TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ"

Transkript

1 EK SERBESLİK DERECELİ İREŞİM SİSEMİNİN LAGUERRE POLİNOMLARI İLE MARİS ÇÖZÜMÜ Mehmet ÇEVİK a, Nurcan BAYKUŞ b a Celal Bayar Üniversitesi Maine Mühendisliği Bölümü, Muradiye 454, Manisa. b Douz Eylül Üniversitesi, İzmir Mesle Yüseoulu, Buca 355, İzmir. GİRİŞ Lineer diferansiyel, integral ve integro diferansiyel denlemlerin arışı sınır şartları altında çözümü için ullanılan Laguerre polinomları, bu çalışmada te serbestli dereceli ütle yay probleminin matris çözümüne uygulanmıştır. Bilindiği gibi, te serbestli dereceli ütle-yay sistemleri meani titreşimler onusunun en temel modelidir. Olduça armaşı yapılar bile basit bir te serbestli dereceli sistem olara modellenip, bu suretle yalaşı çözümler elde edilebilir. Dolayısıyla bu sistemin çözümü daha ileri seviyede problemlerin çözümüne önemli bir atı sağlamatadır. Bu sistemin, belirsiz atsayılar yöntemi, freans tepi yöntemi, geometri yöntem ve Laplace dönüşümleri gibi yöntemlerle çözümü çeşitli temel aynalarda bulunmatadır [,2]; ayrıca aylor polinomları ile matris çözümü de daha önce yapılmıştır [3]. Laguerre matrislerini diferansiyel denlemlerin çözümünde ullanan çalışmalar literatürde mevcuttur [4-6]. Bu çalışmada ise, Laguerre polinomları tanıtıldıtan sonra problemin matris formunda ifadesi elde edilmiş; yine matris formunda yazılan sınır şartları yerlerine onulara Laguerre polinomları cinsinden bir çözüm bulunmuştur. Bulunan sonuçlar diğer yöntemlerle elde edilen sonuçlar ile arşılaştırılmış ve önerilen yöntemin olduça iyi sonuçlar verdiği gösterilmiştir. 2. PROBLEMİN LAGUERRE MARİS İFADESİ Laguerre polinomları, aşağıdai Laguerre diferansiyel denleminin çözümü olara tanımlanmışlardır: [7-8] xy + ( x )y + ny = Negatif olmayan n tamsayılarına arşılı gelen çözümler aşağıdai Rodrigues formülü ullanılara ifade edilebilir: x n e d x n L n( x ) = n ( e x ) n! dx İl biraç Laguerre polinomu şunlardır: L ( x ) = L ( x ) = x + 2 L 2( x ) = x 2x L 3( x ) = x + x 3x M n i ( ) n i L n( x ) = x x b < + i = i! n i Bu polinomlar matris formunda şu şeilde ifade edilebilirler: L ( x ) = [ L ( x ) L ( x ) L N ( x )] Bu matrisi aşağıdai daha uygun formda yazma mümündür () L( x ) = X( x ) H (2)

2 burada 2 X( x ) x x K x N = ve K K 2 K 2 H = 3 3 K 2 6 M M M M O M 2 3 N ( ) N ( ) N ( ) N ( ) N ( ) N K!! 2! 2 3! 3 N! N Genel olara, m inci mertebe sabit atsayılı bir lineer diferansiyel denlem şu şeilde yazılabilir m ( ) P y ( x ) = g( x ) x b Benzer şeilde şartları da şöyle ifade etme mümündür ( ) ( ) ( ) < + (3) a y ( ) + b y ( b ) = λ j =,,...,m (4) j j j Denlem (3) ün yalaşı bir çözümününün aşağıdai Laguerre polinom formunda olduğunu düşünelim: = N y( x ) anl n( x ), x,t b < (5) n= burada a j, b j, λ j uygun sabitlerdir; a n, n =,, 2, K,N belirlenmeleri gereen Laguerre atsayılarıdır ve L n( x ) ise () de tanımlanmış olan Laguerre polinomlarıdır. 2. EMEL MARİS BAĞINILARI Denlem (3) ü ısaca D( x ) = g( x ) şelinde yazabiliriz, burada (6) = m ( ) D( x ) P y ( x ) (7) Şimdi, y( x ) ( ) çözümü ve türevleri y ( x ) ile D( x ) ve (4) şartları matris formuna dönüştürülecelerdir. () 2.. y(x) ve y (x) için matris bağıntıları y( x ) çözüm fonsiyonu aynı zamanda aşağıdai formda bir esilmiş aylor serisine açılabilir ( n ) = N n y( x ) ynx y ( ), yn = (8) n= n! (5) ve (8) çözümleri ile bunların türevleri matris formunda, sırasıyla, şöyle yazılabilir [ y( x )] = L( x ) A, ( ) ( ) y ( x ) = L ( x ) A (9)

