre; x y - y + x. ifadesinin değeri kaçtır? UYGULAMA-007 Cevap:, a+b+c= a-b+c= a+b+c= b 7c eşitlikleri verildiğine göre; a+ + ifadesinin değeri kaçtır? 5 5 Verilen eşitlikler taraf tarafa toplanır, daha sonra bulunan eşitlik 5 e bölünür. Mutlu son kaçınılmaz! UYGULAMA-008 Cevap: a+b= c-5b= 6a-c= eşitlikleri verildiğine göre; 5c-a-6b ifadesinin değeri kaçtır? Verilen eşitlikler de;.eşitlikte hiçbir şey yapma,.eşitlikte ile çarp,.eşitlikte - ile çarp,

3 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından Sonra tüm eşitlikleri topla, bulduğun eşitliği ye böl UYGULAMA-009-6y Cevap: +5y x+ x+0 0+6x - + = - denklemi veriliyor. +x 7x+8 +8x x+6 Buna göre; xy+ax-5ay+=0 a'yı, y cinsinden yazınız. UYGULAMA-00-5 Cevap: x+ x+0 0+6x - + = - denklemi veriliyor. +x 7x+8 +8x x+6 Buna göre; xy+ax-5ay+=0 y'nin hangi değeri için, a hesaplanmaz. UYGULAMA-0 Cevap: -7-7 x R - { } x x + 8x+6 = x+7 olmak üzere x'in 6x+9 alabileceği tüm reel değerlerin toplamı kaçtır? UYGULAMA-0 Cevap:

4 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından x R, x 0, x R olmak üzere; 6 x x++ x -x x- 6x x -x+ - = denklemi verliyor. Buna göre ; x -5x ifadesinin değeri kaçtır?

5 -5- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-0 x -6x -x x+0 +5=0 denkleminin çözüm kümesini bulunuz.denklemin kökleri x,x,x ve x olsun. Buna göre; x +x +x + x - x.x.x. x ifadesinin değeri kaçtır? Hadi bakalım çözmeye başlayalım,kolay gelsin bana! x -6x -x x+0 +5=0 x -6x -x -0x+5=0 x -6x x -6x+8-8 x -6x+8 +5=0-6x +96x+6-8x +08x-+5=0 x -6x -6 x -6x +6-8 x -6x+8 +5=0 x -6x -. x -6x x -6x+8 +5=0 Buradan, x -6x+8=u dersek, u -8u+5=0 denklemi elde edilir. u-5 u- =0 u=5 veya u= olacağı aşikardır. x -6x+8=5 x -6x-7=0 x +x =6 ve x.x =-7 x -6x+8= x -6x+5=0 x +x =6 ve x +x =5 x + x +x + x - x.x.x. x = =+5 =7

6 -6- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-0 Cevap:,6 UYGULAMA-05 Cevap: = 0 denklemi veriliyor. x+ x- y+ y-5 Denklemi tanımsız yapan tüm değerlerin toplamı z olsun. x+y Buna göre; ifadesinin değeri kaçtır? 5z 8-.x =.x+ 8+ denklemi veriliyor. Buna göre, x kaçtır? UYGULAMA-06 Cevap: 5 a-b+c= a-c+b= a-c+b= Yukarıdaki denklem sistemi veriliyor. a+b-=x olduğuna göre; c kaç x 'dir? Verilen denklemleri sırasıyla (-),(-) ve ile çarp, Bulunan denklemler taraf tarafa topla ve eşitliğin her iki tarafını 0 a böl.

7 -7- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-07 Cevap: - 8-.x =.x+ 8+ denklemi veriliyor. Buna göre, x kaçtır? UYGULAMA-08 Cevap: bd a,b,c ve d pozitif reel sayılar olmak üzere; a c x+ y= b d -c d x+ y= a b denklem sistemi yukarıda veriliyor. bc+a -b c -a d =0 eşitliği veriliyor.buna göre; y 'yi bulunuz. UYGULAMA-09 Cevap: - a ve b pozitif reel sayılar olmak üzere; - = b a -b - = a b denklem sistemi yukarıda veriliyor. Buna göre; 5a+5b +5 ifadesinin değeri kaçtır?

