BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BULANIK MANTIK. Gaziosmanpaşa Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Tokat."

Transkript

1 Nim Çğmn, BLNIK MNTIK Gziosmnpş Üniversitesi, Fen Edebiyt Fkültesi, Mtemtik Bölümü, Tokt. Mtemtik deyince ilk kl gelen kesinliktir. Hlbuki günlük hytt konuşmlrımız rsınd belirsizlik içeren, ort yşlı insn, uzun zmn, phlı rb, yüksek bin gibi nlmı kişiden kişiye ve durum göre değişen çok kelimeler kullnılır. Klsik mntığın tnımlymdığı bu tür belirsizlikler çoğunlukl bilimsel olmyn bir şey olrk kbul görmesine rğmen, 9. yüzyılın bşlrınd bu tür belirsizlikler üzerine bir çok filozof kf yormuşlrdır. Einstein bu durumu şu şekilde ifde etmiştir: Mtemtiğin kvrmlrı kesin olduklrı sürece gerçeği ynsıtmzlr, gerçeği ynsıttıklrı sürece de kesin değillerdir. 920 lerde Heisenberg orty ilk belirsizlik kvrmını trk bilimi çok değerliliğe zorlmıştır. 930 lrın bşlrınd Luksiewicz ilk üç-değerli mntık sistemini ve ynı dönemlerde kuntum filozofu Blck d sürekli değerlere ship mntığı tnımldı. Pek z btılı filozof çok değerliliği benimsemesine rğmen, Luksiewicz, Gödel ve Blck, ilk çok değerli mntık ve kümeler üzerine teorik olrk çlışmlrını sürdürdüler, nck kendilerine bir uygulm lnı bulmdılr. Belirsizliğin, modern nlmd mtemtiksel olrk modellenmesinde önemli bir dönüm noktsı, 965 te Cliforni Berkeley Üniversitesi nden zeri kökenli meriklı Mtemtikçi Lütfi skerzde Zdeh in bulnık mntık (fuzzy logic) ve dolyısıyl bulnık küme teorisini tnımlmsıyl bşlmıştır. Zdeh bu teorisinde, mtemtiğin, dil ve insn zeksını ilişkilendirebileceğini ve bulnık mntığın gerçek hytın dh iyi bir modelini oluşturduğunu göstermesine rğmen bilim cmisındn pek ilgi görmediği gibi tenkitlerle krşılnmış ve htt BD lusl Bilim kfı (Ntionl Science Foundtion) trfındn kynklrın boş hrcnmsın örnek olrk gösterilmişti. 972 yılınd İngiltere de İrn kökenli Ebrhim Mmdni nin bir buhr mkinesi için, bulnık mntık teorisini kullnrk, bir kontrol edici tsrlmsı dünynın ilgisini bu konuy çekmiştir. Bulnık mntığın ilk ticri uygulmsının, 980 de, Dnimrk d bir çimento fbriksının kontrolünde kullnılmsındn sonr, bşt Jpony olmk üzere dünydki çoğu ülkeler rştırm ve mühendislik uygulmlrıyl bu konud büyük gelişmeler kt etmişlerdir. Özellikle, elektronik letlerin n ypılrını oluşturn trnsistor vey lgoritmlr gibi nhtrlm rçlrınd yoğun olrk bulnık mntık kullnılır. Bulnık mntık ve bulnık kümeleri, klsik mntık (risto mntığı) ve onun doğurduğu klsik kümeler ile berber vermemiz rlrındki frkı görme ve krşılştırbilme çısındn kolylık sğlycktır. Bilindiği gibi, klsik mntık, ynlış vey doğrundn biri ile betimlenen ve kesin hüküm belirten Üç ikiden büyük bir tmsyıdır., hmet kırk yşınddır. gibi önerme dediğimiz ifdelerle çlışır. Bir x değişkene bğlı, p(x) = x ikiden büyük bir tmsyıdır., q(x) = x kırk yşınddır. gibi önermelere de çık önermeler denir. Bu önemelerle mtemtiğin temel tşlrındn biri oln kümeleri inş ederiz. Kitplrd, klsik kümelere, iyi tnımlnmış nesneler topluluğudur denir. Önermeler kesin hüküm belirttiği için, bir çık önermeyi doğru ypn değişkenler iyi tnımlnmış olurlr ve bunlrın tonluluğu mtemtikte küme olrk tnımlnır. Örneğin, p(x) çık önermesinin yni ikiden büyük bütün tmsyılrın oluşturduğu bir küme, ={x: p(x)} biçiminde vey çık olrk ={x: x>2, x } biçiminde vey dh çık olrk ={3,4,5, } biçiminde yzılır. Klsik mntıkt, önermeler y doğrudur yd ynlıştır, üçün bir lterntifleri yoktur. Bu nedenle, bir p(x) önermesi ve onun olumsuzu (değili) p(x) önermeleri için p(x) p(x) ve p(x) p(x) bileşik önermelerine sırsıyl çelişki (kesin ynlış) ve totoloji (kesin doğru) denir. Birincinin mnsı, bir önerme ynı nd hem ynlış hem de doğru olmz ve ikincinin mnsı ise bir önerme y ynlıştır y d doğrudur. O hlde, bir p(x) önermesini doğru ypn değerler bir kümesini oluşturuyors, doğru ypmynlr (ynlış ypnlr) d bu kümesinin tümleyeni kümesini oluştururlr. Böylece bir küme, üzerinde işlem ypıln E evrensel kümenin elemnlrını, kümeye it olnlr ve it olmynlr diye ikiye böler. Bu net yırımdn dolyı, E evrensel kümesinde tnımlı herhngi bir kümesi için

