Kollektif Risk Modellemesinde Panjér Yöntemi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kollektif Risk Modellemesinde Panjér Yöntemi"

Transkript

1 Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif ris modellemesiyle toplam asar değişeninin dağılımının bulunması önemlidir. Bu dağılımların belirlenmesinde, toplam asar sayıları için önerilen en önemli dağılımları ii parametreli bir sınıf olan (a, b, sınıfı üyeliğindei dağılımlar oluşturmatadır. Hasar mitarları için ise, bir ço süreli dağılım önerilebilir, faat bir ço asar mitarları dağılımı için toplam asar mitarının dağılımını tam olara elde etme olduça zordur. Çalışmamızda, arşılaşılan bu zorlular anér yöntemine başvurulara aşılmaya çalışılmatadır. Anatar elimeler: Hasar mitarı, toplam asar sayısı, toplam asar değişeni, Erlang modeli, anér yöntemi, gamma dağılımı, (a, b, dağılımlar sınıfı. JE Sınıflandırma odları: C6, G anér s Metod In Te Collective Ris Modelling Abstract It is important to find te distribution of te total loss variable using te collective ris model in te non-life insurances. Determining tese distributions, te most important distributions tat are proposed for te number of aggregate claim are te distributions wic are te members of (a, b, class tat ave two parameters. Many continuous distributions can be suggested for te amounts of claim, but it is quite difficult to identify eact distribution of te amount of aggregate claim for many distributions of te amounts of claim. In our study, it is aimed to outcome tese difficulties by using anér s metod. eywords: Amount of claim, number of aggregate claim, total loss variable, Erlang model, anér s metod, gamma distribution, (a, b, class of distributions. JE Classification Codes: C6, G Araş. Gör., Douz Eylül Üniversitesi Fen Faültesi İstatisti Bölümü, Doç. Dr., Douz Eylül Üniversitesi Fen Faültesi İstatisti Bölümü,

2 Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss Giriş Hayat dışı sigortalarda, belirli bir portföy için belirli bir zaman aralığındai toplam asar değişeninin dağılımının bulunması önemlidir. Toplam asarın dağılımının bulunması için öne çıan yöntemlerden biri olan olletif ris modellemesinde, poliçelerin oluşturduğu bir portföy için asarları meydana getiren rasgele bir süreç varsayılır i bu süreç, portföyü içerdiği bireysel poliçelerden ziyade bir bütün olara tanımlamatadır (Bowers, 997: 367. Dolayısıyla olletif ris modellemesi matematisel olara S ( şelinde ifade edilmetedir (Straub, 988: 9. Bu ifade de S, belirli bir zaman aralığında portföy tarafından meydana getirilen toplam asarı, erbir asar mitarını ve ise verilen bir zaman aralığında bir portföydei poliçelerin meydana getirdiği toplam asar sayısını göstermetedir. Bu durumda, rassal değişen olan asarların sayısı asar freansı ile ilişilendiriliren,,, rassal değişenleri de asarların mitarlarını ölçme ile ilgilidir. Bu modelin işlenebilir olması için de,,, rassal değişenlerinin birbirinden tam bağımsız olduğu, bütün, ların ise aynı dağılıma saip olduğu şelinde ii temel varsayım yapılmatadır. Sabit bir zaman aralığındai toplam asarın dağılımı ise, toplam asar sayısının ve asar mitarlarının dağılımından elde edilmetedir. Bu durumda, rassal toplam olara adlandırılan toplam asar değişeni S nin dağılımının bulunmasında izlenece yalaşım - verilere dayanan için bir dağılım önerme, - verilere dayanan lar için bir dağılım önerme, - bu ii dağılımı ullanara, S nin dağılımını bulma için gereli esaplamaları elde etme şelinde sıralanabilir.. Toplam Hasar Değişeninin Dağılımı Olasılı teorisinde, toplam asar değişeninin dağılımının belirlenmesinde ullanılan toplam asar sayısının dağılımına birincil dağılım, asar mitarlarının orta dağılımına da iincil dağılım adı verilmetedir. Sabit bir 4

3 İrven-Yapar/olletif Ris zaman aralığındai toplam asarın dağılımı, toplam asar sayısının ve asar mitarlarının dağılımına bağlı olduğu için olasılı teorisine göre, toplam asar mitarı birleşi dağılıma saiptir. Niteim atüeryal bilimin içeriğinde de birleşi dağılım, olletif ris modeli olara adlandırılmatadır. Toplam asar S, denlem ( e göre tanımlanan birleşi dağılıma saipse, S nin moment çıaran fonsiyonu, toplam asar sayısı ve asar mitarları in moment çıaran fonsiyonlarının bir fonsiyonu olara ifade edilebilmetedir. Bu durumda (, bağımsız ve aynı dağılıma saip olan ların orta dağılım fonsiyonu ise ve, bu dağılım fonsiyonunda bir rassal değişen ise i ninci moment i p E [ ] ( i olara ifade edilmetedir ve in moment çıaran fonsiyonu da t M ( t E[ e ] (3 olara gösterilmetedir. Ayrıca, toplam asar sayısının moment çıaran fonsiyonu t M ( t E[ e ] (4 olara belirtilirse toplam asarın moment çıaran fonsiyonunu ts M ( t E [ e ] (5 S olara ifade etme mümündür (Bowers, 997: 368. Toplam asar değişeni olan S nin belenen değeri ve varyansı da temel varsayımlar altında oşullu belenen değer teoremi ullanılara elde edilmetedir. E [ ], rassal değişeni ile ilişili bir sabit olduğundan S nin belenen değeri E[ S ] E [ E[ S ]] E[ ] E[ ] (6 olara bulunuren, E [ ] ile Var ( ilişili sabitler olmasından dolayı S nin varyansı da in er iisinin de rassal değişeni ile Var ( S E [ Var ( S ] E[ ] Var ( Var ( E[ ] ( E[ S ] Var ( (7 olara ifade edilmetedir (Cunningam, vd., 5: 46. Bu durumda denilebilir 4