3 burada [ ] = X Y y( x ) ( x ), ( ) ( ) y ( x ) = X ( x ) Y () [ a a a a ] bilinmeyen Laguerre atsayıları ve [ y y y y ] A = 2 K N Y = 2 K N bilinmeyen aylor atsayılarıdır. Öte yandan, Laguerre polinomları aşağıdai yinelenme bağıntısını (recurrence relation) sağlarlar [9] L n ( x ) = L n- ( x ) L n-( x ) () Denlem ()'i ullanara L ( x ) = L ( x ) L ( x ) = L ( x ) L ( x ) = L ( x ) L ( x ) = L ( x ) L ( x ) 2 L ( x ) = L ( x ) L ( x ) = L ( x ) L ( x ) L ( x ) M L N ( x ) = L ( x ) L ( x ) K L N ( x ) yazılabilir. Denlem (2)'den açıça görülmetedir i, L(x) matrisi ile türevleri arasındai bağıntı ( ( x )) = ( ( x )) L E L veya L ( x ) = L( x ) E (3) dır. Burada L ( x ) = L ( x ) L ( x ) L ( x ) K L ( x ) L ( x ) [ ] 2 N E = (9) ve (3) matris denlemlerinden y ( x ) = L( x ) E A (4) olduğunu çıarma mümündür. (3) ve (4) denlemlerini ullanara, yinelenme bağıntısını şu şeilde ifade edebiliriz ( ) ( ) y ( x ) = L( x ) E A 2.2. D(x) diferansiyel ısmı için matris bağıntısı (5) ifadesini denlem (7) de yerine oyarsa bulunur. m [ D( x )] P ( x )( ) = N (2) (5) L E A (6) 2.3. Karışı şartlar için matris bağıntısı (4)'te verilen şartların matris formunu (2) ve (5)'i ullanara şöyle yazabiliriz a j ( ) b j ( b ) a j ( ) b j ( b ) λ ij ( ) ( ) ( ) ( ) burada j =,, 2,...,m L + L E A = X + X H E A = (7) 2.4. g(x) fonsiyonunun matris ifadesi

4 Denlem (3)'tei homojen olmayan terimin yalaşı değeri, esilmiş Laguerre serisi ile ifade edilebilir g( x ) = L( x ) G (8) burada G, g( x ) fonsiyonunun Laguerre atsayılarını ifade etmetedir. Bu terimin yalaşı değeri esilmiş aylor serisi ile de aşağıdai gibi ifade edilebilir g( x ) = X( x ) G t (9) burada G = [ g g K g ] t N (8) ve (9) denlemlerini eşitleyere ve denlem (2)'yi ullanara yazılabilir. ( ) G = H G t 3. ÇÖZÜM YÖNEMİ emel matris denlemini oluşturma için, (6) ve (8) matris bağıntıları (6)'da yerlerine onulur ve gereli sadeleştirmeler yapılırsa m P ( E ) A = G (2) elde edilir. Bu denlem ( N + ) bilinmeyen a,a,...,a n Laguerre atsayısına arşılı gelen ( + ) N denlem sistemini ifade eder. Denlem (2)'yi ısaca şöyle yazabiliriz WA = G veya [ W;G ] (2) burada m W = wpq = P ( E ), p,q =,,...,N Öte yandan, (4) şartlarının matris formu olan (7)'yi de şöyle yazabiliriz UjA = λ j or Uj;λ j, j =,, 2,...,m (22) burada ( a j ( ) b j ( b )) ( ) U = L + L E j u j u j K u jn, j =,, 2,...,m (3) denleminin (4) şartları altında genel çözümünü elde etme için, (2) matrisinin m adet satırının yerine m-satırlı (22) matrisini oyarız ve yeni genişletilmiş matrisi elde ederiz [,] w w K w N ; g( x ) w w w N ; g( x ) K M M O M M M wn m, wn m, K w N m,n ; g( x N m ) W;G % % = u u K u N ; λ u u K u N ; λ M M O M M M um, um, K u m,n ; λ Eğer ran W % = ran W;G % % =N + ise, bu tatirde (23)