8 -8- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x,y,z pozitif reel sayılar olmak üzere; xy xz yz =, =, = x+y x+z y+z eşitlikleri veriliyor.buna göre x kaçtır? Verilen eşitlikte ters çevir ve ayrı toplama işlemi gibi düşün, Çıkan denklemleri taraf tarafa topla, UYGULAMA-0 Cevap: 9 x+y-z+t=75 x+z+t= y-z=5 denklem sistemi veriliyor.buna göre z kaçtır?.denklemde y yi yalnız bırak,.denklemde y nin karşılığını yerine koy,daha sonra bu denklemle.denklemi (-) ile çarp ve.denklemleri taraf tarafa topla ye böl

9 -9- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-0 Cevap: 6 6 x = x-y 6 y = y-x olduğuna göre; x-y ifadesinin değeri kaçtır? UYGULAMA-0 ac - b Cevap: a c - b c a,b ve c pozitif reel sayılar olmak üzere; a c b c olmak üzere, bx+ay=c ax+by= c Denklem sistemi veriliyor.buna göre, y 'yi a,b ve c cinsinden bulunuz. UYGULAMA-0 - Cevap: 70 x+y x-y + = 9x y + = denklem sistemi veriliyor.buna göre, x y kaçtır?

10 -0- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-05 Cevap: 0 x,y,z,t pozitif tamsayılar olmak üzere, x.y= y.z=0 z.t=5 x+y+z Denklem sistemi veriliyor.buna göre; +z ifadesinin değeri x-t+y kaçtır? UYGULAMA-06 Cevap: - a,b,c pozitif reel sayılar olmak üzere, a-b= c+a= 5b-c=6 PAY bulunurken verilen denklemleri taraf tarafa topla, PAYDA bulunurken.denklemi - ile çarp taraf tarafa topla ve sonra da oranla Denklem sistemi veriliyor.buna göre ; kaçtır? 7a+b+c 5c+7a-b ifadesinin değeri

11 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-07 Cevap: + = x y + = y z + = x z Denklem sistemi veriliyor.buna göre; yz+xz+xy ifadesinin değeri nedir? xyz UYGULAMA-08 Cevap: a,b,c R olmak üzere, a bc = b ac = 6 c ab = olduğuna göre, a.b.c ifadesinin değeri kaçtır? Verilen her eşitliğin her iki tarafının karesi alınır, daha sonra eşitlikler taraf tarafa çarp,

12 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-09 Cevap: 6 Verilen eşitlikleri taraf tarafa çarp,daha sonra abc çarpımında bc yerine a cinsinden yaz,unutma sayılar pozitif reel sayı a,b,c R olmak üzere, a = bc 70 b 5 = ac c 7 = ab 0 Denklem sistemi veriliyor.buna göre, a kaçtır? UYGULAMA B +A +C =0, A +B -C =,5 Yukarıdaki denklem sisteminden yararlanarak, (A + B + C ) ifadesinin değeri kaçtır?

13 -- Bu ders materyali :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından B +A +C =0,5 + + = B A C A +B -C =,5 + - = Daha sonra; A B C = eşitliğin her iki yanını ile çarparsak, + + = B A C B A C ve = B A C = A B C Denklem sistemi taraf tarafa toplanırsa, = A B C 7 = + + = A B C = = 7 A B C = 6 A - + B - + C - = 7

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba, İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 07 LİSE MATEMATİK SINAVI 0 Mayıs 07 Çarşamba, 09.30 -.30 Öğrencinin, Adı Soyadı : T.C. Kimlik No : Okulu / Sınıfı : Sınav Merkezi : . Bir

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER.