4 Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss i, toplam asarın belenen değeri, belenen asar mitarı ile belenen toplam asar sayısının bir ürünüdür. Toplam asarın varyansı ise, asar mitarlarının değişenliği ile toplam asar sayısının değişenliğini veren ii bileşenin toplamı olara yorumlanmatadır. S nin moment çıaran fonsiyonu da, oşullu belenen değer teoremi aracılığıyla M ( t E[ e ] E[ E[ e ] ] S (8 M ts [log M ts ( t ] olara elde edilmetedir (Bowers, 997: 369. Ayrıca, S nin olasılı çıaran fonsiyonu ise, sabit, lar bağımsız olma üzere ( t [ ( t] (9 S şelinde ifade edilmetedir (lugman, vd., 4: Erlang Modeli. yüzyılın başlarında telefon santrali ile ilgili uyru problemleri üzerine araştırma yapan Danimaralı matematiçi Erlang, bir telefon görüşmesinin süresi ile ard arda gelen ii çağrı arasında geçen sürenin üstel dağıldığı bir model üzerinde çalışmıştır. Erlang modeli adı verilen bu model, ayat dışı sigortalarda ullanılan bütün modeller arasında matematisel olara en ullanışlı olan modeldir. Bu modelin en önemli avantaı, t uzunluğundai bir zaman aralığında meydana gelen toplam asar sayısının dağılımını olaylıla esaplayabilmesidir (Straub, 988: -. Erlang modeline göre toplam asar değişeni S nin dağılımı bulunuren, toplam asar sayısının oisson, asar mitarlarının ise üstel dağıldığı varsayılmatadır. Bu varsayım altında toplam asarın dağılımı,,,,, n değerleri için gamma ve oisson a göre olasılılar bulunup er bir için bulunan gamma ve oisson olasılığı endi aralarında çarpılıp toplanara G ( ve n için G ( e n ile n! [ S ] n n e n! G n, ( olara elde edilir i burada G n, ve parametreli gamma dağılımını 4

5 İrven-Yapar/olletif Ris göstermetedir (Straub, 988: 3. Hasar mitarlarının gamma dağılması, toplam asar sayısının ise (a, b, dağılımlar sınıfı üyeliğinde olması durumunda, toplam asar mitarının dağılımını Erlang modeli ile elde etme mümün olmamala birlite, bu şartlar altında toplam asar mitarının dağılımını tam olara elde etme olduça zordur. Bu sorun, anér yöntemine başvurulara yalaşı bir dağılım elde edilmesiyle aşılacatır. 4. anér Yöntemi Verilen bir bağımsız değişenin dağılımının değerlerinin asar olasılılarını esaplamada birço farlı yol mevcuttur. Ris teorisinin il zamanlarında fazla bir yalaşım yöntemi olmamasına rağmen, mevcut olan yöntemler arasında en iyi bilinen ii yöntem Esscer ın yalaşımı ve normal etili seriler yalaşımıydı. Son zamanlarda ise anér tarafından eşfedilen yalaşım, asar olasılılarını esaplama için revaçta olan bir yöntem olmuştur. Çünü bu yalaşım, şimdiye adar olan yalaşımlardan ço daa üstün ve gerçeçi bir alternatiftir ve programlanması da olaydır (Straub, 988: 33. Hayat dışı sigortalarda olletif ris modellemesiyle toplam asar değişeninin dağılımının belirlenmesinde, toplam asar sayısı olan nın dağılımına ilişin öne çıan en önemli dağılımları (a, b, sınıfı üyeliğinde olan dağılımlar oluşturmatadır. Freans dağılımı olan değişenin olasılı fonsiyonu olup p, esili bir rassal p p a b,,,3,4, ( ifadesine göre a ve b sabitlerinin var olmasını sağlayan ii parametreli (a, b, dağılımlar sınıfının bir üyesidir (lugman, vd., 4: 8. Bu dağılım sınıfına ait özyinelemeli için başlangıç değeri p olup, denlem ( dei özyineleme formülü, varsayılan dağılımdai başarı olasılılarının büyülüğünü tanımlamatadır. Bu özyineleme formülünü sağlayan olası dağılımlar ise, oisson dağılımı, binom dağılımı, negatif binom dağılımı ve geometri dağılım olup bu dağılımlar (a, b, sınıfının bir üyesidir. Özyinelemenin sol tarafına oisson, binom ve negatif binom dağılımlarının erbiri için olasılı fonsiyonu yerleştirilere a ve b değerleri Tablo dei gibi elde edilmetedir. Tabloda yer alan geometri dağılım ise, negatif binom dağılımının (r oşulu altında te parametreli özel bir durumudur (lugman, vd., 4: 8. Ayrıca, toplam asar 43

