CC g SEMI-RIEMANN METRİKLİ DOUBLE TANJANT DEMETİN DİFERENSİYEL GEOMETRİSİ. P.A.Ü., Eğitim Fakültesi, Fen Bilgisi Öğretmenliği A.B.D.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "CC g SEMI-RIEMANN METRİKLİ DOUBLE TANJANT DEMETİN DİFERENSİYEL GEOMETRİSİ. P.A.Ü., Eğitim Fakültesi, Fen Bilgisi Öğretmenliği A.B.D."

Transkript

1 SDÜ FEN EDEBİYAT FAKÜLTESİ FEN DERGİSİ (E-DERGİ ( SEMI-RIEMANN METRİKLİ DOUBLE TANJANT DEMETİN DİFERENSİYEL GEOMETRİSİ İsmet AYHAN * A. Cean ÇÖKEN ** * P.A.Ü. Eğtm Faütes Fen Bs Öğretmenğ A.B.D. Denz Türe ** S.D.Ü. Fen-Edebat Faütes Matemat Böümü Isparta Türe e-ma: aan@pau.edu.tr cean@fef.sdu.edu.tr Aınış: 10 Maıs 2007 Kabu: 24 Em 2007 Özet: Bu çaışmada dferenseenebr br manfod üzernde br sem-remann metrğn nc mertebeden tam üsetmes e ede eden nn br sem-remann metrğ oduğu österd ve bu metrğn Lev-Cvta onesonu beşener cnsnden esapandı. Anatar emeer: Sem-Remann metr Doube tanant demet Lev-Cvta onesonu Le Parantez operatörü THE DIFFERENTIAL GEOMETRY OF DOUBLE TANGENT BUNDLE WITH SEMI-RIEMANNIAN METRIC Abstract: In ts paper t s sown tat wc s obtaned n term of te second order te compete ft of a sem-remannan metrc on a dfferentabe manfod s a sem-remannan metrc and t s cacuated te connecton coeffcents of te Lev- Cvta connecton of te ts metrc. Ke words: Sem-Remannan metrc Te doube tanent bunde Lev-Cvta connecton Le bracet operator Matematcs Subect Casfcatons (2000: 53C07 53C50 1. GİRİŞ Br Remann manfodunun tanant demet üzernde metrer onusunda çaışmaar 1950 ıarın sonarında başadı. (YANO & ISHIHARA 1970 M manfodu üzernde br Remann ve sem-remann metrğn üsetmeerne bağı oara TM manfodu üzernde metrer tanımadı ve bu metrer ardımıa TM manfodunun dferense eometrsn nceed. (OPROIU & PAPAGHIUC 1988 TM üzernde C Yano ve Isara nın tanımadığından farı br non-neer oneson uanara sem-remann metr TM manfodunun dferense eometrsn nceed. (ESİN & CİVELEK 1989 dferenseenebr br manfod üzernde fonson vetör aanı ve 1-form b teme tensör aanarının doube tanant demet üzerne tam üsetmşn ede ett. (AYHAN vd dferenseenebr br manfodun tanant demet üzernde tanımı fonson vetör aanı ve 1-formun ata üsetmşern ede ett.

2 229 İ. AYHAN A. C. ÇÖKEN (AYHAN 1997 ve (AYHAN 2006 (02 tpnden br tensör aanının nc mertebeden de ve tam üsetmeern nceed. Bu çaışmada doube tanant demetn uaranmış oa baz vetör aanarının Le parantez operatörü atında değerer esapandı. Daa sonra dferenseenebr br manfod üzernde br sem-remann metrğn nc mertebeden tam üsetmese ede eden nn br sem-remann metr oduğu österd ve bu metrğe bağı Lev-Cvta onesonu beşener cnsnden esapandı. Çaışma bounca tüm dferense eometr obeern C sınıftan dferenseenebr oduğu ve terar eden ndser üzernden topam aındığı abu edmştr. 2. TTM MANİFOLDU ÜZERİNDEKİ DİFERENSİYEL GEOMETRİK OBJELER M n-boutu br sem-remann manfod TM onun tanant demet oma üzere p M nn U açı omşuuğu üzernde artaa bağı oara M çn br oa oordnat 1 n sstem ( x = { x... x } osun. O zaman τ ( p eştğn sağaan τ : TM M M Z p = 1 / 1 anon zdüşüm oma üzere τ M ( U = U TM de τ M ({ p} notasının br açı / omşuuğudur. Böece Z p U notası çn 1 n 1 n ( x ( Z p = ( x ( p... x ( p Z p[ x ]... Z p[ x ] (1 / şende tanımı (x dönüşümü U üzernde oa br arta oup ( x ;1 n sstem TM çn ndrenmş oa oordnat sstemdr. Arıca τ TM ( A Z = Z eştğn 1 / // sağaan τ TM : TTM TM anon zdüşüm oma üzere τ TM ( U = U TTM de 1 // τ TM ({ Z} notasının br açı omşuuğudur. Böece A Z U TTM notası çn ( x z t( AZ = ( x( p ( Z z( AZ t( AZ (1 n (2 our. (xzt dönüşümünün oa oordnat fonsonarı x( p = x ( p ( Z = Z z( A Z p = A [ x ] = Z [ x ] = z ( Z ( A Z t( AZ = AZ [ ] = t ( AZ (1 n // şende tanımı oup (xzt U çn br artadır ve ( x z t ;1 n sstem TTM çn ndrenmş oa oordnat sstemdr (CİVELEK TM nn tanant demet TTM TM üzernde de dağıım oara adandırıan VTM = Çe( τ M * nteraeneben atvetör demetne saptr. TM üzernde br nonneer oneson HTM dağıımı e tanımı oup VTM nn tamamaıcısıdır. Bu dağııma TM üzernde ata dağıım denr. Böece TTM = VTM HTM (4 { ;1 n dr. Bu dret topam arışımına uaranmış TM de oa çatı δ } dr. Burada H δ δ = = = N N = (5 x δx x M (3