EŞĐTSĐZLĐKLER MATEMATĐK ĐM. Eşitsizlikler YILLAR /LYS. 14) Özel olarak. x >x ÖZELLĐKLER. YILLAR 00 00 00 00 006 007 008 009 00 0 ÖSS-YGS - - - - - / - /LYS EŞĐTSĐZLĐKLER =y,,, y,,, < y y,,, > y,,, y (tarif et ) ÖZELLĐKLER ) > veya < 0

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3)": ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4

KC00-SS.08YT05. Kolay Temel Matematik. Üniversite Haz rl k 1. 8 ( 3 + 2) 6. 3! 3 ( 3 3): ( 3) x = 3 ve y = 2 3. ( 5) + ( 7) (+2) + 4 Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I Kolay Temel Matematik. 8 ( + ) A) 7 B) 8 C) 9 D) 0 E) 6.! ( )": ( ) A) B) 0 C) D) E). 7. + 5 A) 6 B) 7 C) 8 D)

Detaylı

2009 Ceb ır Soruları

2009 Ceb ır Soruları Genç Balkan Matemat ık Ol ımp ıyatı 2009 Ceb ır Soruları c www.sbelian.wordpress.com sbelianwordpress@gmail.com 2009 yılında Bosna Hersek te yapılan JBMO sınavında ki shortlist sorularının cebir kısmının

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

ÜNİVERSİTEYE HAZIRLIK

ÜNİVERSİTEYE HAZIRLIK ÜNİVERSİTEYE HAZIRLIK YGS MATEMATİK KONU ANLATIMLI SORU BANKASI CEVAP ANAHTARI RASYONEL SAYILAR ONDALIK SAYILAR ÖRNEKLER (Sayfa -) 6 ) ) ) 6) ; ; ) 0) ) ; 8 ) ) ) 0 ) 6 0 0 8) 0 ) 0) 6 ) 8 ) 8 8) ) ; 6

Detaylı

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25

1 RASYONEL SAYILARDA İŞLEMLER Sorular Sorular DOĞRUSAL DENKLEMLER Sorular DOĞRUSAL DENKLEM SİSTEMLERİ 25 İçindekiler RASYONEL SAYILARDA İŞLEMLER. Çözümlü Sorular............................. 2.2 Sorular................................... 5 2 TEK - TERİMLİ veçok-terimli İFADELER 7 2. Çözümlü Sorular.............................

Detaylı

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 22.05.2015 09:35:42 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -1- Bu ders materyali.05.015 09:35:4 tarihinde matematik öğretmeni Ömer SENCAR tarafından SAYI KÜMESİ TAMAMLAYARAK BÖLÜNEBİLME KURALLARINI UYGULAMA SORU-1) "Rakamları kalansız bölünebilen sayılara TEKİN

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 003 004 005 006 007 008 009 010 011 ÖSS-YGS 1 - - 1 1 1 - - - - YAŞ PROBLEMLERĐ Belli bir yıl sonra herkesin yaşı aynı miktarda artar Đki kişinin yaşları toplamı t yıl sonra t artar, t yıl önce

Detaylı

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI 14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI - 008 SORU -1 1 0.7 0.1 0.48 = 0.018 0.8 0. eşitliğini sağlayan sayısı kaçtır? [ 0.15] SORU - c d d c a b 4 c d b b a ifadesinin i i sayısal ldeğeri

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI

DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI DOĞUŞ ÜNİVERSİTESİ 8. İSTANBUL MATEMATİK YARIŞMASI LİSELER KATEGORİSİ TAKIM YARIŞMASI 1-60) Dört çocuk, Ahmet, Ferit, Berk ve Mehmet koşu yarışı yapıyorlar. Yarışma sonucunda, Ahmet, "Ben birinci ve sonuncu

Detaylı

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA İÇİNDEKİLER Matematiğe Giriş... Temel Kavramlar... Bölme - Bölünebilme Kuralları... 85 EBOB - EKOK... Rasyonel Sayılar... Basit Eşitsizlikler... 65 Mutlak

Detaylı

: Matematik. : 9. Sınıf. : Sayılar. : (6) Ders Saati

: Matematik. : 9. Sınıf. : Sayılar. : (6) Ders Saati MATEMATİK DERS PLÂNI Dersin adı Sınıf Öğrenme Alanı : Matematik : 9. Sınıf : Sayılar Başlangıç Tarihi :.. /../. Alt Öğrenme Alanı : Mutlak Değer Önerilen Süre : (6) Ders Saati Öğrenci Kazanımları /Hedef

Detaylı

İSTANBUL III. BİLİM OLİMPİYATI

İSTANBUL III. BİLİM OLİMPİYATI İSTANBUL III. BİLİM OLİMPİYATI MATEMATİK SBELIAN Bu çalışma notunda İstanbul Bilim Olimpiyatı matematik sorularının bir bölümünün soru metinleri ve çözümleri verilmiştir. Soruların tamamının yayın hakkı