2 =E ve = eşitlikleri elde edilir. Bu durumun venn şemsı Şekil de verilmiştir; burd siyh ve tümleyeni beyz bölgeden ibrettir. Kesin olrk ve b. Görüldüğü gibi klsik mntığın doğurduğu kümeler, tbittkinin ksine, yşdığımız dünyyı siyh/beyz, doğru/ynlış, iyi/kötü gibi ktegorize ederek ikiye bölen birbirine zıt ikili kvrmlrl inş edilir. b Şekil. Klsik Küme Klsik mntıkt bir önermenin doğruluk değeri, doğrulr için ve ynlışlr için 0 kullnılırs, E χ :E 0, fonksiyonuyl krkterize evrensel kümesindeki bir kümesi, mtemtiksel olrk { } edilir. Burd, kümesine it elemnlr değerini, it olmyn elemnlr ise 0 değerini veren, χ fonksiyonun kümesinin krkteristik fonksiyonu denir. Bu syede, bilgisyr trfındn lgılnbilir, Boolen cebrinin temeli oln ikili syı sistemine geçiş ypılmış olunur. Hlbuki, gerçek düny hiç de öyle siyh ve beyzdn ibret değildir, ord siyh ile beyzın rsınd, Şekil 2 de olduğu gibi, sonsuz renk tonu vrdır. Konuşm dilinde ifde edilen ve üzerinde çlıştığımız çoğu sınıflndırmlrd kullndığımız, kesin sınırlrl tnımlnmyn ve kişiden kişiye frklı yorumlnn çok güzel, fzl uzun, şırı sıck, hfif phlı, birz ttlı gibi bulnık kvrmlr klsik mntığın öngördüğü şekilde incelenemezler. İşte bu tür terimlerle ifde edilen yşe çok güzel., Hv şırı sıck., mcm epeyce yşlı. gibi ifdeleri, kesin hüküm belirtmediğinden, klsik mntık önerme olrk kbul etmez ve bu kvrmlrl d klsik mnd küme tnımlnmz. İşte, bu tür önermelere bulnık önermeler ve bunlrl uğrşn mntığ d bulnık mntık denir. Bulnık önermelerin doğruluğu vey ynlışlığı hkkınd kesin bir şey söylenemeyeceğinden dolyı bunlrın doğruluk değeri, [0,]={x:0 x,x } gerçel syılr kümesinden, bir syıyl derecelendirilir. Bir bulnık önerme derecesine göre hem doğru ve hem de ynlış olbilir. Bulnık bir önerme için doğru değildir denmiş ise bu ynlıştır nlmın gelmez. Bir önerme 0.8 derecesinde doğru ise ynı önerme 0.2 derecesinde de ynlıştır. Örneğin, yşe çirkindir önermesi 0.5 derecesinde doğru ise ynı derecede de ynlıştır. nlşılcğı gibi, klsik önermelerdeki çelişme ve totoloji burd geçerli değildir. Bu özellikten dolyı, klsik mntıkt problem oln prdokslr, hem doğru hem ynlış, y d ne doğru ne de ynlış doğruluk değerine ship önermeler, bulnık mntıkt doğruluk değerleri lrk birzd ols doğrulr indirgenmiş olurlr. Bulnık önermeleri oluşturn bulnık terimlerin her biri bir bulnık küme ile modellenir. O hlde, bir bulnık önermenin oluşturduğu bir bulnık küme, çlışm ypıln ln it her bir bireye mtemtiksel olrk kümedeki itlik derecesini temsil eden [0,] rlığındki gerçel syılrdn bir değer tyrk tnımlnır. Bu değer, elemnın bulnık küme trfındn ifde edilen kvrm uygunluk derecesini ifde eder. b Şekil 2. Bulnık Küme Şekil 2 de de görüldüğü gibi, siyhl betimlenen bulnık bir kümesinin sınırlrı, klsik kümelerde olduğu gibi, kesin çizgilerle belirlenemez. Çünkü rtık burd, siyh-beyz kriterler, gri olnlrıyl 2