3 SDÜ FEN EDEBİYAT FAKÜLTESİ FEN DERGİSİ (E-DERGİ ( HTM de oa çatı ve V = = x (6 VTM de oa çatıdır. Arıca { δ dx ;1 n} oa 1-formarının sstem δ = d + N dx N = (7 oma üzere { δ ;1 n} çatısının oa dua çatısıdır (OPROIU & PAPAGHIUC TTM nn tanant demet TTTM TTM üzernde de dağıım oara adandırıan VTTM = Çe( τ TM * nteraeneben atvetör demetne saptr. TTM üzernde br nonneer oneson H TTM dağıımı e tanımı oup V TTM nn tamamaıcısıdır. Bu dağııma TTM üzernde ata dağıım denr. Böece TTTM = VTTM HTTM dr. (4 eştğnden TTTM = TM TM TM TM (8 dr. Bu dret topam arışımına uaranmış TTM de oa çatı { δ δ ;1 n} (9 dr. Burada V VTM H VTM V VTM de oa çatı de oa çatı de oa çatı ve δ δ = x = = x t (10 δ = = z (11 x δ = x H HTM de oa çatıdır. Arıca = x = z z t t { t z ( dx = ( dx δz = ( dx t = ( dx ;1 } + z ( (12 } t { dx = δ δ n (14 oa 1-formarının sstem δ δz δt = d = dz + + z dx dx = { t + z ( } dx { δ ;1 n + z d + dz + dt oma üzere δ } çatısının uaranmış oa dua çatısıdır (AYHAN vd Teorem 2.1 TTM manfodunun oa baz vetör aanarı e uaranmış oa dua baz 1-formarı arasında 1 n çn (13 (15

4 231 δt ( = δ δ ( δ = δz ( δ = v dx ( = δ δ δ İ. AYHAN A. C. ÇÖKEN oup dua baz 1-formarın dğer tüm oa baz vetör aanarı üzernde adıarı değer sıfırdır. İspat: Doğrudan esapamaar ardımıa dx ( = d ( = dz ( = 0 oduğundan t t t δ t ( = = t ( δt = { t + z ( } dx + z d + dz + dt ( δ dr. ( de verener ve dx ( = 0 eştğnden ( d dx + z δ δ ( δ = = t ede edr. (( de verener ve dx ( = 0 oduğundan z δ z ( δ = ( dz + z dx = δ z t buunur. v ((ve ( de verenerden dx ( dx ( = z { t + z ( } = δ x z t ede edr. TTM nn dua baz 1-formarının dğer oa baz vetör aanarı üzernde değerer sıfırdır. Teorem 2.2 M fat sem-remann manfodu ve Crstoffe semboer oma üzere TTM manfodu üzernde uaranmış oa baz vetör aanarının Le parantez operatörü atında sıfırdan farı değerer dr. [ δ ] = δ [ δ ] = δ [ ] = İspat: TTM manfodu üzernde non-neer oneson atsaıarı N = Z = z T = t osun. (12 ve (13 eşternden (16 (17

5 SDÜ FEN EDEBİYAT FAKÜLTESİ FEN DERGİSİ (E-DERGİ ( [ δ ] = [ x N Z z { T + z ( ( N N ( Z = + N x t t z z ( z ( T ( + N z t t = + z t t R δ ( } t ( + M fat sem-remann manfodu oduğu çn Remann eğr tensörü üzden [ δ ] = δ our. (11 ve (13 eşternden [ δ ] = [ N Z x z = δ + z R = δ our. (10 ve (13 eşternden [ ] = [ x N = Z { T R z + z = 0 { T ( + z ( } t z R } t N ] t sıfırdır. Bu Z ] t buunur. Benzer esapamaar ardımıa dğer baz vetör aanarının farı ruparının Le parantez operatörü atında amış oduarı değerern sıfır oduğu örüebr. 3. TTM ÜZERİNDE SEMI-RIEMANN METRİĞİ Bu böümde (M fat sem-remann manfodunun doube tanant demet üzernde ede eden nn bazı şartar atında e eşt oduğu österd ve TTM nn uaranmış çatısına öre beşener cnsnden fade edd. Arıca nn TTM üzernde br sem-remann metr oduğu österd. Son oara (TTM sem- Remann manfodunun Lev-Cvta onesonu beşener cnsnden esapandı. Teorem 3.1 M de br sem-remann metr ve sırasıa M de ve TM de Lev- Cvta onesonarı se = dır. İspat: M de (02 tpnde br metr tensörünün TM e ata üsetmş H C = γ ( (18 oup onesonun metre bağdaşabme özeğnden H C = (19 dr (YANO & ISHIHARA (19 eştğnden t ]

6 233 İ. AYHAN A. C. ÇÖKEN CH = (20 C metrğnn TTM e ata üsetmş CH C dır. TM de (02 tpnde = = γ ( C oup nın metrğ e bağdaşabme özeğnden C = 0 dır. Bu nedene = dır. Teorem 3.2 M de br sem-remann metr ve sırasıa M de ve TM de Lev-Cvta onesonarı oma üzere nn nc mertebeden ata üsetmş nn TTM nn uaranmış çatısına öre beşener cnsnden fades = 2 ( δz δ + 2( dx δt (21 dr. İspat: : M manfodu üzernde P Q tensör çarpımının ata üsetmş H V H H V ( P Q = P Q + P Q (22 ve M de Lev-Cvta onesonu oma üzere f fonsonun ata üsetmş H f = 0 (23 dır (YANO & ISHIHARA (22 eştğnden araranara ( P Q = P Q + P Q + P Q + P Q (24 buunur. (23 den f = f = 0 (25 dr. Arıca f = 0 (26 dır (AYHAN vd (14 (24 (25 ve (26 eşternden = = 2 ( δz δ + 2( dx δt ede edr. Teorem 3.3 (M sem-remann manfodu se (TM sem-remann manfodudur. İspat: TTM C manfodu üzernde vetör aanarının cümes χ (TTM ve ree değer C fonsonarın aası C ( TTM R oma üzere : χ ( TTM χ( TTM C ( TTM R (27 dönüşümü (16 da eşter öz önüne aınırsa ( X Y = ( X Y = ( ( X Y (28 ( X Y = ( X Y = ( ( X Y oup dğer vetör aanarı üzernde değerer sıfır oaca şede tanımıdır. (TM nn sem-remann manfodu oması çn nn aşağıda şartarı sağaması erer. 2-Lneer: X Y Z χ( M vetör aanarının nc mertebeden üsetmşer X Y Z χ(ttm osun. α β R çn α X + β Y vetör aanın (8 de dret topam arışımı cnsnden fades

7 SDÜ FEN EDEBİYAT FAKÜLTESİ FEN DERGİSİ (E-DERGİ ( α X + βy = ( αx + βy + ( αx + βy + ( αx + βy + ( αx + βy oup (28 den ( αx βy ( αx βy ( αx βy Z = Z Z Z ( αx + βy + ( αx + βy = α ( X Z + β ( Y Z 1. ere öre neerdr. Benzer şemer ardımıa 2. ere öre de neer oduğu örüebr. Smetr : X Y (8 de dret topam arışımı uanıara ( X Y = ( Y X oduğundan metrğ smetrtr. Non-deenere : X χ ( TTM ve Y = Y çn ( X Y = ( X + X + X + X Y = ( X Y = ( ( X Y = 0 eştğnden Y = 0 ede edr. Benzer şemer ardımıa Y Y Y vetör aanarı çn de sıfır sonucu ede edr. Böece X χ ( TTM çn ( X Y = 0 en Y = 0 oduğundan metrğ non-deeneredr. Buna öre (TTM br sem-remann manfodudur. + Z Teorem 3.4 (M fat sem-remann manfodu ve (TTM sem-remann manfodunun Lev-Cvta onesonu se nn uaranmış oa bazara öre beşener cnsnden fades = δ = δ = δ oup dğer tüm beşener sıfırdır. δ = δ = İspat: 1 n çn n+ 2n+ 3n+ = n+ + n+ + n+ + n+ 3 3 δ 3 δ 3 osun. Kozsu formüünden 2 ( ( ( ( = ( [ ] + ( [ ] + ( [ ] our. (16 (17 (21 ve (28 eşternden