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE DENKLEM VE EŞİTSİZLİKLER Gerçek Sayılar... 4 Doğal Sayılarda İşlemler... 4 Tam Sayılar... 4 Rasyonel Sayılar... 5 İrrasyonel Sayılar... 5 Gerçek (Reel) Sayılar... 6 9 Konu

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5

TEMEL MATEMATİĞE GİRİŞ - Matematik Kültürü - 5 1 14 ve 1 sayılarına tam bölünebilen üç basamaklı kaç farklı doğal sayı vardır? x = 14.a = 1b x= ekok(14, 1 ).k, (k pozitif tamsayı) x = 4.k x in üç basamaklı değerleri istendiğinden k =, 4, 5, 6, 7,,

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 4. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Çarpanlara Ayırma 5 52 Polinomlar 53 100 İkinci Dereceden Denklemler 101 120 Karmaşık Sayılar

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A AKDENİZ ÜNİVERSİTESİ 16. ULUSAL ANTALYA MATEMATİK OLİMPİYATLARI BİRİNCİ AŞAMA SORULARI A A A A A A A SINAV TARİHİ VESAATİ:16 NİSAN 2011 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

BÖLME - BÖLÜNEBİLME Test -1

BÖLME - BÖLÜNEBİLME Test -1 BÖLME - BÖLÜNEBİLME Test -1 1. A saısının 6 ile bölümünden elde edilen bölüm 9 kalan olduğuna göre, A saısı A) 3 B) C) 7 D) 8 E) 9. x, N olmak üzere, x 6 ukarıdaki bölme işlemine göre x in alabileceği

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS DOĞAL SAYILARDA TOPLAMA VE ÇARPMA Örnek( 1 ) - - - - (I) yandaki işleme x 1 (II) göre (I) çarpan - - - - kaçtır? 40 + - - - - - - - - - - (ÖSS-8) 40

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

a.c = 48 3a + 2b c = 37 ise, a nın alacağı en küçük değer kaçtır?

a.c = 48 3a + 2b c = 37 ise, a nın alacağı en küçük değer kaçtır? . a,b,c birbirinden farklı tamsayılar ve a sıfırdan. a, b, c R olmak üzere farklı olmak üzere, a.b = 0 c

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI EGE BÖLGESİ 5. OKULLAR ARASI MATEMATİK YARIŞMASI. [( p q) q] [(p q) q ] bileşik önermesinin en sade şekli A) p B) p C) D) 0 E) q 4. A kümesinin eleman sayısı fazla; B kümesinin eleman sayısı eksik olsaydı

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

MATRİS - DETERMİNANT Test -1

MATRİS - DETERMİNANT Test -1 MRİS - DEERMİNN est - x y x 3., B olmak üzere, y y = B olduğuna göre, y x farkı kaçtır? 5. 5 4 0, B 4 3 7 3 matrisleri veriliyor. + B matrisi aşağıdakilerden hangisidir? 3 4 5 6 5 3 0 8 5 6 6 5 0 5 6 0

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.)

( ) FAKTÖRĐYEL YILLAR /LYS. Örnek( 4.) YILLAR 00 003 004 005 006 007 008 009 00 0 ÖSS-YGS - - - - 0/ - / /LYS FAKTÖRĐYEL Örnek( 4) 3)!! ) )! 4 )!? den n e kadar olan sayıların çarpımına n! denir n! 34(n-)n 0!!! 3! 3 6 4! 34 4 5!3450 Örnek(

Detaylı

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir? 1. 36 x A) [- 6, ] B) [- 6, 6 ] C) [, 36] D) [, 36 ] E) [- 36, ] 5. x + 4x + 4 > A) (, ) B) - } C) D) R E) R - {- } 6. x + 8x + 16. x x 8 < aşağıdalerden hangisidir? A) (- 4, ) B) (-, ) C) (- 4, ) A) {

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 11. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2006 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINAV SORULARI 1. 1999 ÖSS a, b, c pozitif gerçel (reel) sayılar olmak üzere a+ b ifadesindeki her sayı 3 ile çarpılırsa aşağıdakilerden hangisi elde c edilir? 3 a+ b A) B) c a+ 3b C)

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme Türkiye Ulusal Matematik Olimpiyatları Birinci Aşama Zor Deneme Sınavı 11 Haziran 2016 DENEME SINAVI 4. Deneme Soru Sayısı: 32 Sınav Süresi: 210 dakika Başarılar Dileriz... Page 1 of 9 DENEME SINAVI (4.