3 değiştiriliyor ve krşımız bulnık bir küme kvrmını oty çıkıyor. Elemnlrın idiyeti keskin sınırlrı olmyn bulnık ypı içinde klıyor ve burd gözüken ve b elemnlrı frklı tonlrdki gri bölgelerde bulunduklrındn frklı derecelerde ve tümleyeni kümesine it oluyorlr. Tm üye olm ve üye olmm durumu, bulnık kümede de sırsıyl ve 0 değerleriyle krşılnır. Dolyısıyl, klsik küme kvrmı bulnık küme kvrmının bu iki değere kısıtlnmış özel bir hlidir. Bu nedenle, bulnık kümelerin mtemtiksel olrk ifdesi, klsik kümelerin krkteristik fonksiyonunun {0,} değer kümesinin, [0,] gerçel syılr rlığın genelleştirilmesiyle ypılır. Burdn, bulnık kümelerin klsik kümelere bir lterntif değil, onlrın genelleştirilmişi olduğu görülür. Nsıl ki, Rsyonel syılrın keşfi tm syılr lterntif değil, onu d kpsyn dh işlevli bir syı kümesi, bulnık kümeler de klsik kümeleri kpsyn dh geniş kümelerdir. Mtemtiksel olrk, E evrensel kümesindeki bir bulnık kümesi µ ( x ) :E [0,] şeklinde krkterize edilir. Burdki µ fonksiyon bulnık kümesinin üyelik fonksiyonu denir. Bulnık kümesi, E deki her elemnın üyelik derecesiyle birlikte oluşturduğu ikililer kümesidir. = ( x, µ ( x)): x E, µ ( x) [0,] () { } burd µ ( x ) değeri x in kümesine üyelik (itlik) derecesini gösterir. Üyelik fonksiyonlrı bir çok frklı şekillerde tnımlnbilirler. Üyelik fonksiyonlrının inşsı kişilerin görüş ve değer yrgılrın dynır. Bu nedenle bu fonksiyonlr kişiden kişiye ve durum göre değişmektedir. Bulnık kümeler, kesin çizgilerle gösterilemeyeceğinden, venn şem gösterimlerinden söz edilemez ve bunun yerine bulnık kümeler üyelik fonksiyonlrının grfiğiyle gösterilirler. (Şekil 2, ve bulnık kümelerinin venn semsı olrk değil, sdece bulnıklığı vurgulmk için verilmiştir). Örneğin, u(x) = x gençtir ve v(x) = x yşlıdır bulnık çık önermeleri, E=[0,20] evrensel kümesinde, sırsıyl gençler ve yşlılr bulnık kümelerini oluştursunlr. Bunlrın üyelik fonksiyonlrının grfiklerine bir örnek Grfik de verilmiştir Grfik. Genç ve yşlılr bulnık kümeleri Bu grfiğe göre, 30 yşındki birisi 0.2 üyelik derecesi ile yşlılr bulnık kümesine it ve 0.7 üyelik derecesi ile de gençler bulnık kümesine ittir. Burd yş kvrmı genç ve yşlı iki bulnık küme üzerinde incelenmiştir, bumu istediğimiz kdr çoğltbiliriz. Örneğin, genç, ort yş, yslı olrk üç bulnık kümede vey çok genç, genç, ort yş, yşlı, çok yşlı gibi beş bulnık kümede inceleyebilirdik. Örneğin, genç, ort yş ve yşlı kişilerin oluşturduğu, ve W bulnık kümelerinin grfiği Grfik 2 deki gibi verebiliriz. 3