6 Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss değişeni olan S nin moment çıaran fonsiyonu üzerinden iincil dağılımın sıfır değerinde aldığı f olasılığı sıfır abul edilere birinci türev yardımıyla ' ' ' M ( t am ( t M ( t ( a b M ( t M ( t S S S denleminin bileşenleri bulunmatadır. Bu bileşenler yerine onup uygun atsayılar arşılaştırıldığında g a g f ( a b ( g f ( ifadesi elde edilmetedir (Straub, 988: 34. Bu özyineleme formülü, birincil dağılımın (a, b, sınıfının üyesi olması durumunda g af a b f g,,,3, (3 şelini almatadır. Özyinelemeliler için başlangıç değeri olan g ise, er dağılım için farlı olup, toplam asar sayısı olan nın dağılımı için belirlenmetedir (lugman, vd., 4: 9. Bu durumda g ( S [ (] ( f olup, birleşi bir dağılım için (t, birincil dağılımın olasılı çıaran fonsiyonunu ve f, iincil dağılımın sıfır değerinde aldığı olasılığı göstermetedir (lugman, vd., 4: 93. Dolayısıyla, (a, b, sınıfındai dağılımlar için a ve b değerleri ile başlangıç değeri Tablo dei gibi ifade edilebilmetedir. Tablo. (a, b, Sınıfındai Dağılımlar İçin a, b ve Başlangıç Değerleri. Dağılım a b g oisson ( ep[ ( f ] Binom (m, q Negatif Binom (r, q q m q q m ( [ q ( f ] (r [ ( f ] r Geometri ( [ ( f ] (lugman, vd., 4: 8, 654 anér yöntemi, ayat dışı atüeryal gerçe yaşamda görünen asar 44

7 İrven-Yapar/olletif Ris olasılılarının bütün parametri versiyonlarının ların dağılımının yalaşı olara esili ale getirilere özyineli olara esaplanabilmesi esasına dayanmatadır. ların dağılımı süreli bir dağılım olduğunda, bu dağılım esili ale getirilmelidir i bunun için en olay yalaşım, dağılım açılığı olan uygun bir ölçüm birimi üzerinden yuvarlama yöntemi uygulayara esili asar mitarı dağılımını oluşturmatır. Yuvarlama yöntemi, ( ile arasındai olasılığı bölüp, en yaın uygun olan dağılım açılığına bütün mitarları yuvarlamatadır (lugman, vd., 4: 67. Niteim bu yöntem aracılığıyla, süreli olan asar mitarı dağılımı, belirli aralılar dailinde f f ( ( F ( F ( F ( olaca şeilde esili ale getirilere,,, olasılıları bulunmatadır (lugman, vd., 4: 67. anér yönteminde, başlangıç değeri olan g elde edilen (4,,, için de yer alan f ın ve yuvarlama yöntemiyle f olasılılarının yardımıyla, denlem (3 e,,3, değerleri verilmetedir. Böylece, biriimli model yeniden incelenere asar olasılılarının özyineleme değerleri olan g lar bulunmuş olur. g lara baılara genel bir dağılım tanımlanır i bu tanımlanan dağılım, esileştirilmiş asar mitarları üzerinden toplam asarın esileştirilmiş dağılımını vermetedir. 5. Uygulama Hasar mitarı lar için birço süreli dağılım önerilebilir, faat birço asar mitarı dağılımı için S nin dağılımını bulma olduça zordur. Gamma dağılımı saip olduğu parametrelerden dolayı elverişli bir dağılım olup, gamma rassal değişeni aynı dağılıma saip bağımsız üstel rassal değişenlerin toplamı olduğundan, asar mitarı lar için gamma dağılımının ullanılması çoğu asar verisi için üstel dağılımdan daa avantalıdır. Dolayısıyla, bu çalışmada asar mitarlarının ve 5 parametreleri ile E [ ]. ve 45

8 Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss Var ( 5. olan bir gamma dağılımına saip olduğu varsayılara t oşulu altında t e t, ile ( dt ( ; ( t t e dt,, (5 olasılı fonsiyonu ullanılmıştır (lugman, vd., 4: 67. Ayrıca, toplam asar sayılarının da - oisson ( ~ oisson ( - Binom ( m, q ~ Binom (,, - Negatif Binom (r, ~ Negatif Binom (,, - Geometri ( ~ Geometri ( dağıldığı varsayılmıştır. Bu varsayımlar altında erbir asara, 4. asar limiti ve 5 olağan muafiyet uygulanırsa, toplam asar mitarının dağılımı ECE yardımıyla aşağıdai adımlar taip edilere bulunmatadır. - Hasar başına düşen toplam ödemelerin belenen değerinin ve varyansının belirlenmesi Hasarların biriimli dağılım fonsiyonu, pozitif tamsayısı için ( e ; (6! olara değerlendirilen tamamlanmamış gamma fonsiyonu ullanılara elde edilmetedir (lugman, vd., 4: 68. Bu dağılım fonsiyonu, F ( ; eşitliği olara bulunup, bu eşitli ullanılara, ( E[( ] ; ;, (7 ( ifadesinden E [( 4. ] ve E [( 5 ] değerleri elde edilmiştir (lugman, vd., 4: 636. Bu ii belenen değerin farı alınara, asar başına 46

9 İrven-Yapar/olletif Ris düşen ödeme mitarlarının belenen değeri olan E [( Y ] belirlenmiştir. Daa sonra denlem (7 ullanılara E [( 4. ] ve E [( 5 ] değerleri bulunur i bu ii belenen değerin yardımıyla şeilde u u r ve d d r olaca E[( Y ] ( r E[( u ] E[( d ] d E ( u d E ( d (8 ifadesinden asar başına düşen ödeme mitarlarının iinci momenti olan E [( Y ] elde edilmiştir (lugman, vd., 4: 7. Birinci ve iinci momentler ullanılara da, asar başına düşen ödeme mitarlarının varyansı belirlenmetedir. Hasar sayıları için ise, Tablo dei dağılımlara göre değeri ve varyansı bulunmatadır. nin belenen Tablo. Dağılımlara Göre Hasar Sayılarının Belenen Değeri ve Varyansı. Dağılım E [ ] Var ( oisson ( Binom (m, q m. q m. q. q Negatif Binom (r, r. r.. Geometri (. (lugman, vd., 4: 73, 77, 8 Dolayısıyla denlem (6 ve (7 ullanılara, asar başına düşen ödeme mitarlarının belenen değeri ve varyansı ile asar sayılarının belenen değeri ve varyansı aracılığıyla asar başına düşen toplam ödemelerin belenen değeri ve varyansı belirlenmiştir. - Ödeme sayılarının dağılımının belirlenmesi Ödeme sayıları ile asar sayıları aynı parametri aileden olup sadece için parametreler Tablo 3 tei gibi elde edilmetedir. Bu durumda, olasılı çıaran fonsiyonlar aşağıdai ilişilerle üretilmetedir. 47

10 Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss Tablo 3. Freans Düzeltmeleri. için parametreler oisson ( ( ( d. Binom (m, q F q ( F ( d. q Negatif Binom (r, ( F ( d., r r Geometri ( ( F ( d., r (lugman, vd., 4: 65 - Bir ödeme yapıldığında verilen Y ödeme mitarının biriimli dağılım fonsiyonunun belirlenmesi Masimum ödeme mitarı 3.75 olacağından fonsiyonu Y nin biriimli dağılım y 3.75 ( y ( y 5 (9 Y y 3.75 ( 5 F ifadesine göre elde edilmetedir. - Hasar mitarı dağılımının esileştirilmesi =. dağılım açılığı alınara ve yuvarlama yöntemi ullanılara bir öncei adımda elde edilen Y nin biriimli dağılım fonsiyonundan,,, için f olasılıları denlem (4 aracılığıyla belirlenmetedir. Böylece süreli bir dağılım olan gamma dağılımı esili ale getirilmiş olmatadır. - Toplam ödemelerin esileştirilmiş dağılımının esaplanması esileştirilmiş ödeme mitarı 3.5 ye adar toplam ödemelerin esileştirilmiş dağılımı elde edilme istendiğinde, bu dağılım özyineleme formülü ullanılara belirlenmetedir. Tablo 3 tei düzeltilmiş parametrelere göre, denlem (3 ve Tablo temel alınara (a, b, sınıfında olan dağılımlar için a ve b değerleri ile başlangıç değeri elde edilmetedir.,,, için bulunan iincil dağılımın f olasılıları ile birincil dağılım için bulunan a ve b değerlerinin ve başlangıç değerinin yardımıyla asar mitarlarının gamma, toplam asar sayılarının ise Tablo 4 tei gibi dağıldığı varsayımı altında birleşi dağılımın g asar olasılıları aşağıdai gibi bulunmatadır. 48

11 İrven-Yapar/olletif Ris Tablo 4. (a, b, Sınıfının Üyesi Olan Dağılımlar İçin Hasar Olasılıları g ( S ( f oisson ( Binom (m, q Negatif Binom (r, Geometri ( g ( f,4539,4549,3355,73864 g f,354,3773,87,9395 ( g ( f 3,9984,99945,97368, Dolayısıyla, asar mitarının gamma, toplam asar sayısının (a, b, dağılım sınıfında olması durumunda elde edilen lar, esileştirilmiş ödeme mitarı 3.5 ye adar olan esileştirilmiş asar mitarları aracılığıyla elde edilen toplam asarın esileştirilmiş dağılımını vermetedir. 6. Sonuç Gamma dağılımı saip olduğu parametrelerden dolayı elverişli bir dağılım olmasına rağmen, asar mitarlarının gamma dağıldığı ve toplam asar sayılarının (a, b, dağılımlar sınıfı üyeliğinde olduğu varsayıldığında, bu sınıftai dağılımların gamma dağılımı ile bir arada olması alinde bir ço zorlula arşılaşma mümündür. Bu zorlular, anér yöntemi ullanılara aşılmış ve er bir (a, b, sınıfındai dağılımın gamma dağılımı ile bir arada olması varsayımına arşılı, yalaşı bir dağılım elde edilmiştir. aynaça g Bowers, N.., D. A. Jones, H. U. Gerber, C. J. Nesbitt ve J. C. Hicman (997, Actuarial Matematics, ACTE. Cunningam, R., T. Herzog ve R.. ondon (5, Models for Quantifying Ris, ACTE ublications Inc. lugman, S. A., H. H. aner ve G. E. Willmot (4, oss Models: From Data To Decisions, nd edition, Wiley. Straub, E. (988, Non-ife Insurance Matematics, Springer-Verlag. 49

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

Cahit Arf Liseler Arası Matematik Yarışması 2008

Cahit Arf Liseler Arası Matematik Yarışması 2008 Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

MEASURING TOTAL LOSS AMOUNT OF A PUBLIC INSURANCE COMPANY BY COLLECTIVE RISK MODEL

MEASURING TOTAL LOSS AMOUNT OF A PUBLIC INSURANCE COMPANY BY COLLECTIVE RISK MODEL Journal of Economics, Finance and Accounting (JEFA), ISSN: 2148-6697 Year: 2014 Volume: 1 Issue: 4 MEASURING TOTAL LOSS AMOUNT OF A PUBLIC INSURANCE COMPANY BY COLLECTIVE RISK MODEL Elif Makbule Cekici¹,

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen. Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr Kİ-KARE TESTLERİ 1. Ki-are testleri

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI Niğde Üniversitesi İİBF Dergisi, 2013, Cilt: 6, Sayı: 1, s. 96-115. 96 BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI ÖZ Arzu ORGAN* İrfan ERTUĞRUL**

Detaylı

LOGRANK TESTİ İÇİN GÜÇ ANALİZİ VE ÖRNEK GENİŞLİĞİNİN HESAPLANMASI ÖZET

LOGRANK TESTİ İÇİN GÜÇ ANALİZİ VE ÖRNEK GENİŞLİĞİNİN HESAPLANMASI ÖZET IAAOJ, Scientific Science, 05, 3(), 9-8 LOGRANK TESTİ İÇİN GÜÇ ANALİZİ VE ÖRNEK GENİŞLİĞİNİN HESAPLANMASI Nesrin ALKAN, Yüsel TERZİ, B. Barış ALKAN Sinop Üniversitesi, Fen Edebiyat Faültesi, İstatisti

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Binom Katsayıları ve Pascal Üçgeni 3. Bölüm Emrah Ayar Anadolu Üniversitesi Fen Faültesi Matemati Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Binom Teoremi Binom Teoremi ( ) n 1. Derste

Detaylı

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri) ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr BAĞIMLI İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0 SİERPİNSKİ ÜÇGENİ Polonyalı matematiçi Waclaw Sierpinsi (1882-1969) yılında Sierpinsi üçgeni veya Sierpinsi şapası denilen bir fratal tanıttı. Sierpinsi üçgeni fratalların il örneğidir ve tremalarla oluşturulur.

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 08 BİLDİRİLER KİTABI SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ Fevzi ŞENLİTÜRK, Fuat ALARÇİN ÖZET Bu çalışmada

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

Kesikli Üniform Dağılımı

Kesikli Üniform Dağılımı 9.. KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Kesili Üniform Dağılımı. Bernoulli Dağılımı 3. Binom Dağılımı 4. Negatif Binom Dağılımı. Geometri Dağılım. Hiergeometri Dağılım 7. Poisson Dağılımı

Detaylı

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi M. Ozan AKI Yrd.Doç Dr. Erdem UÇAR ABSTRACT: Bu çalışmada, sıvıların seviye ölçümünde dalgalanmalardan aynalı meydana

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde

ÖABT LİSE MATEMATİK KPSS 2016 ANALİZ DİFERANSİYEL DENKLEMLER. Eğitimde ÖABT LİSE KPSS 2016 Pegem Aademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 40'ın üzerinde soruyu olaylıla çözebildiğini açıladı. MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Eğitimde

Detaylı

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi 9-11 Aralı 2009 Ço Yüse Mobiliteli Sönümlemeli Kanallardai OFDM Sistemleri için Kanal Kestirimi İstanbul Üniversitesi Eletri-Eletroni Mühendisliği Bölümü {myalcin, aan}@istanbul.edu.tr Sunum İçeriği Giriş

Detaylı

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ EK SERBESLİK DERECELİ İREŞİM SİSEMİNİN LAGUERRE POLİNOMLARI İLE MARİS ÇÖZÜMÜ Mehmet ÇEVİK a, Nurcan BAYKUŞ b a Celal Bayar Üniversitesi Maine Mühendisliği Bölümü, Muradiye 454, Manisa. b Douz Eylül Üniversitesi,

Detaylı

GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ

GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇARAZLAMANIN SÖZDE RASSAL OULASYONLARA ETKİSİ ınar SANAÇ Ali KARCI Bilgisayar Mühendisliği Bölümü Mühendisli Faültesi Fırat Üniversitesi 239 Elazığ ÖZET Geneti

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, *

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, * Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 (1-2) 168-182 (2009) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ

Detaylı

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ PAMUKKALE ÜNİVERSİTESİ MÜHENDİ SLİK FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİSLİK B İ L İ MLERİ DERGİSİ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 006 : : : 7-6 SAKARYA HAVZASI

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 14 Sayı: 1 sh Ocak 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 14 Sayı: 1 sh Ocak 2012 DEÜ MÜHENDİSLİ FAÜLTESİ MÜHENDİSLİ BİLİMLERİ DERGİSİ Cilt: 4 Sayı: sh. 39-47 Oca 202 ARIŞIMLI İİLİ LOJİSTİ REGRESYON MODELİNE İLİŞİN BİR UYGULAMA (AN APPLIACTION FOR MIXTURE BINARY LOGISTIC REGRESSION

Detaylı

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Politeni Dergisi Cilt:3 Sayı: 3 s. 09-3, 00 Journal of Polytechnic Vol: 3 No: 3 pp. 09-3, 00 Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Tevfi GÜLERSOY, Numan

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2012 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 ralı 2012, Bursa Lineer Olmayan Dinami Sistemlerin Yapay Sinir ğları ile Modellenmesinde MLP ve RBF Yapılarının Karşılaştırılması

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler.

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler. Eğitim ve Bilim Cilt 40 (2015) Sayı 177 31-41 Türiye dei Vaıf Üniversitelerinin Etinli Çözümlemesi Gamze Özel Kadılar 1 Öz Oran analizi ve parametri yöntemlerin eğitim urumlarını ıyaslaren yetersiz alması

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Bazı Özel Kısmı Türevli Diferansiyel Denlemlerin Gezen Dalga Çözümleri İbraim ÇAĞLAR YÜKSEK LİSANS Matemati Anabilim Dalını Ağustos - KONYA Her Haı Salıdır

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYNN BİLGİSAYAR DESTEKLİ ANALİZİ Cen GEZEGİN Muammer ÖZDEMİR Eletri Eletroni Mühendisliği Bölümü Mühendisli Faültesi Ondouz Mayıs Üniversitesi, 559, Samsun e-posta:

Detaylı

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm BİLİŞİM TEKOLOJİLERİ DERGİSİ, CİLT: 1, SAYI: 1, OCAK 2008 23 Geneti Algoritma ile Mirofon Dizilerinde Ses Kaynağının Yerinin Bulunması Erem Çontar, Hasan Şair Bilge Bilgisayar Mühendisliği Bölümü, Gazi

Detaylı

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Fırat Üniv. Fen Bilimleri Dergisi Fırat Unv. Journal of Science 25(), 7-76, 23 25(), 7-76, 23 Matris Unutma Fatörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Özet Cener BİÇER * Esin KÖKSAL

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Oca 2011 STOKASTİK KULLANICI DENGESİ TRAFİK ATAMA PROBLEMİNİN SEZGİSEL METOTLAR KULLANILARAK ÇÖZÜLMESİ (HEURISTIC METHODS

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

Hızlı Ağırlık Belirleme İçin Yük Hücresi İşaretlerinin İşlenmesi

Hızlı Ağırlık Belirleme İçin Yük Hücresi İşaretlerinin İşlenmesi Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Tenoloji GU J Sci Part:C 4(3):97-102 (2016) Hızlı Ağırlı Belirleme İçin Yü Hücresi İşaretlerinin İşlenmesi Zehan KESİLMİŞ 1,, Tarı BARAN 2 1 Osmaniye

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

141 Araştırma Makalesi. Türkiye de Karpuz Üretiminde Üretim-Fiyat İlişkisinin Almon Gecikme Modeli ile İncelenmesi

141 Araştırma Makalesi. Türkiye de Karpuz Üretiminde Üretim-Fiyat İlişkisinin Almon Gecikme Modeli ile İncelenmesi KSÜ Doğa Bil. Derg., 9(), 4-46, 6 KSU J. Nat. Sci., 9(), 4-46, 6 4 Araştırma Maalesi Türiye de Karpuz Üretiminde Üretim-Fiyat İlişisinin Almon Gecime Modeli ile İncelenmesi Nusret ÖBAY *, Şenol ÇELİK Bingöl

Detaylı

Ersin Pak (ersin.pak@kocallianz.com.tr) Melda Şuayipoğlu (melda.suayipoglu@kocallianz.com.tr) Nalan Öney (nalan.kadioglu@kocallianz.com.

Ersin Pak (ersin.pak@kocallianz.com.tr) Melda Şuayipoğlu (melda.suayipoglu@kocallianz.com.tr) Nalan Öney (nalan.kadioglu@kocallianz.com. Sağlık Sigortalarında İflas Olasılığını Etkileyen Parametrelerin Simülasyon Modeli ile Analizi Ersin Pak (ersin.pak@kocallianz.com.tr) Melda Şuayipoğlu (melda.suayipoglu@kocallianz.com.tr) Nalan Öney (nalan.kadioglu@kocallianz.com.tr)

Detaylı

TALEBİN BELİRSİZ OLDUĞU TEDARİK ZİNCİRİ TASARIMINDA BULANIK ENİYİLEME YAKLAŞIMI

TALEBİN BELİRSİZ OLDUĞU TEDARİK ZİNCİRİ TASARIMINDA BULANIK ENİYİLEME YAKLAŞIMI Uluslararası Yönetim İtisat ve İşletme Dergisi, Cilt 8, Sayı 17, 2012 Int. Journal of Management Economics and Business, Vol. 8, No. 17, 2012 TALEBİN BELİRSİZ OLDUĞU TEDARİK ZİNCİRİ TASARIMINDA BULANIK

Detaylı

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü Serbestli Dereceli Taşıt Modeli PID Kontrolü Matematisel Modelin Çıarılması: Hareet denlemlerinin çıarılmasında Lagrange yöntemi ullanılmıştır. Lagrange yöntemi haında detaylı bilgi (Francis,978; Pasin,984;

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ TEKNOLOJİ, Cilt 7, (2004), Sayı 3, 407-414 TEKNOLOJİ GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ ÖZET Himet DOĞAN Mustafa AKTAŞ Tayfun MENLİK

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

Rentech. Yaylar ve Makaralar Deney Seti. Yaylar ve Makaralar Deney Seti. (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü

Rentech. Yaylar ve Makaralar Deney Seti. Yaylar ve Makaralar Deney Seti. (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü 1 Anara-2015 Paetleme Listesi 1. Yaylar ve Maaralar Deney Düzeneği 1.1. Farlı Yay Sabitine Sahip Yaylar 1.2. Maaralar (Teli, İili

Detaylı

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ ISSN:0- e-journal of New World Sciences Academy 009, Volume:, Number:, Article Number: A000 PHYSICAL SCIENCES Received: November 00 Acceted: June 009 Series : A ISSN : 0-0 009 www.newwsa.com Yüsel Öner,

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

Aşınmadan aynalanan hasar, gelişmiş ülelerde gayri safi milli hasılanın % 1-4 ü arasında maliyete sebep olmata ve bu maliyetin % 36 sını abrasiv aşınm

Aşınmadan aynalanan hasar, gelişmiş ülelerde gayri safi milli hasılanın % 1-4 ü arasında maliyete sebep olmata ve bu maliyetin % 36 sını abrasiv aşınm TİMAK-Tasarım İmalat Analiz Kongresi 6-8 Nisan 006 - BALIKESİR RSM TEKNİĞİ UYGULANARAK DERLİN MALZEMESİNİN OPTİMUM AŞINMA DEĞERİNİN TAHMİN EDİLMESİ Aysun SAĞBAŞ 1, F.Bülent YILMAZ ve Fatih ALTINIŞIK 3

Detaylı

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. HARRAN ÜNİVERSİTESİ FEN BİİMERİ ENSTİTÜSÜ YÜKSEK İSANS TEZİ ÇATAK İÇEREN DEĞİŞKEN KESİTİ KİRİŞERDE TİTREŞİM PROBEMİNİN SONU EEMANAR METODUYA MODEENMESİ Mehmet HASKU MAKİNE MÜHENDİSİĞİ ANABİİM DAI

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi Bulanı Programlama Yöntemi ile Süre-- Eniyilemesi Eran Karaman, Serdar Kale BAÜ Mühendisli Mimarlı Faültesi, 045, Çağış, Balıesir Tel: (266) 62 94 E-posta: earaman@baliesir.edu.tr sale@baliesir.edu.tr

Detaylı

Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar

Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar Matemati Dünyası Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar İler Birbil / sibirbil@sabanciunivedutr / wwwbolbilimcom Princeton Üniversitesi Yayınları ndan 15 yılında bir itap çıtı [1] Kapsamlı

Detaylı

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Gebze Teni Üniversitesi Fizi Bölümü Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Doğan Erbahar 2015, Gebze Bu itapçı son biraç yıldır Gebze Teni Üniversitesi Fizi Bölümü nde lisans laboratuarları

Detaylı

Yapay Sinir Ağları Tabanlı Reaktif Güç Kompanzasyonu

Yapay Sinir Ağları Tabanlı Reaktif Güç Kompanzasyonu Politeni Dergisi Journal of Polytechnic Cilt: 1 Sayı: s.19-135, 7 Vol: 1 No: pp.19-135, 7 Yapay Sinir Ağları Tabanlı Reatif Güç Kompanzasyonu Ramazan BAYINDIR *, Şeref SAĞIROĞLU **, İlhami ÇOLAK * * Gazi

Detaylı

ÜLKEMİZ EGE KIYILARI İÇİN DENİZ SEVİYELERİNİN UZUN DÖNEM DEĞİŞİMLERİ

ÜLKEMİZ EGE KIYILARI İÇİN DENİZ SEVİYELERİNİN UZUN DÖNEM DEĞİŞİMLERİ 7. Kıyı Mühendisliği Sempozyumu - 45 - ÜLKEMİZ EGE KIYILARI İÇİN DENİZ SEVİYELERİNİN UZUN DÖNEM DEĞİŞİMLERİ Mustafa DOĞAN 1, H. Kerem CIĞIZOĞLU 2, D. Uğur ŞANLI 3, Aslı ÜLKE 4 1 Araş. Gör. İnş. Y. Müh.,

Detaylı

ÇALIŞMA ŞARTLARINDA MODAL ANALİZ

ÇALIŞMA ŞARTLARINDA MODAL ANALİZ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇALIŞMA ŞARTLARINDA MODAL ANALİZ YÜKSEK LİSANS TEZİ Y. Müh. Ales KUYUMCUOĞLU Anabilim Dalı: Meatroni Mühendisliği Programı: Meatroni Mühendisliği HAZİRAN

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

SAP2000 de önceden saptanan momentler doğrultusunda betonarme plak donatısı hesapları şu makale doğrultusunda yapılmaktadır:

SAP2000 de önceden saptanan momentler doğrultusunda betonarme plak donatısı hesapları şu makale doğrultusunda yapılmaktadır: Teknik Not: Betonarme Kabuk Donatı Boyutlandırması Ön Bilgi SAP000 de önceden saptanan momentler doğrultusunda betonarme plak donatısı esapları şu makale doğrultusunda yapılmaktadır: DD ENV 99-- 99 Eurocode

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAZI KISMİ TÜREVLİ DİFERANSİYEL DENKLEMLERİN DİFERANSİYEL DÖNÜŞÜM YÖNTEMİ İLE ÇÖZÜMÜ VE DİĞER YÖNTEMLERLE KARŞILAŞTIRILMASI YÜKSEK

Detaylı

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Available online at www.alphanumericournal.com alphanumeric ournal Volume 3, Issue 1, 2015 2015.03.01.OR.02 MATEMATİKSEL PROGRAMLAMA İLE TEDARİK ZİNCİRİ YÖNETİMİNDE ETKİNLİK PLANLAMASI Murat ATAN * Sibel

Detaylı

DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ

DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ ABSTRACT Şürü Ertie 1, Deniz Yıldırım 2, Efe Turhan 3, Taha Taner İnal 4 İstanbul Teni Üniversitesi, Eletri Mühendisliği

Detaylı

EZ ONAYI Haydar ANKIŞHAN tarafından hazırlanan Gürültülü Ses Sinyali İyileştirilmesine İili Kalman Filtre Yalaşımı adlı tez çalışması aşağıdai jüri ta

EZ ONAYI Haydar ANKIŞHAN tarafından hazırlanan Gürültülü Ses Sinyali İyileştirilmesine İili Kalman Filtre Yalaşımı adlı tez çalışması aşağıdai jüri ta ANKARA ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ YÜKSEK LİSANS EZİ GÜRÜLÜLÜ SES SİNYALİ İYİLEŞİRİLMESİNE İKİLİ KALMAN FİLRE YAKLAŞIMI HAYDAR ANKIŞHAN ELEKRONİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA 2007 i EZ ONAYI

Detaylı

(b) ATILIM Üniversitesi, Elektrik ve Elektronik Mühendisliği Böl.

(b) ATILIM Üniversitesi, Elektrik ve Elektronik Mühendisliği Böl. ED Sistemleri için Etin Darbe Ayrıştırma ve Tehdit Kimlilendirme Algoritması Geliştirilmesi Development of Effective Pulse Deinterleaving and Threat Identification Algorithm for ESM Systems Ortaovalı H.

Detaylı

Dinamik Programlama Tekniğindeki Gelişmeler

Dinamik Programlama Tekniğindeki Gelişmeler MADENCİLİK Aralı December 1991 Cilt Volume XXX Sayı No 4 Dinami Programlama Teniğindei Gelişmeler Developments in Dynamic Programming Technique Ercüment YALÇIN (*) ÖZET Bu yazıda, optimum nihai açı işletme

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BCJR ALGORİTMASI KULLANILAN TURBO KOD ÇÖZÜCÜLERİN FPGA GERÇEKLEŞTİRİMİ.

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BCJR ALGORİTMASI KULLANILAN TURBO KOD ÇÖZÜCÜLERİN FPGA GERÇEKLEŞTİRİMİ. ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BCJR ALGORİTMASI KULLANILAN TURBO KOD ÇÖZÜCÜLERİN FPGA GERÇEKLEŞTİRİMİ Onur ATAR ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA 20 Her haı salıdır

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME)

HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME) . ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Erciyes Üniversitesi, Kayseri 09 - Haziran 005 HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME) Göhan

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Düzce Üniversitesi Bilim ve Tenoloji Dergisi, 3 (2015) 414-431 Düzce Üniversitesi Bilim ve Tenoloji Dergisi Araştırma Maalesi Moment Taşıyan Çeli Çerçeveli Sistemlerin Titreşim Periyotları ve Deprem Yülerinin

Detaylı

Açık işletme Dizaynı için Uç Boyutlu Dinamik Programlama Tekniği

Açık işletme Dizaynı için Uç Boyutlu Dinamik Programlama Tekniği MADENCİLİK Haziran June 1991 Cilt Volume XXX Sayı No 2 Açı işletme Dizaynı için Uç Boyutlu Dinami Programlama Teniği A Three Dimensional Dynamic Programming Technique for Open Pit Design Ercüment YALÇE\(*)

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

DÜŞÜK SICAKLIKTA ISI KAYNAĞI KULLANAN BİR ABSORBSİYONLU SOĞUTMA SİSTEMİNİN TERMOEKONOMİK OPTİMİZASYONU

DÜŞÜK SICAKLIKTA ISI KAYNAĞI KULLANAN BİR ABSORBSİYONLU SOĞUTMA SİSTEMİNİN TERMOEKONOMİK OPTİMİZASYONU Isı Bilimi ve eniği Dergisi, 33, 2, 111-117, 2013 J. of hermal Siene and ehnology 2013 IBD Printed in urey ISSN 1300-3615 DÜŞÜK SICAKLIKA ISI KAYNAĞI KULLANAN BİR ABSORBSİYONLU SOĞUMA SİSEMİNİN ERMOEKONOMİK

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

TUNÇBİLEK TERMİK SANTRALİ 5.ÜNİTE KAZANININ SAYISAL MODELLEMESİ

TUNÇBİLEK TERMİK SANTRALİ 5.ÜNİTE KAZANININ SAYISAL MODELLEMESİ TUNÇBİLEK TERMİK SANTRALİ 5.ÜNİTE KAZANININ SAYISAL MODELLEMESİ Faru ÖZDEMİR*, Yaup Erhan BÖKE İstanbul Teni Üniversitesi, Maina Faültesi, İnönü Caddesi No: 65 Gümüşsuyu 34437 İSTANBUL *Sorumlu yazar:

Detaylı

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015 Gümüşhane Üniversitesi Sosyal Bilimler Eletroni Dergisi Sayı 12 Oca 2015 TÜRKİYE DE EKONOMİK BÜYÜME, ENERJİ TÜKETİMİ VE İTHALAT İLİŞKİSİ ÖZET Canan SANCAR 1 Melie ATAY POLAT 2 Bu çalışmada Türiye de eonomi

Detaylı

İş Bir sistem ve çevresi arasındaki etkileşimdir. Sistem tarafından yapılan işin, çevresi üzerindeki tek etkisi bir ağırlığın kaldırılması olabilir.

İş Bir sistem ve çevresi arasındaki etkileşimdir. Sistem tarafından yapılan işin, çevresi üzerindeki tek etkisi bir ağırlığın kaldırılması olabilir. ermodinami rensipler ermodinamiğin birinci anunu enerjinin orunumu prensibinin bir ifadesidir. Enerji bir bölgeden diğerine taşındığında eya bir bölge içinde şeil değiştirdiğinde toplam enerji mitarı sabit

Detaylı

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu,

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu, . X rasgele değişeninin olasılı fonsiyonu f( x) = c(x + 5), x =,, 0, diğer hâllerde olduğuna göre, c nin değeri açtır? A İSTATİSTİK KPSS-AB-PÖ/007. X süreli raslantı değişeninin biriimli dağılım fonsiyonu,

Detaylı

YUVACIK VE NAMAZGAH BARAJ DEFORMASYONLARININ İZLENMESİ

YUVACIK VE NAMAZGAH BARAJ DEFORMASYONLARININ İZLENMESİ YUVACI VE NAMAZGAH BARAJ DEFORMASYONLARININ İZLENMESİ Orhan URT-1, Haan İLHAN-, Dile AYDIN-3, İsmail SEYRE-4, Eşref AIŞ-5, Ömer Faru ÇELİ- 6, Önder EİNCİ-7, Veysel BAŞARIR-8, Türer AYGÜN-9 Mail Adresi:

Detaylı

Sigorta priminin benzetim yöntemi ile belirlenmesi ve otomobil sigortası örneği

Sigorta priminin benzetim yöntemi ile belirlenmesi ve otomobil sigortası örneği www.istatistikciler.org İstatistikçiler Dergisi: İstatistik&Aktüerya 7 (2014) 20-28 Đstatistikçiler Dergisi: Đstatistik&Aktüerya Sigorta priminin benzetim yöntemi ile belirlenmesi ve otomobil sigortası

Detaylı