8 our. sıfırdır. Böece 2 3n+ ( 3n+ 3n+ 2 3n+ 3n+ 3n+ = 3n+ 3n+ δ ve δ = İ. AYHAN A. C. ÇÖKEN = = = { + } e Kozsu formüünde şeme souduğunda sonuç oduğu örüür. beşener de benzer esapamaar ardımıa ede edebr. Lev-Cvta onesonunun dğer KAYNAKLAR AYHAN İ Dervasonar ve tensör aanarının nc mertebeden fter Yüse Lsans Tez PAÜ Fen Bmer Ensttüsü Denz 67s AYHAN İ. ÇÖKEN A. C. CİVELEK Ş Tanant demet üzernde orzonta fter III. Geometr Sempozumu Osmanaz Ünverstes 4-6 Temmuz 2005 Esşer AYHAN İ Sem-Remann manfodarın tanant ve otanant demeternn eometrs üzerne Dotora Tez S.D.Ü Fen Bmer Ensttüsü Isparta 142s ESİN E. CİVELEK Ş Te fts on te second order tanent bundes Jour. Matematcs and Stattcs Facut of Arts and Scence. Gaz Unverst Vo OPROIU V. PAPAGHIUC N On te eometr of tanent bunde of a (pseudo-remannan manfod Annae Stnt. Unverst A. I. Cuza Ias Ser. Noua Mat. 36 No YANO K. ISHIHARA S Tanent and Cotanent Bundes Marce Decer. Inc. New Yor 392p

SEMİ-RİEMANN MANİFOLDLARIN TANJANT VE. İsmet AYHAN DOKTORA TEZİ

SEMİ-RİEMANN MANİFOLDLARIN TANJANT VE. İsmet AYHAN DOKTORA TEZİ SEMİ-RİEMANN MANİFOLDLARIN TANJANT VE KOTANJANT DEMETLERİNİN GEOMETRİSİ ÜZERİNE İsmet AYHAN DOKTORA TEZİ MATEMATİK ANABİLİM DALI ISPARTA 2006 T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

Coisotropik Altmanifoldu

Coisotropik Altmanifoldu S Ü Fen Ed Fak Fen Der Sayı 27 2006 7-24 O arı-setrk etrc neksynu arı-eann anfdunun Cstrk tanfdu Er Ş uğa Ünrstes Ua..O. Ua uğa Özet: u akaede yarı-setrk etrc kneksynu yarı-eann anfdunun cstrk atanfd çaışıdı.

Detaylı

22. Eleman tipleri ve matrisleri

22. Eleman tipleri ve matrisleri . Eeman tper ve matrser. Eeman tper ve matrser Kuvvet metodunda uanıabece eeman tper sınırıdır. Przemnec' ana ayna aınmıştır. Çubu(düzem/uzay afes, çerçeve) ve yüzeyse eemanarın (evha ve pa ) denge, esne,

Detaylı

MEKANSAL VERİ ANALİZİNDE POINT IN POLYGON TESTİ

MEKANSAL VERİ ANALİZİNDE POINT IN POLYGON TESTİ MEKANSAL VERİ ANALİZİNDE POINT IN POLYGON TESTİ İ. Öztuğ BİLDİRİCİ Seçu Ünverte Mühend Mmarı Faüte Jeodez ve Fotogrametr Mühendğ Böümü, 4203 Kampü KONYA, ema: bdrc@ecu.edu.tr Özet: Coğraf bg temernde meana

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon K Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 16 (2016) 021304(256 264) AKU J. Sci. Eng. 16 (2016) 021304(256

Detaylı

16. Dörtgen plak eleman

16. Dörtgen plak eleman 16. Ddörtgen pla eleman 16. Dörtgen pla eleman Kalınlığı dğer boyutlarına göre üçü ve düzlemne d yü etsnde olan düzlem taşıyıcı ssteme pla denr. Yapıların döşemeler, sıvı deposu yan duvarları ve öprü plaları

Detaylı

uzayında vektörler olarak iç çarpımlarına eşittir. Bu iç çarpım simetrik ve hem w I T s formuna karşılık gelir. Buna p u v u v v v

uzayında vektörler olarak iç çarpımlarına eşittir. Bu iç çarpım simetrik ve hem w I T s formuna karşılık gelir. Buna p u v u v v v 1. Temel Form: Brnc temel form geometrk olarak yüzeyn çnde blndğ zayına gtmeden yüzey üzernde ölçme yamamızı sağlar. (Eğrlern znlğ, teğet ektörlern açıları, bölgelern alanları gb) S üzerndek ç çarım, br

Detaylı

İÇİNDEKİLER 3. GAUNT KATSAYILARI 22

İÇİNDEKİLER 3. GAUNT KATSAYILARI 22 İÇİNDEKİLER. GİRİŞ. KOMPLEKS KÜRESEL HARMONİKLER 6.. Hdrojen Atounda Eetronun Bağı Hareet 6.. Eetronun Bağı Hareet İçn azıan Schrödnger Denenn Kürese Koordnatarda Çözüü 7.. Açısa Kısın Çözüü 9.4. Kürese

Detaylı

T.C. HEİSENBERG GRUBUNUN GEOMETRİSİ VE HEİSENBERG GRUBUNDA ÖZEL

T.C. HEİSENBERG GRUBUNUN GEOMETRİSİ VE HEİSENBERG GRUBUNDA ÖZEL T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HEİSENBERG GRUBUNUN GEOMETRİSİ VE HEİSENBERG GRUBUNDA ÖZEL EĞRİLER HÜLYA BAŞEĞMEZ YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR AĞUSTOS - 2011

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BİHARMONİK EĞRİLER

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BİHARMONİK EĞRİLER .C. BALIKESİR ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ MAEMAİK ANABİLİM DALI BİHARMONİK EĞRİLER YÜKSEK LİSANS EZİ ESİN KESEN BALIKESİR, OCAK - 03 .C. BALIKESİR ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ MAEMAİK ANABİLİM

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

HACİM HESAPLARI. Toprak İşlerinde Karşılaşılan Hacim Hesapları

HACİM HESAPLARI. Toprak İşlerinde Karşılaşılan Hacim Hesapları 03..04 İnşaat Mühendisiği Böümü HACİM HEAPLARI Hacim hesabı, İnşaat Mühendisiğinde apıan toprak işerinin temeini ouşturur. Zira, toprak işeri ödemeeri, hacim (m 3 ) bazında apıır. oprak İşeri ers Notarı

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI YÜKSEK LİSANS PROGRAMI YÜKSEK LİSANS PROGRAMI BİRİNCİ YIL BİRİNCİ YARIYIL MAT-5501 UZMANLIK ALAN DERSİ Z 8 0 8 0 9 MAT-5601 TEZ HAZIRLIK ÇALIŞMASI Z 0 1 1 0 1 20 1 21 12 30 İKİNCİ YARIYIL MAT-5502 UZMANLIK ALAN DERSİ Z 8 0 8

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI DOKTORA PROGRAMI

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAŞKANLIĞI DOKTORA PROGRAMI DOKTORA PROGRAMI BİRİNCİ YIL BİRİNCİ YARIYIL ADI MAT-6501 UZMANLIK ALAN DERSİ Z 8 0 8 0 9 MAT-6601 TEZ HAZIRLIK ÇALIŞMASI Z 0 1 1 0 1 20 1 21 12 30 İKİNCİ YARIYIL ADI MAT-6502 UZMANLIK ALAN DERSİ Z 8 0

Detaylı

Kitap. x ve y birer tam sayı olmak üzere, (5x- 1) bir çift sayı, (7y + 5) bir tek sayı oldu una göre, a aıdakilerden hangisi çift sayıdır? x.

Kitap. x ve y birer tam sayı olmak üzere, (5x- 1) bir çift sayı, (7y + 5) bir tek sayı oldu una göre, a aıdakilerden hangisi çift sayıdır? x. Oı ıo o MATEMATK a Ders Föü '. o Yoyın orı _ - Effectve rııoaoa Ktap Ortaö retm Aanr MF eıs a o Bu ktapcı ın her hakkı sakıdır. Tüm hakarı es Yayınarı'na attr. Kısmen de otse at nı yapıamaz. Metn ve sorutar.

Detaylı

İçerik. Fizik 101-Fizik I

İçerik. Fizik 101-Fizik I Fizik 101-Fizik I 2013-2014 Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332-4392 İçerik Yerdeğiştirme, Hız ve Sürat Ani Hız ve Sürat İvme Hareket Diyagramları

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

ITAP_Fizik Olimpiyat Okulu

ITAP_Fizik Olimpiyat Okulu Ttreş_ ITAP FOO: art-6 art 4 Opat Konu Sınaı. Açıa hızarı büüü oara anı, öner e zıt e br brne parae oan ata ndr ütünde ndrern eenne d oara üte oan br tahta buunatadır. Sndrern erezer araında eafe L, tahta

Detaylı

ISI TRANSFERĠ-1 DÖNEM SONU ÖRNEK SORU ÇÖZÜMÜ

ISI TRANSFERĠ-1 DÖNEM SONU ÖRNEK SORU ÇÖZÜMÜ ISI RANSFERĠ- DÖNEM SONU ÖRNEK SORU ÇÖZÜMÜ B.Ü. Makine Mühendisiği Böümü Vokan Asan 04/05 Güz Dönemi Sınır ġartarı - ISI AġINIMLI SINIR ġari: h, 0 d ( r0 ) k h0 ( r0) ( aşınım Sınır Şartı) dr - IġINIMLI

Detaylı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı

Titreşim_1 ITAP FOO: 04 Mart 2014 Olimpiyat Konu Sınavı Titreşi_ ITAP FOO: art Oipiyat Konu Sınavı. Şeidei esne, hafif ütei tahtanın ucunda buunan sporcu ağırına tahtanın ucunun yerine aşağı doğru h.5 adar değiştiriyor. Tahtanın dene onuuna öre titreşi periyotunu

Detaylı

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim 3.Seviye Deneme Sınavı TAP_1_14_011 Titreşim 1. Notasa bir cisim şeidei çemberin A notasından sıfır i hızı ie AB doğrutuda yer çeim aaında hareet etmetedir. Çemberin çapı BC= ye eşit oduğuna öre cisim

Detaylı

Bölüm Đçi Seminer Çalışması. GPS de Matematik Modeller. Hazırlayan : Araş.Gör. Orhan KURT. Zonguldak, 1998

Bölüm Đçi Seminer Çalışması. GPS de Matematik Modeller. Hazırlayan : Araş.Gör. Orhan KURT. Zonguldak, 1998 GPS de Mtemt Modeer / Đçndeer Grş... MÜHEDĐSLĐK FKÜLTESĐ JEODEZĐ VE FOTOGMETĐ MÜHEDĐSLĐĞĐ ÖLÜMÜ GPS Gözemer... GPS de ht Kynrı... GPS Öçüer Đe Konum ereme.... Mut Konum ereme.... ğı Konum ereme (etve Postonng).....

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

MINKOWSKI 4-UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER

MINKOWSKI 4-UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MINKOWSKI -UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER YÜKSEK LİSANS TEZİ Smge DAĞLI Anablm Dalı Matematk Anablm Dalı Programı Geometr Tez Danışmanı Yrd. Doç.

Detaylı

ANKARA ÜN IVERS ITES I FEN B IL IMLER I ENST ITÜSÜ DOKTORA TEZ I. Ismail GÖK MATEMAT IK ANAB IL IM DALI ANKARA 2010.

ANKARA ÜN IVERS ITES I FEN B IL IMLER I ENST ITÜSÜ DOKTORA TEZ I. Ismail GÖK MATEMAT IK ANAB IL IM DALI ANKARA 2010. ANKARA ÜN IVERS ITES I FEN B IL IMLER I ENST ITÜSÜ DOKTORA TEZ I KONTAK GEOMETR IDE YÜZEYLER TEOR IS I Ismail GÖK MATEMAT IK ANAB IL IM DALI ANKARA 200 Her hakk sakl d r TEZ ONAYI Ismail GÖK taraf ndan

Detaylı

HASAR GÖREBİLİRLİK MODELLERİNİN DOĞRULANMASI İÇİN YENİ BİR YAKLAŞIM

HASAR GÖREBİLİRLİK MODELLERİNİN DOĞRULANMASI İÇİN YENİ BİR YAKLAŞIM 2. Türye Deprem Mühendsğ ve Ssmoo Konferansı 25-27 Eyü 203 MKÜ HATAY ÖZET: HASAR GÖREBİLİRLİK MODELLERİNİN DOĞRULANMASI İÇİN YENİ BİR YAKLAŞIM U. Yazgan ve S. Günay 2 Yrd.Doç.Dr., Deprem Mühendsğ ve Afet

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

HERHANGİ BİR NOKTASINDAN BASİT MESNETLİ ANKASTRE BİR KİRİŞİN FREKANS CEVABI FONKSİYONUNUN BULUNMASI

HERHANGİ BİR NOKTASINDAN BASİT MESNETLİ ANKASTRE BİR KİRİŞİN FREKANS CEVABI FONKSİYONUNUN BULUNMASI 0.UUSA MAKİNE EORİSİ SEMPOZYUMU Seçuk Ünverstes, Konya, Eyü 00 HERHANGİ BİR NOKASINDAN BASİ MESNEİ ANKASRE BİR KİRİŞİN FREKANS CEVABI FONKSİYONUNUN BUUNMASI H. Ero ve M. Gürgöze İ..Ü. Makna Fakütes, Gümüşsuyu,

Detaylı

02 Mayıs 2007 tarih ve 26510 sayılı Resmi Gazetede yayımlanarak yürürlüğe girmiştir.

02 Mayıs 2007 tarih ve 26510 sayılı Resmi Gazetede yayımlanarak yürürlüğe girmiştir. Enerji Verimiiği 5627 SAYILI ENERJİ VERİMLİLİĞİ KANUNU; 02 Mayıs 2007 tarih ve 26510 sayıı Resmi Gazetede yayımanarak yürürüğe girmiştir. Enerji Verimiiği: Binaarda yaşam standardı ve hizmet kaitesinin,

Detaylı

Alsancakıizmir/TÜRKiYE Tel :+90(232)464 30 40 (PBX) Fax:+90(232)464 39 19. Web site : http://www.hlbsaygin.com.lre-posta:mailbox@hlbsaygin.com.

Alsancakıizmir/TÜRKiYE Tel :+90(232)464 30 40 (PBX) Fax:+90(232)464 39 19. Web site : http://www.hlbsaygin.com.lre-posta:mailbox@hlbsaygin.com. ID!B Saygın Yemini Mai Müşavirik ve Bağımsız Denetim A.Ş. Rapor N : SYMM 116/1795-184 BÜYÜME AMAÇLI HİsSE SENEDİ EMEKLİLİK YATIRIM FONU'NUN YATIRIM PERFORMANSI KONUSUNDA KAMUYA AÇIKLANAN BİLGİLERE İLİşKİN

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

DESTEK VEKTÖR MAKİNELERİ İLE SES TANIMA UYGULAMASI

DESTEK VEKTÖR MAKİNELERİ İLE SES TANIMA UYGULAMASI DESEK VEKÖR MAKİNELERİ İLE SES ANIMA UYGULAMASI Pamukkae Ünverstes Fen Bmer Ensttüsü Yüksek Lsans ez Eektrk-Eektronk Mühendsğ Anabm Daı Osman ERAY Danışman:Doç. Dr. Serdar İPLİKÇİ Ağustos 2008 DENİZLİ

Detaylı

Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt Manifoldlarının Varlık Problemi

Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt Manifoldlarının Varlık Problemi Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Derisi Cilt 33, Sayı, 07 0 Erciyes Unirsity Journal of atural and Applied Sciences Volume 33, Issue, 07 Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt

Detaylı

ITAP_Exam_20_Sept_2011 Solution

ITAP_Exam_20_Sept_2011 Solution ITAP_Exam Sept_ Soluton. Şekldek makara sstem aff kütlel makaralardan, mükemmel pten ve kütleler şeklde şaretlenen csmlerden oluşmaktadır. Sürtünmey mal ederek O makaranın eksennn vmesn bulunuz. İpn makaralara

Detaylı

KENMOTSU F.PK-MANİFOLDLAR. Ramazan SARI YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2010 ANKARA

KENMOTSU F.PK-MANİFOLDLAR. Ramazan SARI YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2010 ANKARA KENMOTSU F.PK-MANİFOLDLAR Ramazan SARI YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2010 ANKARA Ramazan SARI tarafından hazırlanan KENMOTSU F.PK-MANİFOLDLAR adlı bu tezin

Detaylı

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar

MIT Açık Ders Malzemesi İstatistiksel Mekanik II: Alanların İstatistiksel Fiziği 2008 Bahar MIT Açık Ders Malzemesi http://ocw.mit.ed 8.334 II: Alanların İstatistiksel Fiziği 8 Bahar B malzemeye atıfta blnmak ve Kllanım Şartlarımızla ilgili bilgi almak için http://ocw.mit.ed/terms ve http://tba.acikders.org.tr

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

İNVOLÜT B-SCROLL ÜZERİNE YENİ BİR BAKIŞ. Süleyman ŞENYURT * Ordu Üniversitesi, Fen Edebiyat Fakültesi,Matematik Bölümü, Ordu

İNVOLÜT B-SCROLL ÜZERİNE YENİ BİR BAKIŞ. Süleyman ŞENYURT * Ordu Üniversitesi, Fen Edebiyat Fakültesi,Matematik Bölümü, Ordu Ordu Üniv. Bil. Tek. Derg.,Cilt:4,Sayı:1,014,59-74/Ordu Univ. J. Sci. Tech.,Vol:4,No:1,014,59-74 İNVOLÜT B-SCROLL ÜZERİNE YENİ BİR BAKIŞ ÖZET Süleyman ŞENYURT * Ordu Üniversitesi, Fen Edebiyat Fakültesi,Matematik

Detaylı

BÖLÜM 5 İNCE PROFİLLER İÇİN SAYISAL UYGULAMALAR

BÖLÜM 5 İNCE PROFİLLER İÇİN SAYISAL UYGULAMALAR BÖLÜM 5 İE PROFİLLER İÇİ SAYISAL UYGULAMALAR 5. Grş 5. İne profl teors 5.. Analt çözümler 5.. Kamburlu eğrsne polnom şelnde eğr uydurulması 5.. Fourer ntegrallernn sayısal hesabı 5. Kümelenmş-grdaplar

Detaylı

MOD SÜPERPOZİSYONU İLE ZAMAN TANIM ALANINDA ÇÖZÜM

MOD SÜPERPOZİSYONU İLE ZAMAN TANIM ALANINDA ÇÖZÜM Nur ÖZHENEKCİ O SÜPERPOZİSYONU İLE ZAAN ANI ALANINA ÇÖZÜ Aşağıda açılanaca olan ortogonall özelllernn sağlandığı yapılar çn, zaman tanım alanında çözüm, her mod çn ayrı ayrı yapılıp daha sonra bu modal

Detaylı

Tonaj ve Fribord (Tonnage and Freeboard)

Tonaj ve Fribord (Tonnage and Freeboard) Tonaj ve Fribord (Tonnage and Freeboard) Prof. Dr. Tamer YILMAZ GEMİ MÜHENDİSLİĞİNE GİRİŞ 2008, Tamer Yımaz TONAJ (Tonnage) Gemier, tiperine bağı oarak hacimse (Gros, Net) veya ağırık oarak (Dispacement,

Detaylı

KESİCİ TAKIM AŞINMA DURUMUNUN YAPAY SİNİR AĞI KULLANILARAK BELİRLENMESİ

KESİCİ TAKIM AŞINMA DURUMUNUN YAPAY SİNİR AĞI KULLANILARAK BELİRLENMESİ KESİCİ TAKIM AŞIMA DURUMUU YAPAY SİİR AĞI KULLAILARAK BELİRLEMESİ Murat SÖMEZ H.Metn ERTUC 2 Chan KARAKUZU 3,3 Eetron ve Habereşe Mühendsğ Böüü Kocae Ünverstes, 4040, Kocae 2 Meatron Mühendsğ Böüü Kocae

Detaylı

2.Seviye ITAP 13 Kasım_2011 Sınavı

2.Seviye ITAP 13 Kasım_2011 Sınavı .Seviye ITAP 3 Kası_ Sınavı.Yüksekiği h6 oan bir çatıdan kütesi 45k oan bir ağırık bir kanata indirieidir. Kanatın taşıyabieceği aksiu erii T a 4N oduğuna öre yük yere nası bir şekide indirieidir? Yük

Detaylı

2013 SBS (ORTAÖĞRETİME GEÇİŞTE TEK SINAV YENİ SİSTEM)

2013 SBS (ORTAÖĞRETİME GEÇİŞTE TEK SINAV YENİ SİSTEM) 2013 SBS (ORTAÖĞRETİME GEÇİŞTE TEK SINAV YENİ SİSTEM) (Şubat 2011-2641 Miî Eğitim Bakanığı Tebiğer Dergisi 113 Değişikikeri ie) 2012-2013 öğretim yıından itibaren 8. sınıfta uyguanacak oan yeni sistemde

Detaylı

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında

f(t)e st dt s > 0 Cebirsel denklem s- tanım bölgesi L 1 Unutulmamalıdır ki, farklı türden tanım ve değer uzayları arasında Bölüm #2 Laplace Dönüşümü F (s) = f(t)e st dt s > şeklinde tanımlanan dönüşüme LAPLACE dönüşümü adı verilir ve kısaca L{f(t)} ile sembolize edilir. Diferansiyel denklemlerin Çözümünde Laplace dönüşümü

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ

DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ KİMLİK VE İLETİŞİM BİLGİLERİ Unvanı Adı Soyadı E posta Prof. Dr. Erhan ATA erhan.ata@dpu.edu.tr Telefon 507 7631676 Dumlupınar Ün. Evliya Çelebi Yerleşkesi

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DEJENERE HELİSLER ÜZERİNE

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DEJENERE HELİSLER ÜZERİNE T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DEJENERE HELİSLER ÜZERİNE Zafer ŞANLI Danışman: Prof. Dr. A. Ceylan ÇÖKEN YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI ISPARTA-2009 Fen Bilimleri

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

( k) Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı. x 1, 1 1. Aşama: Belleğin Oluşturulması. n Aşama: Anımsama

( k) Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı. x 1, 1 1. Aşama: Belleğin Oluşturulması. n Aşama: Anımsama Hatıratma Kaıa Hücre Moe: McCoch-Ptts Örütüer: { } Arı Zama Hoe Ağı e Çağrışımı Bee Tasarımı, { }. Aşama: Beeğ Oştrması s brşe ar!! > 0 < 0 bot, tae ere araraara beeğ oştrma ç ağırıar bereme Her öro çıışı

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI DOKTORA TEZİ METRİK UZAYLARDA BAZI SABİT NOKTA TEOREMLERİ VE UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI DOKTORA TEZİ METRİK UZAYLARDA BAZI SABİT NOKTA TEOREMLERİ VE UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI DOKTORA TEZİ METRİK UZAYLARDA BAZI SABİT NOKTA TEOREMLERİ VE UYGULAMALARI Özlem ACAR MAYIS 2016 Matematik Anabilim Dalında Özlem ACAR

Detaylı

II.1 KUVVETLER -VEKTÖRLER-SISTEM

II.1 KUVVETLER -VEKTÖRLER-SISTEM II. KUVVETLE -VEKTÖLE-SISTEMİ: Brden fazla kuvvet ya da vektörden meydana gelmş br sstemdr. Bz bu sstemden bahsederken vektörler sstem yerne kuvvetler sstem dye bahsedeceğz. Br kuvvetler sstemn belrleyen

Detaylı

RANKI İKİ OLAN SERBEST METABELYEN LİE CEBİRLERİ İÇİN BİR KOMUTATÖR TESTİ

RANKI İKİ OLAN SERBEST METABELYEN LİE CEBİRLERİ İÇİN BİR KOMUTATÖR TESTİ ANKI İKİ OLAN SEBEST METABELYEN LİE CEBİLEİ İÇİN Bİ KOMUTATÖ TESTİ Zerrn ESMELİGİL Çukurova Ünverstes, Matematk Bölümü, Adana, 033386084-45, 033386070, e-zerrn@cu.edu.tr ÖZET. Bu çalışmada rankı k olan

Detaylı

Bu kitapc ln her hakkı sakhdır. Tüm haktarl eis Yayınları'na aıttir. Kısmen de oısa al ntt

Bu kitapc ln her hakkı sakhdır. Tüm haktarl eis Yayınları'na aıttir. Kısmen de oısa al ntt ı MATEMAT fö s o. )ers röyü Yoyınorı ' Effectve a-oııoaaa ^ nstructng System Bu ktapc n her hakkı sakhdır. Tüm haktar es Yayınarı'na aıttr. Kısmen de oısa a ntt Ortaö retm Aanr yapıamaz. Metn ve soruar,

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

Açık Poligon Dizisinde Koordinat Hesabı

Açık Poligon Dizisinde Koordinat Hesabı Açık Polon Dzsnde Koordnat Hesabı Problem ve numaralı noktalar arasında açılacak tüneln doğrultusunu belrlemek amacıyla,,3,4, noktalarını çeren açık polon dzs tess edlmş ve şu ölçme değerler elde edlmştr.

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 + DÜZCE ÜN_IVERS_ITES_I FEN-EDEB_IYAT FAKÜLTES_I MATEMAT_IK BÖLÜMÜ 010-011 Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 011 Süre: 90 dakika CEVAP ANAHTARI 1. 0p x d y + dy + xy = 0 diferansiyel

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 1 s Ocak 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 1 s Ocak 2005 DEÜ MÜHENDİSİK FAKÜTESİ FEN ve MÜHENDİSİK DERGİSİ Clt: 7 Sayı: s. 7-85 Oca 5 ÜÇ BOYUTU BİR ÇERÇEVENİN UZAYSA VE DÜZEMSE STATİK YAPISA DAVRANIŞARININ KIYASANMASI (THE COMPARISON BETWEEN THE SPACE AND PANAR

Detaylı

LİNEER VEKTÖR ALANLARI VE GEOMETRİK UYGULAMALARI. Türkan YAYLACI ANKARA Her hakkı saklıdır

LİNEER VEKTÖR ALANLARI VE GEOMETRİK UYGULAMALARI. Türkan YAYLACI ANKARA Her hakkı saklıdır ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ LİNEER VEKTÖR ALANLARI VE GEOMETRİK UYGULAMALARI Türkan YAYLACI MATEMATİK ANABİLİM DALI ANKARA 2006 Her hakkı saklıdır ÖZET Yüksek Lisans

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

T.C. SEMI-RIEMANNIAN UZAYLARINDA BAZI ÖZEL EĞRİLERİN GEOMETRİSİ DOKTORA TEZİ

T.C. SEMI-RIEMANNIAN UZAYLARINDA BAZI ÖZEL EĞRİLERİN GEOMETRİSİ DOKTORA TEZİ T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SEMI-RIEMANNIAN UZAYLARINDA BAZI ÖZEL EĞRİLERİN GEOMETRİSİ Mehmet GÖÇMEN DOKTORA TEZİ MATEMATİK ANABİLİM DALI MALATYA Haziran 2012 Tezin Başlığı : Semi-Riemannian

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Bayazıt, Brsen Yayınev, 007, İstanbul se se da Brm kanal küçük gen kestl br kanalda, 1.14. KANAL EGIMI TANIMLARI Brm kanal genşlğnden geçen deb q se, bu q

Detaylı

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir.

LAMBALAR BÖLÜM X 6. X MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER. K anahtarı açık iken: Z ve T lambaları yanar. X ve Y lambaları = 2 dir. ÖÜ 0 ODE SOU 1 DE SOUN ÇÖÜE anahtarı açık ken: ve lambaları yanar. ve lambaları yanmaz. N 1 = dr. 1. 3 1 4 5 6 al nız lam ba sı nın yan ma sı çn 4 ve 6 no lu anah tar lar ka pa tıl ma lı dır. CE VP. U

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ YÜZEYLERE DAİR BAZI DİFERENSİYEL GEOMETRİK EŞİTSİZLİKLER. Serpil KARAGÖZ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ YÜZEYLERE DAİR BAZI DİFERENSİYEL GEOMETRİK EŞİTSİZLİKLER. Serpil KARAGÖZ ANKARA ÜNİVERSİTESİ FEN BİLİLERİ ENSTİTÜSÜ DOKTORA TEZİ YÜZEYLERE DAİR BAZI DİFERENSİYEL GEOETRİK EŞİTSİZLİKLER Serpil KARAGÖZ ATEATİK ANABİLİ DALI ANKARA 7 Her hakkı saklıdır ÖZET Doktora Tezi YÜZEYLERE

Detaylı

2) ÇELİK YAPILARDA BİRLEŞİMLER

2) ÇELİK YAPILARDA BİRLEŞİMLER ) ÇELİK YAPILARDA BİRLEŞİMLER Çeik yapıarda kuanıan hadde ürüneri için, aşağıdaki sebepere bireşimer yapıması gerekmektedir. Farkı taşıyıcı eemanarın (koon-koon, koon-kiriş, diyagona-koon, kiriş-kiriş,

Detaylı

: : KOCAELİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ/MATEMATİK ANABİLİM DALI

: : KOCAELİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ/MATEMATİK ANABİLİM DALI CİHAN ÖZGÜR PROFESÖR E-Posta Adresi Telefon (İş) Telefon (Cep) Faks :cihanozgur@yahoo.com : : 2666121000 : 2666121215 Adres : BALIKESİR ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ, MATEMATİK BÖLÜMÜ, BALIKESİR

Detaylı

DÜZGÜN QUASI-LIPSCHITZIAN DÖNÜŞÜMLERİN SONSUZ AİLELERİNİN ORTAK SABİT NOKTALARINA YENİ YAKLAŞIM METOTLARI Süheyla ELMAS Doktora Tezi Matematik

DÜZGÜN QUASI-LIPSCHITZIAN DÖNÜŞÜMLERİN SONSUZ AİLELERİNİN ORTAK SABİT NOKTALARINA YENİ YAKLAŞIM METOTLARI Süheyla ELMAS Doktora Tezi Matematik DÜZGÜN QUASI-LIPSCHITZIAN DÖNÜŞÜMLERİN SONSUZ AİLELERİNİN ORTAK SABİT NOKTALARINA YENİ YAKLAŞIM METOTLARI Süheyla ELMAS Doktora Tezi Matematik Anabilim Dalı Analiz ve Fonksiyonlar Teorisi Bilim Dalı Prof.

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

YGS 1 PUAN OLUŞUMU ÇORLU İMKB ANADOLU ÖĞRETMEN LİSESİ REHBERLİK SERVİSİ TÜRKÇE 20% FEN BİLİMLERİ 30% SOSYAL BİLİMLER 10% TEMEL MATEMATİK 40%

YGS 1 PUAN OLUŞUMU ÇORLU İMKB ANADOLU ÖĞRETMEN LİSESİ REHBERLİK SERVİSİ TÜRKÇE 20% FEN BİLİMLERİ 30% SOSYAL BİLİMLER 10% TEMEL MATEMATİK 40% YGS 1 PUAN OLUŞUMU 30% 20% 40% YGS 2 PUAN OLUŞUMU 20% 40% 30% YGS 3 PUAN OLUŞUMU 20% 40% 30% YGS 4 PUAN OLUŞUMU 30% 20% 40% YGS 5 PUAN OLUŞUMU 37% 33% 20% YGS 6 PUAN OLUŞUMU 20% 33% 37% MF 1 PUAN OLUŞUMU

Detaylı

Yazanlar : w c. Ekran modülasyonlu C sınıfı bir RF yükseltici Şekil : l de gösterilmiştir. Şekil : l deki anod

Yazanlar : w c. Ekran modülasyonlu C sınıfı bir RF yükseltici Şekil : l de gösterilmiştir. Şekil : l deki anod UDK : 621.396.019 Düşük Güçü Vericierde Ekran Moiasyonunun Uyguanası ve Anod Modiiasyonu ie Ekonoik Mukayesesi Yazanar : Dr. Mustafa N. PARLAR (*) Atunkan HIZAL (**) Kuanıan Seboer : W nn w c ** i f E.V

Detaylı

Muammer KULA. Erciyes Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü Kayseri ÖZET

Muammer KULA. Erciyes Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü Kayseri ÖZET Eryes Ünverstes Fen Blmler Ensttüsü Dergs 21 (1-2), 47-53, 25 PRETOPOLOJİK UZAYLAR KATEGORİSİNDE -BAĞLANTILILIK Muammer KULA Eryes Ünverstes, Fen-Edebyat Fakültes, Matematk Bölümü 3839 Kayser ÖZET Bu çalışmada,

Detaylı

BULANIK VE ÇOK AMAÇLI OYUNLARA ÇÖZÜM YAKLAŞIMLARI

BULANIK VE ÇOK AMAÇLI OYUNLARA ÇÖZÜM YAKLAŞIMLARI YILDIZ TEKNĐK ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ BULANIK VE ÇOK AMAÇLI OYUNLARA ÇÖZÜM YAKLAŞIMLARI Yüse Matematç Adem Cengz ÇEVĐKEL FBE Matemat Anabm Daı Matemat Programında Hazıranan DOKTORA TEZĐ Tez

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 6 (06) 0330 (576-584) AKU J Sci Eng 6 (06) 0330 (576-584) DOI:

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

Çoklu Frekanslı GNSS Ölçüleri Đle Anlık Bağıl Konum Belirlemede Stokastik Model Oluşturma

Çoklu Frekanslı GNSS Ölçüleri Đle Anlık Bağıl Konum Belirlemede Stokastik Model Oluşturma Çou Freansı GNSS Öçüer Đe Anı Bağı Konum Beremede Stoast Mode Ouşturma Orhan KUR Özet BFB Başangıç Faz Berszğ) çözüm aşaması, GNSS gözemernn değerendrmesnn en önem aşamasını ouşturur. BFB çözüm yöntemernn

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

kavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir grup üzerinde tanımlı

kavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir grup üzerinde tanımlı Bölüm 5 Permütasyon Grupları Bu bölümde sonlu bir kümenin permütasyonlarını araştıracağız. Öncelikle permütasyon kavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir rup üzerinde tanımlı eşlenik

Detaylı

İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL

İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL Özet Çalışmamızda ilk olarak, irtibatlı bir Lie grubu üzerinde esas grupların demeti bilinen tekniklerle oluşturulmuştur. Daha sonra elde

Detaylı

Cahit Arf Matematik Günleri IV Hilbert Mesafesi

Cahit Arf Matematik Günleri IV Hilbert Mesafesi ahit rf Matematik Güneri IV - 005 Hibert Mesafesi kinci Gün Soruar, 6 Nisan 005 ndrei Ratiu* / ratiu@bigi.edu.tr R Ökid düzeminde ayn do rusu veya ayn Ω çemberi üzerindeki oan dört fark,,, noktas aa m.

Detaylı

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650 - -. Bi cisi uzunutai younu sabit hızı ie at eteye başıyo. Cisi youn yaısını at ettiğinde hızını yaıya düşüüp aan youn yaısını at ettiğinde yine hızını yaıya düşüetedi. Cisi aan youn yaısını gittiğinde

Detaylı

Ağrı İbrahim Çeçen Üniversitesi

Ağrı İbrahim Çeçen Üniversitesi Ağrı İbrahim Çeçen Üniversitesi FEN BİLİMLERİ ENSTİTÜSÜ FBT-545 ALGORİTMA TASARIMI VE ANALİZİ Yarıyıl Kodu Adı T+U 1 FBT-545 Kredi AKTS 3 3 6 Öğrenim Türü Örgün Öğretim Dersin Dili Türkçe Dersin Düzeyi

Detaylı

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK HAZIRLAYAN ÖĞRENCİLER: Barış BALKAN Meryem Nilsu ÇETİN DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ İZMİR 2016 İçindekiler Sayfa 1. Giriş... 2 1.1 Projenin Amacı....

Detaylı

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010

Kuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Orta Doğu Teknik Üniversitesi, Ankara Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Kuantum grubu örgülü bir Hopf cebridir. Cebir Tanım Bir k-vektör uzayı A için, µ : A A A ve η : k A birer k-doğrusal

Detaylı

KLASİK MEKANİK-2 BÖLÜM-7 İKİ-CİSİM PROBLEMİ

KLASİK MEKANİK-2 BÖLÜM-7 İKİ-CİSİM PROBLEMİ KLASİK MEKANİK- BÖLÜM-7 İKİ-CİSİM PROBLEMİ )KÜTLE MERKEZİ VE GÖRELİ KOORDİNATLAR: Konum vektörer r ve r, küteer m ve m oan k parçacığın br brne uyguadığı kuvvet se, bunarın düzgün br g küteçekm aanı çnde

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

Name: Diferensiyel Geometri Spring 2014

Name: Diferensiyel Geometri Spring 2014 Çalışma soruları Tanim [Basit egri] α : (a, b) R 3 egrisi verilsin. Farkli t 1, t 2 (a, b) noktalari icin α(t 1 ) α(t 2 ) oluyorsa α egrisine basit egri adi verilir (kendisini kesmeyen egriye basit egri

Detaylı

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s YTÜ EEKTONİK VE HABEEŞME MÜHENDİSİĞİ BÖÜMÜ DEVEE VE SİSTEME ANABİİM DAI DEVE VE SİSTEM ANAİZİ DESİ. VİZE_ÇÖZÜMEİ Soru : Şekl dek derey göz önüne alarak k t t Şek. a) () t ı k () t e bağlayan dferansyel

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Kanape & Atıştırmalık Sunumlarında porselenmelamin zarafeti ve mini sepetler

Kanape & Atıştırmalık Sunumlarında porselenmelamin zarafeti ve mini sepetler H A Z İ R A N 1 3 Kanap & Atıştırmaı Sunumarında porsnmamin zarafti v mini sptr Prati v sti sahibi sunum dninc aa gn Dabroo porsnmamin sunum ipmanarı anap v atıştırmaı sunumarı için d atrnatifr çözümr

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

Baki Karl ¼ga. Gazi Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Ankara/Türkiye

Baki Karl ¼ga. Gazi Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Ankara/Türkiye H IPERBOL IK VE KÜRESEL ÜÇGENLERIN KENAR UZUNLUKLARINA BA ¼GLI ALAN FORMÜLLER I Baki Karl ¼ga karliaga@gazi.edu.tr Murat Savaş msavas@gazi.edu.tr Gazi Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü

Detaylı