4 W Grfik 2. Genç, ort ve yşlılr bulnık kümleri Biz burd, hesplm çısındn getirdiği kolylıklrı göz önüne lrk, üyelik fonksiyonlrının inşsınd doğrusl fonksiyonlr kullndık. () deki şrtı sğlyn prbolik, hiperbolik, çn eğrisi gibi her türlü fonksiyonlr kullnılbilir. Hngi fonksiyonun dh uygun olup olmycğı çlışıln uygulm lnı trfındn elde edilen verilere bğlıdır. Bulnık kümeler üzerine kuruln mtemtiksel ypı, klsik mtemtikten dh fzl çıklyıcı bir güce shiptir fkt kullnılbilirliği uygulm lnlrınd orty çıkn kvrmlr için uygun üyelik fonksiyonlrının inş edilmesine bğlıdır. Yni, bulnık kümelerin kullnışlılığı frklı kvrmlr uygun üyelik derecesi fonksiyonlrını oluşturbilme becerimize bğlıdır. Bud bulnık küme teorisinin prtik fydsını rtırn en önemli yönlerinden biridir. Klsik kümeler üzerinde tnımlnn temel işlemlerden oln birleşim ve kesişim işlemleri bulnık kümeler üzerinde mksimum ve minimum fonksiyonlrı kullnılrk tnımlnmıştır. Bunun mtemtiksel doğruluğunun ynınd insn düşüncesine ytkınlığı d görülmektedir. Her hngi bir kimsenin birden çok bulnık önermeler kullnrk kıl yürüteceğini vrsylım. Eğer önermelerin hepsi vey bğlcıyl bğlı ise ortk doğruluk değeri olrk, doğruluk durumun olbildiğince ykın olmk isteneceğinden, önermeler içinde doğruluk değeri mksimum olnınki seçilecektir. Eğer önermelerin hepsi ve bğlcıyl bğlı ise ortk doğruluk değeri olrk, en kötü durum bilinmek isteneceğinden, önermeler içinde doğruluk değeri minimum olnınki seçilecektir. E evrensel kümesinde verilen herhngi iki bulnık ve kümelerinin üyelik fonksiyonlrı sırsıyl x E için µ (x)=min[ µ ( x ), µ ( x) ] ve µ (x)=mx[ µ ( x ), µ ( x) ] olrk tnımlnırlr ve Grfik 3 bunlrın bir olsı grfik gösterimi verilmiştir. 0 Grfik 3. ve kümelerinin bileşim ve kesişimleri Bunlrın kpsm ve eşitliği direkt üyelik elemnlrının derecelerine bğlıdır, yni x E için µ ( x ) µ ( x) ise olur, benzer şekilde µ ( x) = µ ( x) ise = olur. E evrensel kümesi üzerinde tnımlı herhngi bir bulnık kümesinin tümleyeninin üyelik fonksiyonu d x E, µ ( x ) = µ ( x ) biçiminde tnımlnır. Grfik de çık şekilde görüldüğü gibi bulnık kümesinin tümleyeni bulnık kümesidir, gerçekten de µ ( x ) = µ ( x) olur. Bulnık kümelerde tnımlnn işlemler tek türlü değildir. Burd tnımlnnlr mühendislik uygulmlrınd en sık kullnıln işlemlerdir. Klsik kümeler teorisinden bilinen küme işlemlerinin özellikleri, iki özellik dışınd, bulnık kümeler için de geçerlidir. Klsik kümeler için sğlnn =E ve = bu iki özellik bulnık küme 4

5 teorisinin en önemli yırt edici krkteristiğini orty koyrlr ve bulnık kümeler için geçerli değillerdir. Çünkü, her ne kdr üyelik değerleri olsılıkt olduğu gibi [0,] rlığınd değer sld bir bulnık kümenin elemnlrının üyelik dereceleri toplmı olsılıkt olduğu gibi bu rlıkt bulunm zorunluluğu yoktur. Htt bir kümenin bu eşitliklerden ne kdr sptığı bulnıklığının ölçüsüdür. Dikkt edilirse, stndrt işlemlerin üyelik derecelerinin lcğı değerler {0,} değerlerine kısıtlndığı tkdirde klsik küme işlevi görürler. Gerçekten, E evrensel kümesinde herhngi bir klsik kümesini = ( x, χ ( x)): x E, χ ( x) {0,} (2) { } biçiminde tnımlybiliriz. Bu (2) tnımın göre bütün bulnık küme işlemleri klsik kümeler için de geçerli olurlr. Fen bilimlerinden sosyl bilimlere, uygulmlrı syesinde son zmnlrd dındn çok söz ettiren bulnık kümeler, doğl dildeki belirsiz ve bulnık kvrmlrı temsil etmemize ve onlrı mtemtiksel olrk ifde etmemizi mümkün kılrlr. ygulm lnlrının genişliği ve bu lnlrd oluşturduğu sonuçlrın etkisi bkımındn bulnık küme teorisi bugün bilimsel çlışmlrd önemli bir yer tutmktdır. Bulnık kümeler, bulnık mntık kvrmlrını uygulm lgoritmlrın dönüştüren önemli rçlrdır. Bulnık mntık lgoritmsının kullnımı, mkinelere belirli bulnık kvrmlrı nlm ve bun ynıt verme olnğı sğldığındn, bulnık mntığın önemli hedeflerinden biri, kullnıldığı mkinelerin insn gibi düşünmesini sğlmy çlışmsıdır. Bulnık mntık ve kümeleri konusund dh geniş bilgi için, klsikleşmiş İngilizce kynk olrk [,4,7] kitplrı ve Türkçe olrk d [2,3,5,6] kitplrı tvsiye edilebilir. Kynklr [] Dubois, D. nd Prde, H. Fuzzy Sets nd Systems: Theory nd pplictions, cdemic Press, New York [2] Elms, Ç., Bulnık Mntık Denetleyiciler, Seçkin, nkr, [3] İbrhim,, Gömülü Sistemlerle Bulnık Mntık (Çeviri: N. Çervtoğlu), Bileşim Yyınevi, İstnbul, [4] Klir, J. G, nd Folger, T.., Fuzzy Sets, nd Informtion, New Jersey, 988. [5] Şen, Z., Bulnık Mntık ve Modelleme İlkeleri, Bilge Kültür Snt, İstnbul, 200. [6] Şen, Z., Modern Mntık, Bilge Kültür Snt, İstnbul, [7] Zimmermnn, H.J., Fuzzy Set Theory nd Its pplictions, Kluwer, 99. 5

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

3. BOOLE CEBRĐ A Z. Şekil 3-3 DEĞĐL işleminin anahtar devrelerindeki karşılığı

3. BOOLE CEBRĐ A Z. Şekil 3-3 DEĞĐL işleminin anahtar devrelerindeki karşılığı 3. BOOLE CEBRĐ B Z 1854 yılınd mtemtikçi ve filozof George Boole, mntığın sistemtik olrk inelenmesi için şimdi Boole eri dediğimiz ir eir sistemi geliştirdi. Sonr 1938 yılınd C. E. Shnnon, nhtrlm eri denilen

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b PROJENİN ADI: Kimy Öğretiminde Alterntif Öğretim Metodu PROJE AMACI: Kimy öğretiminde lterntif uygulm olrk nimsyon sunumu tekniğinin uygulnilirliğini örneklerle göstermek ve dh iyi nsıl öğreteilirim sorusun

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

Velilere Yönelik Soru Formu

Velilere Yönelik Soru Formu Velilere Yönelik Soru Formu Eğitim Stndrtlrı Pilot Çlışmsı 4. Sınıf Mtemtik Okul Sınıf Öğrenci Sevgili veliler, Sevgili velyet shipleri, Çocuğunuzun sınıfı, mtemtik eğitim stndrtlrın ilişkin bir pilot

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

SLOGAN TİPOGRAFİSİ O PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ PAL. www.opalon.com.tr

SLOGAN TİPOGRAFİSİ O PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ PAL. www.opalon.com.tr SLOGAN TİPOGRAFİSİ www.oplon.com.tr PAL O ON PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ www.oplon.com.tr OPAL ON PREFABRİK YAPILAR İNŞAAT SANAYİ VE TİCARET ANONİM ŞİRKETİ www.oplon.com.tr

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013

Veliler Anketi. Standart denetlemesi Matematik 4. sınıf 2013 Veliler Anketi Stndrt denetlemesi Mtemtik 4. sınıf 2013 Sevgili Anne ve Bblr, Sevgili Veliler, Çocuğunuzun sınıfı bu öğretim yılınd 4.sınıf Mtemtik dersinde ilk stndrt denetlenmesi uygulmsın ktılcktır.

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? ()

sayısından en az kaç çıkarmalıyız ki kalan sayı 6,9,12 ve 15 ile kalansız bölünebilsin? () 1. x,y,z,t rdışık çift syılrdır. Bun göre (xy)-(zt)=. İki smklı () syısının değeri, rkmlrı toplmının 7 ktıdır. Üç smklı () syısının ile ölümünden elde edilen ölüm kçtır. En z dört smklı ir doğl syının

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

a a a a a a www.inka-paletten.com P A L E T Y P A L E T Ahşap paletlerle rekabet edebilir fiyattadır İç içe geçebildiğinden daha az stok yeri tutar

a a a a a a www.inka-paletten.com P A L E T Y P A L E T Ahşap paletlerle rekabet edebilir fiyattadır İç içe geçebildiğinden daha az stok yeri tutar Y P A L E T Ahşp pletlerle rekbet edebilir fiyttdır İç içe geçebildiğinden dh z stok yeri tutr Konteynırlr uygun ebtlr CP3, CP5 Çevreyle Dost Düny çpınd kıs sürede teslimt Isıl işlem,fümigsyon gerektirmez,

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

Bildirişimli Matematiğin <T, 1, n> Q Sürü Bellekli 3D I@I Internet Sürüsü

Bildirişimli Matematiğin <T, 1, n> Q Sürü Bellekli 3D I@I Internet Sürüsü Bildirişimli Mtemtiğin Q Sürü Bellekli 3D II Internet Sürüsü Prof. Dr. Fevzi Ünlü Mtemtik ve Bilisyr Bilimleri Profesörü Ee Üniversitesi ve Yşr Üniversitesi Emekli Öğretim Üyesi İzmir Özet Q ve

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU 2 0 1 3YI L I R KL AMV Rİ L Rİ YL T ÜRKİ Y RADY OVT L Vİ ZY ONY A YI NCI L I ĞI S KT ÖRRAPORU R A T M R A D Y OT L V İ Z Y O NY A Y I N C I L A R I M S L KB İ R L İ Ğ İ L e y l ks o k kmu r t İ ş Me r

Detaylı

POLİNOMLARIN ÇARPANLARA AYRILMASI

POLİNOMLARIN ÇARPANLARA AYRILMASI POLİNOMLARIN ÇARPANLARA AYRILMASI Tnım: P ( ) polinomu Q ( ) polinomun bölündüğünde bölüm B ( ), Kln ( ) 0 durumd, P ( ) = Q( ). B( ) yzılır. K = olsun. Bu Q ( ) ve B ( ) polinomlrın P ( ) polinomunun

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ

ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ ELEKTRİK DAĞITIM ȘİRKETLERİNİN SORUMLULUĞUNDAKİ YOL AYDINLATMASINA İLİȘKİN KURALLARIN İRDELENMESİ M. Akif ȘENOL 1 Ercüment ÖZDEMİRCİ 2 M. Cengiz TAPLAMACIOĞLU 3 1 Enerji ve Tbii Kynklr Bknlığı, Ankr, 2

Detaylı

DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ

DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ DENEME 6 SAYISAL BÖLÜM ÇÖZÜMLERİ. 3 3 = ( 3 ) ( 3) > > = 3 3 = 6 6. xy x = 8 xy x = 8 x.(y ) x.(y ) = 8 8 6 y (y ).(y) = 6 y = 6 y=6 y=5. 36. 8 d 8 = 6 d n 0 8 0 = 6 ( ) = 6 5 = 3 00 3. 880 ( 3) 80 0 =

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

Sayı Kümeleri ve Koordinatlar

Sayı Kümeleri ve Koordinatlar DERS 1 Sı Kümeleri ve Koordintlr 1.1 Kümeler. Mtemtiğin temel kvrmlrındn biri küme kvrmıdır. Okuucunun küme kvrmın bncı olmıp kümelerle ilgili temel işlemleri bildiğini kbul edioruz. Bununl berber kümelerle

Detaylı

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz.

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz. ELEKTRİK-ELEKTRONİK DERSİ VİZE SORU ÖRNEKLERİ Şekiller üzerindeki renkli işretlemeler soruy değil çözüme ittir: Mviler ilk şmd sgri bğımsız denklem çözmek için ypıln tnımlrı, Kırmızılr sonrki şmd güç dengesi

Detaylı

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK

KPSS ÇEVİR KONU - ÇEVİR SORU MATEMATİK MTEMTİK KPSS ÇEVİR KONU - ÇEVİR SORU MTEMTİK EDİTÖR Turgut MEŞE YZR İdris DOĞN ütün hklrı Editör Yyınlrın ittir. Yyınevinin izni olmksızın, kitbın tümünün vey bir kısmının bsımı, çoğltılmsı ve dğıtımı

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı

Ünite Planı Şablonu. Öğretmenin. Fatma BAĞATARHAN Yunus Emre Anadolu Lisesi. Ġnönü Mahallesi. Bingöl. Adı, Soyadı. Okulunun Adı Intel Öğretmen Progrmı Ünite Plnı Şlonu Öğretmenin Adı, Soydı Okulunun Adı Okulunun Bulunduğu Mhlle Okulun Bulunduğu Ġl Ftm BAĞATARHAN Yunus Emre Andolu Lisesi Ġnönü Mhllesi Bingöl Ünit Bilgisi Ünite Bşlığı

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

KURAL TABANLI BULANIK MODELLEME VE FİYAT TAHMİNLEME SÜRECİNDE BİR UYGULAMA

KURAL TABANLI BULANIK MODELLEME VE FİYAT TAHMİNLEME SÜRECİNDE BİR UYGULAMA T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYL BİLİMLER ENSTİTÜSÜ İŞLETME NBİLİM DLI YÖNETİM BİLİMİ PROGRMI YÜKSEK LİSNS TEZİ KURL TBNLI BULNIK MODELLEME VE FİYT THMİNLEME SÜRECİNDE BİR UYGULM Ejder YÇIN Dnışmn Prof.

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI İNŞAAT TEKNOLOJİSİ İKLİM VE MİMARİ DURUM RENK TASARIMI 582YIM446

T.C. MİLLÎ EĞİTİM BAKANLIĞI İNŞAAT TEKNOLOJİSİ İKLİM VE MİMARİ DURUM RENK TASARIMI 582YIM446 T.C. MİLLÎ EĞİTİM BAKANLIĞI İNŞAAT TEKNOLOJİSİ İKLİM VE MİMARİ DURUM RENK TASARIMI 582YIM446 Ankr, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlrınd uygulnn Çerçeve Öğretim Progrmlrınd yer ln yeterlikleri

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

"DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ

DEMOKRATİK KATILIM PLATFORMU TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" trfındn 49, Türkiye Jeoloji Kurultyı

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

İnşaat Sektörüne Özgü İş Güvenliği Yönetim Sisteminin Aksiyomatik Tasarım İlkeleriyle Oluşturulması

İnşaat Sektörüne Özgü İş Güvenliği Yönetim Sisteminin Aksiyomatik Tasarım İlkeleriyle Oluşturulması İnşt Sektörüne Özgü İş Güvenliği Yönetim Sisteminin Aksiyomtik Tsrım İlkeleriyle Oluşturulmsı Öğr. Gr. Mert UZUN (mertuzunn@gmil.com) Doç. Dr. Selçuk ÇEBİ (scebi@yildiz.edu.tr) İçindekiler Amç Yöntem Bulgulr

Detaylı

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR...

1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR, KÜMELERDE İŞLEMLER BÖLÜM: KARTEZYEN ÇARPIM, KÜME PROBLEMLERİ BÖLÜM: GERÇEK SAYILAR... İçindekiler 1. BÖLÜM: KÜMELERDE TEMEL KVRMLR, KÜMELERDE İŞLEMLER... 10. KÜMELERDE TEMEL KVRMLR... 10 B. SONLU, SONSUZ VE BOŞ KÜME... 12 C. KÜMELERİN EŞİTLİĞİ... 14 D. LT KÜME, ÖZ LT KÜME... 14 E. KÜMELERDE

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR Fund ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA iv İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR (Yüksek Lisns Tezi)

Detaylı