Detaylı

4. 3 A) 2 3 B) 4 4 C) 4 6 D) x = 1 iken, ( x) 2 x 3 işleminin sonucu kaçtır? 6. ( 3 4 ) ( 3) 1 + ( 3) 3

4. 3 A) 2 3 B) 4 4 C) 4 6 D) x = 1 iken, ( x) 2 x 3 işleminin sonucu kaçtır? 6. ( 3 4 ) ( 3) 1 + ( 3) 3 Üslü İfadeler 8. Sınıf Matematik Soru Bankası TEST. I. II. ( ) 9 ( ) ( 97) 0-9 Yukarıda I. sütunda verilen sayılar ile, II. sütundaki sayılardan eşit olanlar eşleştirildiğinde, II. sütunda hangi sayı açıkta

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1.

SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI. 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin. ÇÖZÜM: 1000a 10b 1000.a b 1. SAYILARIN ÇÖZÜMLENMESİ ÇÖZÜMLÜ SORULARI 1) 1000a 10b ifadesi aşağıdaki sayılardan hangisinin çözümlenmiş biçimidir? A) ab B) a0b C) a0b0 D) ab0 E) ab00 1000a 10b 1000.a 100.0 10.b 1.0 a0b0 Doğru Cevap:

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1 Süre: 150 dakika ÖĞRENCĐNĐN ADI SOYADI: SINAVLA ĐLGĐLĐ UYARILAR: Bu sınav çoktan seçmeli 36 sorudan oluşmaktadır. Her sorunun sadece bir

Detaylı

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde

MATEMATİK SORU BANKASI. ezberbozan serisi GEOMETRİ 30. KPSS tamamı çözümlü. eğitimde ezberbozan serisi MATEMATİK GEOMETRİ KPSS 2017 SORU BANKASI eğitimde tamamı çözümlü 30. Kerem Köker Kenan Osmanoğlu Levent Şahin Uğur Özçelik Ahmet Tümer Yılmaz Ceylan KOMİSYON KPSS EZBERBOZAN MATEMATİK

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI T.C ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI ÖĞRETİM ÜYELERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR:

Detaylı

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45 990 ÖYS. si olan si kaçtır? A) 9 B) 8 C) D) 60 E) 5. Ağırlıkça %0 si şeker olan 0 kg lık un-şeker karışımına 8 kg daha un eklendiğine göre, yeni şeker (kg) karışımın oranı kaçtır? un (kg) A) B) C) D) E)

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI

KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS GENEL YETENEK MATEMATİK & GEOMETRİ KONU ANLATIMLI SORU BANKASI KPSS - 011 TÜM ADAYLAR İÇİN KAMU PERSONELİ SEÇME SINAVI KONU ANLATIMLI MODÜLER SET YAZAR Recep AKSOY EDİTÖR Murat CANLI YAYIN KOORDİNATÖRÜ

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

ORAN - ORANTI Test -1

ORAN - ORANTI Test -1 ORAN - ORANTI Test -. x y x y x y. x y z 6 x z y 8 6 6. x y x y = 0 x 6. a b a b b a 0 0 0 0 6. a b c a b + c = a b farkı 6 0 6. a b a b = a. a b a + b = 6 b 8. x y z x y + z = x + z toplamı 8 0 6 0 0

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

KÖKLÜ SAYILAR TEST / 1

KÖKLÜ SAYILAR TEST / 1 KÖKLÜ SAYILAR TEST / 1 1. Aþaðýdakilerden hangisi reel sayý deðildir? A) B) C) 0 D) 8 E). 6 2 9 A) 16 B) 18 C) 20 D) 2 E) 0 2. Aþaðýdakilerden hangisi irrasyonel sayýdýr? 6. Aþaðýdakilerden hangisi yanlýþtýr?

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı