6. NORMAL ALT GRUPLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "6. NORMAL ALT GRUPLAR"

Transkript

1 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları nceleyeceğz. Tanım 6.1. G br grup ve olsun. Her çn se ye G nn normal alt grubu denr ve le gösterlr. Teorem 6.2. (ormallk Test) G br grup ve denktr. ( ) ( ) Her çn ( ) Her çn olsun. Aşağıdak fadeler brbrne İspat. ( ) ( ) olsun. Şu halde olacak şeklde vardır. Şu halde ( ) den olur. Böylece olacak şeklde vardır. Bundan dolayı elde ederz. ( ) ( ) olsun. Şu halde ( ) de yerne alırsak ve böylece olur. Sonuç olarak her çn elde ederz. ( ) ( ) olsun. ( ) den dr. se ve böylece dr. Yan dr. ( ) den olduğundan yerne yazarak elde ederz. Sonuç 6.3. G br grup ve olsun. olması çn gerek ve yeter koşul ve çn olmasıdır. Örnekler ) G br grup ve brm eleman olsun. Şu halde çn { } { } { } olduğundan ve çn olduğundan { }, elde ederz. Bu k normal alt gruba nn aşkar (trval) normal alt grubu denr. 2) Değşmel br grubun her alt grubu normal alt gruptur. Gerçekten, G br grup ve olsun. ve çn olduğundan dr. 3) { } ve olsun. { } ve { } se ve K, grubunun normal alt grubu değldr. çn olduğu açıktır ve olduğundan { } { } elde ederz. Benzer şeklde ve olduğundan olur. { } ve { } olduğundan dır. Böylece ün normal alt grubu değldr. 1

2 4 ) ve olsun. a) se dır. b) se dr. Çözüm : a) H G se k K çn Hk kh dr. HK Hk kh KH HK G dr. k K k K b) a) dan HK G dr. çn ( ) ( )( ) dır. 5 ) G değşmel br grup ve H da G nn torson (burulmalı) alt grubu olsun. (mertebes sonlu elemanların kümes) olsun. a) H G b) G/ H nn brmden farklı her elemanının mertebes sonsuzdur. Çözüm : a) H { g G : o( g) sonlu} olmak üzere, 1 rs r s s r a, b H o( a) r, o( b) s ( ab ) ( a ) ( b ) 1 ab 1 G nn mertebes sonlu, yan ab H bulunur. H G dır. Değşmel grubun her alt grubu normal olacağından H torson alt grubu normaldr. b) ah G / H ve ah H olsun. o( ah) r H ( ah) r a r H a r H H a r H ( a r ) t. Yan a nın mertebes sonlu olurdu. Bu se a H olması le yan a nın mertebesnn sonsuz olması le çelşr. 6 ) Grubun merkez br normal alt gruptur. Gerçekten ( ) olduğunu blyoruz. Ayrıca, ve ( ) çn ( ) olduğundan ( ) dr 7) Br grubun br takım normal alt gruplarının kesşmnn de br normal alt grup olduğunu gösternz. Çözüm : { } I, G grubunun br takım normal alt grupları olsunlar. olduğunu blyoruz. I I G olduğunu gösterelm. a, g G çn I çn a Şu halde I G I çn 1 gag elde etmş oluruz. I 1 gag 8 ) G her devrl alt grubu normal olan br grup se G nn her alt grubu devrldr. Gerçekten, olsun. ve se olduğundan dr. 2

3 9 ) G br grup ve olsun. H nn G dek k sol denklk sınıfının çarımı yne sol denklk sınıfı se dr. Gerçekten, olsun. Şu halde olacak şeklde vardır. Böylece elde ederz. Bundan dolayı olacak şeklde vardır. Şu halde ve böylece dır. Sonuç olarak ve böylece elde ederz. Teorem 6.5. Br grubun ndeks 2 olan br alt grubu normaldr. İspat : G ve ( G: ) 2 olsun. Bu takdrde k tane sağ ve k tane sol denklk sınıfı vardır. hem sağ hem de sol denklk sınıfı olarak düşünüleblr. a se sol denklk sınıfları, a ve sağ denklk sınıfları, a olur. Böylece G a a olduğundan a a dır. Sonuç olarak G elde edlr. Örnek 6.6. G S3 ve H {(1),(123),(132)} olsun. H Golduğu açıktır. Ayrıca, ( ) olduğundan H G dr. Örnek 6.7. dr. Gerçekten, ( ) olduğundan Teorem 6.5 den stenlen elde edlr. Tanım 6.8. Br G grubunun öz olan hç normal alt grubu yoksa G ye bast grup denr. Örnek 6.9. Mertebes asal olan grup basttr. Teorem değşmel br grup ve { } olsun. G nn bast grup olması çn gerek ve yeter koşul G nn asal mertebel devrl grup olmasıdır. İspat. Değşmel grupların alt gruplarının normal olduğunu blyoruz. Eğer G değşmel ve bast grupsa alt grupları sadece G ve { } dr. Böylece ve se dır. Eğer se { } dr. Bu se varsayımımızla çelşr. Böylece G sonlu br gruptur. Şmd olduğunu kabul edelm. Eğer br asal sayısı çn se mertebes p olan br alt gruptur. Böylece asal mertebel devrl gruptur. Teoremn tersnn spatı Lagrange teoremnn br sonucu olarak açıktır. Lemma 6.11 olsun. Eğer ve br 3-lü devr çeryorsa dr. İspat. Genellğ bozmadan ( ) alalım. (Yan herhang başka üçlü devr alsak da spat yapılablr). Örnek 4.8 den grubunun üçlü devrler tarafından üretldğn blyoruz. Şu halde her üçlü devr ( ) nın de olduğunu göstersek spatı tamamlamış oluruz. olduğundan { } seçeblrz. Şmd ( ) alalım ve 3

4 { ( ) } tanımlayalım. Şu halde her k durumda ve ( ) ( ) elde ederz. Teorem 6.12 spatını yapmadan önce şunu not edelm : ( ) se permütasyonu tamsayılarını değştyor derz. Teorem se alterne grubu bast gruptur. İspat. { } olsun. H nn brmden farklı elemanları arasında en az tamsayıyı değştren (yan görüntüsü farklı olan) elemanı olsun. Şmd tane tam sayıyı değştrdğn kabul edelm. transpozsyon olamayacağından olur. Eğer se, -devrl dr ve Lemma 6.11 den dr. olduğunu kabul edelm ve bu kabulun çelşk oluşturacağını spatlayalım. İk durum söz konusudur. Durum 1., uzunluğu 3 veya daha büyük br devr çesn, yan ( ) olsun. devrnde tam 4 tane tam sayının görüntüsü farklı olamaz. Gerçekten ( ) tek olduğundan çelşk olurdu. Şmd 1,2 ve 3 de olduğu gb 4 ve 5 n görüntülernn kendlernden farklı olduğunu kabul edelm. Şmd ( ) olduğunu kabul edelm ve olsun. olduğundan ve ( ) ( ) olduğundan dr. Eğer tam sayısı tarafından sabt bırakılırsa bu k tam sayısı tarafındanda sabt bırakılır ( ( ) ). Eğer altında tam sayısının görüntüsü kendsnden farklı se altında k tam sayısının görüntüsü kendsnden farklıdır. Fakat ( ) fakat ( ) dr. Böylece de dan daha az elemanın görüntüsü kendsnden farklıdır. Bu br çelşk oluşturur. Durum 2. brbrnden ayrık transpozsyonların çarpımı olsun. Yan ( )( ) olduğunu kabul edelm. Şmd ( ) olduğunu ve olduğunu kabul edelm. Şu halde ( ) ( ) ve ( ) olacak şekde her çn ( ) dır. Ayrıca, ( ) olduğundan dr. Sonuç olarak 1.Durumda olduğu gb çelşk elde ederz. 4

5 Sorular 1 ) { ( )( ) ( )( ) ( )( )} olduğunu gösternz. Böylece grubu bast değldr. 2) ve grubunun bast olduğunu gösternz. 3) ( ) grubunda determnantı 1 olan matrslern kümes H se olduğunu gösternz. ( ( ) ( )). 4) olmak üzere grubunun mertebeden br alt grubu olmadığını gösternz. (Bu soru Langrange Teoremnn tersnn doğru olmadığına dar örnektr). 5 ) grubunun tüm normal alt gruplarını bulunuz. 6) grubunun öyle k H ve K alt gruplarını bulunuz k ve fakat grubunun normal alt grubu olmasın. 7) ve se çn olduğunu gösternz. 8) G br grup ve {( ) } olsun. olması çn gerek ve yeter koşul G nn değşmel olmasıdır. Gösternz. 9) olmak üzere { } göz önüne alalım. Aşağıdak her br durumda olup olmadığını araştırınız. ) { } ) { } ) { } 10) br grup ve olsun. ( ) olması olmasını gerektrmedğn br örnekle gösternz. 11) G br grup ve olsun. se ( ) olduğunu gösternz. 12) G br grup ve se ( ) { } kümesne n normalleycs denr. ) ( ) olduğunu gösternz. ) ( ) olduğunu gösternz. 13) G br grup ve olsun. Şu halde olduğunu gösternz. 5

6 14 ) G br grup ve olsun. Eğer { } se ve çn olduğunu gösternz. 15) G br grup ve olsun. Eğer se dr, gösternz. 16) G br grup ve H, mertebes n olan tek alt grubu se olduğunu gösternz. 17) Quaternon grubun her alt grubunun normal olduğunu gösternz. 18) grubunda ( ) le üretlen devrl grup, de normal alt grup mudur? eden? 19) G br grup ve br tam sayısı olmak üzere çn ( ) sağlansın. Şu halde { } olduğunu gösternz. 20) Aşağıdak fadeler doğru/yanlış mıdır? Doğru se açıklayınız, yanlış se br ters örnek bulunuz. ) nn normal alt grup olması çn gerek ve yeter koşul nın her sağ kalan sınıfının aynı zamanda br sol kalan sınıfı olmasıdır. ) sonlu br grup ve, G nn normal alt grubu se [ ] dr. ) grubunun her değşmel alt grubu, nn normal alt grubudur. v) mertebes olan br grup ve se nn mertebeden br alt grubu vardır. 6

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

GİRİŞ. elde edilmesi çok eski ve önemli bir problemdir. Bunun için öncelikle v cismine genişlemelerinin belirlenmesi hedeflenmiştir.

GİRİŞ. elde edilmesi çok eski ve önemli bir problemdir. Bunun için öncelikle v cismine genişlemelerinin belirlenmesi hedeflenmiştir. GİRİŞ Değerlendrme teors cebrsel fonksyonlar e cebrsel sayılar arasındak lşknn sonucu olarak ortaya çıkmıştır. Dedeknd e Weber n cebrsel fonksyonlar teorsne artmetk yaklaşımları Remann yüzeynn br noktasında

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I Fevz ÜNLÜ *, Esra DALAN YILDIRIM **,Şule AYAR *** ÖZET: Evren her an nano-önces, nano, mkro, normal, makro ve makro-ötes gözler le gözlemlermze açıktır.

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

MINKOWSKI 4-UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER

MINKOWSKI 4-UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MINKOWSKI -UZAYINDA JET YAPILAR VE MEKANİK SİSTEMLER YÜKSEK LİSANS TEZİ Smge DAĞLI Anablm Dalı Matematk Anablm Dalı Programı Geometr Tez Danışmanı Yrd. Doç.

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

HİPERSTATİK SİSTEMLER

HİPERSTATİK SİSTEMLER HİPERSTATİK SİSTELER Tanım: Bütün kest zorlarını ve bunlara bağlı olarak şekl değştrmelern ve yer değştrmelern hesabı çn denge denklemlernn yeterl olmadığı sstemlere Hperstatk Sstemler denr. Hperstatk

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 9. Sınıf Matemat k Ders İşleme Defter KÜMELER - 1 Altın Kalem Yayınları Küme: B rb r nden farklı nesneler n oluşturduğu topluluklar küme şekl nde adlandırılır. Kümey oluşturan nesneler n y bel rlenm ş

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

Ders 10: Düzlemde cebirsel eğriler

Ders 10: Düzlemde cebirsel eğriler Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ Belgn ÖZER GRUP TANIMLAYAN YARIGRUP TAKDİMLERİ VE ADİAN GRAFİKLERİ MATEMATİK ANABİLİM DALI ADANA, 00 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI T.C. Maltepe Ünverstes Müendslk ve Doğa Blmler Fakültes Elektrk-Elektronk Müendslğ Bölümü EK 0 DERE TEORİSİ DERSİ ABORATUAR DENEY 8 İKİ KAP DERE UYGUAMAAR Haırlaanlar: B. Demr Öner Same Akdemr Erdoğan

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Communication Theory

Communication Theory Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn

Detaylı

Steiner Üçlü Sistemleri ve Çizgeler Selda Küçükçifçi* / skucukcifci@ku.edu.tr

Steiner Üçlü Sistemleri ve Çizgeler Selda Küçükçifçi* / skucukcifci@ku.edu.tr Matematk Dünyas, 00 K fl Kapak Konusu: Geometrk Kombnatork Tasar m kuram n n geçmfl 8 ye, Euler n subay problem ne dayan r. Problem blyoruz. An msatal m: farkl alay ve farkl rütbeden subay sat r ve sütunluk

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI Hall İbrahm KESKİN YÜKSEK LİSANS TEZİ ADANA 009 TÜRKİYE CUMHURİYETİ ÇUKUROVA

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

Bazı Sonlu Klingenberg Düzlemleri İçin Üzerinde Olma Matrisleri

Bazı Sonlu Klingenberg Düzlemleri İçin Üzerinde Olma Matrisleri BAÜ FBE Dergisi Cilt:12, Sayı:1, 91-99 Temmuz 2010 Bazı Sonlu Klingenberg Düzlemleri İçin Üzerinde Olma Matrisleri Atilla AKPINAR * Uludağ Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü, Görükle,

Detaylı

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER

ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI ÇENTİK METODU İLE SAYMA TEKNİKLERİNDE YENİ TEOREMLER MATEMATİK PROJESİ DANIŞMAN YASEMİN YAVAŞ İSTANBUL-2014 İÇİNDEKİLER AMAÇ... 3 GİRİŞ... 4 TEOREMLER...

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

BETONARME YAPI TASARIMI

BETONARME YAPI TASARIMI BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 008 GENEL BİLGİ 18 Mart 007 ve 18 Mart 008 tarhler arasında ülkemzde kaydedlen deprem etknlkler Kaynak: http://www.koer.boun.edu.tr/ssmo/map/tr/oneyear.html

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 4 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 4 (336 sayfa) ANALİZ CEBİR 1 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

VENIDiK TACİRi'NDI. YAPI ÖZELLiKLIRi. Yrd. Doç.Dr. Uğur AKINCI* ÖYKÜ BAGLAMıNDA iıişkiler

VENIDiK TACİRi'NDI. YAPI ÖZELLiKLIRi. Yrd. Doç.Dr. Uğur AKINCI* ÖYKÜ BAGLAMıNDA iıişkiler VENIDK TACİR'NDI YAPI ÖZELLKLIR Yrd. Doç.Dr. Uğur AKINCI* Wllam Shakespeare'n Olgunluk Dönem komedyalarındanbr olan Venedk Tadr 'nn t 596-( 597 yılları arasında yazıldığı ve bu dönem oyunlarının bçm ve

Detaylı

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler Kütle Merkez ve Merkezler Konular: Kütle/ğırlık merkezler Merkez kavramı Merkez hesabına önelk öntemler ğırlıklı Ortalama Merkez kavramının brçok ugulama alanı vardır. Öncelkle ağırlıklı ortalama kavramına

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

= =

= = a 0 için a 1 = 1 a dır. 1 2 2 1 4 + 1 1 m = = 1 4. 4 1+4m = 1 1+4m = 1 13 1 4 1+4m=13, 4m=12, m=3 = 1 4 + m 1 4 1 + 4m 4 0,2= 2 10, 0,4 = 4 10 a3 = a.a.a 2.(0,2) 3 + (0,4) 3 = 2.( 2 10 )3 + ( 4 10 )3 8

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 10. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 10. SINIFLAR FİNAL SORULARI 10. SINIFLAR FİNAL SORULARI 1. Aşağıdaki cisim örüntüsünde 1.adımda bir tane birim küp,.adımda dört tane birim küp, 3.adımda dokuz tane birim küp verilmiştir. Aynı şekilde örüntüye devam edildiğinde n

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları:

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları: Blok yaraları: araşık teler, rok alt ten rrne uyun şeklde ağlanaından oluşur. Blok dyaraları, her r alt te araındak karşılıklı ağlantıyı öterek n kullanılır. Blok dyaralarında her r alt ten fonkyonu ve

Detaylı

! " # $ % & '( ) *' ' +, -. / $ 2 (.- 3( 3 4. (

!  # $ % & '( ) *' ' +, -. / $ 2 (.- 3( 3 4. ( !"#$ %& '()*' ' +,-. / 0 100$ 2 (.-3( 34.( ,-. '45 45 6#5 6+ 6"#0" '7086 $ $ 89 44" :#! ;{0, 1, 2, 3,..., 9}, L * olarak tanımlı olsun ve sadece 2 ye veya 3 e bölünebilen ve önünde 0 olmayan pozitif sayılara

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Cebirsel Geometri Güz Çalıştayı 2009

Cebirsel Geometri Güz Çalıştayı 2009 Cebirsel Geometri Güz Çalıştayı 2009 Kürşat Aker Feza Gürsey Enstitüsü, İstanbul 18 Ekim 2009 Kursat Aker (FGE) CG-GUZ-09 18 Ekim 2009 1 / 9 Özet Başlamadan Önce... Kursat Aker (FGE) CG-GUZ-09 18 Ekim

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI ISSN:1306-3111 e-journal of New Worl Scences Acaemy 2008, Volume: 3, Number: 4 Artcle Number: A0108 NATURAL AND APPLIED SCIENCES MATHEMATICS APPLIED MATHEMATICS Receve: March 2008 Accepte: September 2008

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012

Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 Limit Oyunları Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 1 Giriş Limit ve sonsuzluk kavramlarının anlaşılması birçok insan için zor olabilir. Hatta bazı garip örnekler bu anlaşılması zor kavramlar

Detaylı

ASAL YAKIN HALKALAR ÜZER NE ON PRIME NEAR-RINGS

ASAL YAKIN HALKALAR ÜZER NE ON PRIME NEAR-RINGS Asal Yak n Halkalar Üzerine C.B.Ü. Fen Bilimleri Dergisi ISSN 135-1385 C.B.U. Journal of Siene 2.2 (26) 135 139 2.2 (26) 135 139 ASAL YAKIN HALKALAR ÜZER NE Ak n Osman ATAGÜN* Eriyes Üniversitesi, Yozgat

Detaylı

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK Karadeniz Teknik Üniversitesi Fen Fakültesi Matematik Bölümü çindekiler 1 Gruplar Teorisi 1 2 Altgruplar, Kosetler ve Lagrange Teoremi 15 3 Normal Altgruplar

Detaylı

Fizik 101: Ders 20. Ajanda

Fizik 101: Ders 20. Ajanda Fzk 101: Ders 20 = I konusunda yorumlar Ajanda Br sstemn açısal momentumu çn genel fade Kayan krş örneğ Açısal momentum vektörü Bsklet teker ve döner skemle Jroskobk hareket Hareketl dönme hakkında yorum

Detaylı

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz.

MATEMATİK ASAL ÇARPANLARA AYIRMA. ÖRNEK 120 sayısını asal çarpanlarına ayırınız. ÖRNEK 150 sayısının asal çarpanları toplamını bulunuz. MATEMATİK ASAL ÇARPANLARA AYIRMA A S A L Ç A R P A N L A R A A Y I R M A T a n ı m : Bir tam sayıyı, asal sayıların çarpımı olarak yazmaya, asal çarpanlarına ayırma denir. 0 sayısını asal çarpanlarına

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s YTÜ EEKTONİK VE HABEEŞME MÜHENDİSİĞİ BÖÜMÜ DEVEE VE SİSTEME ANABİİM DAI DEVE VE SİSTEM ANAİZİ DESİ. VİZE_ÇÖZÜMEİ Soru : Şekl dek derey göz önüne alarak k t t Şek. a) () t ı k () t e bağlayan dferansyel

Detaylı