5 ( % ) A = W G % olur. Şunu da belirtme gereir i, eğer W % teil bir matris olursa, m-satırlı (22) matrisi, W % matrisinin herhangi başa m satırının yerine onulara teilli giderilebilir. Nihayet, bilinmeyen a, ( n =,,...,N ) Laguerre atsayıları (24) vasıtasıyla bulunmuş olurlar. n 4. SAYISAL UYGULAMA Harmoni zorlama etisindei te serbestli dereceli ütle-yay-sönüm modelinin hareet denlemi M && y + C y& + K y = F cos ω t ve başlangıç oşulları y( ) =. 4 y( & ) = olara verilmiştir. Cismin ütlesi M = g, sönüm atsayısı C = 5 g/s ve yay sabiti K = N/m olara seçilmiştir. Zorlama fonsiyonunun genliği F = N ve freans ω = rad/s 'dir. Bu örnete, y( t ) fonsiyonunun yalaşı çözümünü bulma için derecesi N = 4 olan Laguerre polinomu ullanılmıştır. Özel çözüm ile genel çözüm ayrı ayrı incelenmiştir. üm matris işlemleri MALAB 6.5. programı ullanılara yapılmıştır. Bu işlemlere ait MALAB algoritması E'te verilmiştir. Özel Çözüm Özel çözüm için genişletilmiş matris (2) ullanılmış ve başlangıç şartları diate alınmamıştır. Dolayısıyla ( ) ( ) ( ) 2 W = E + 5 E + E 5 G t = G= Genişletilmiş matris denlemi A için çözülere Laguerre atsayıları elde edilir ve yalaşı özel çözüm şu şeilde bulunur y ( t ) =. 348L L L L L L L p L L L L L L +. 35L. L Genel Çözüm Genel çözümde, genişletilmiş matris denlemi (23)'ü oluşturma için (2) matrisinin son ii satırı yerine 2-satırlı (2) matrisi U j;λ j yerleştirilir. Bu durumda 5 G % t = olur. (24) ullanılara genel çözüme ait Laguerre atsayıları bulunur; böylece genel çözüm elde edilir y ( t ) =. 5L +. 59L 3. 46L L L L L g L L L L L L L. 884L (24)

6 Şeil 'de, Laguerre matris yöntemi ile bulunan sonuçlar, belirsiz atsayılar yöntemi (tam çözüm) ile bulunan sonuçlarla arşılaştırılmıştır. Sonuçların birbirleri ile ço uyumlu olduları görülmetedir. Şeil. Laguerre matris yöntemi ile tam çözüm sonuçlarının arşılaştırılması. Homojen Çözüm Sistem lineer olduğu için, yuarıda bulunan genel çözümden özel çözüm çıarılara homojen çözüm elde edilir. 5. SONUÇLAR e serbestli dereceli ütle-yay-sönüm sisteminin serbest ve zorlamalı titreşimleri Laguerre polinomlarına dayalı matris yöntemi ile incelenmiştir. Bu yöntem, hareet denlemlerini matris formundai denlemlere çevirir, i bu matris denlemler bilinmeyen Laguerre atsayılarına ait lineer cebirsel denlem sistemlerine arşılı gelmetedir. Yalaşı çözüm fonsiyonu ise bu matris denlemlerin çözülmesiyle olayca elde edilmetedir. Elde edilen sonuçlar tam çözüm ile arşılaştırılmış ve çözüm aralığında bulunan sonuçların birbirleri ile uyumlu olduları görülmüştür. Kullanılan yöntem olduça prati olmasının yanında hassas sonuçlar da vermetedir. Laguerre matris yöntemi değişen atsayılı diferansiyel, integral ve integro-diferansiyel denlemlere de uygulanabilir. KAYNAKLAR [] Meirovitch, L., Elements of Vibration Analysis, McGraw-Hill Inc., New Yor, 975. [2] Inman, D.J., Engineering Vibration, Prentice-Hall, New Jersey, 2. [3] Çevi, M., Kurt, N., e serbestli dereceli titreşim sisteminin aylor matris yöntemi ile polinom çözümü, XVI. Ulusal Meani Kongresi Bildiriler Kitabı, Cilt-, 29. [4] Dattoli, G., Laguerre and generalized Hermite polynomials: the point of view of the operational method, Integral ransform Spec. Functions, 5, 93-99, 24. [5] R.S. Alassar, H.A. Mavromatis, S.A. Sofianos, A new integral involving the product of Bessel functions and associated Laguerre polynomials, Acta Appl. Math., , 28. [6] A.D. Alhaidari, Evaluation of integrals involving orthogonal polynomials: Laguerre polynomial and Bessel function example, Appl. Math. Lett. 2, 38-42, 27. [7] S. Lyanaga, Y. Kawada, Encyclopedic Dictionary of Mathematics, MI Press, 98.

7 [8] D. Zwillinger, Handboo of Differential Equations, Academic Press, 998. [9] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 978. [] S.B. ricovic, M.S. Stanovic, A new approach to the orthogonality of the Laguerre and Hermite polynomials, Integral ransform Spec. Funct. 7, , 26. [] Kurt, N., Sezer, M., Polynomial solution of high-order linear Fredholm integrodifferential equations with constant coefficients, Journal of he Franlin Institute, 345, , 28. E. Sayısal Uygulama için MALAB Algoritması syms m c x m=; c=5; = % Import data from MS-Excel: H, E, Gt matrices W=m*(E')^2+c*(E')+*(E')^; WD=W % Replace the last 2 rows of WD by the following 2-row initial condition matrix G=inv(H')*Gt GD=G % Replace the last 2 rows of GD by initial conditions [.4; ] AP = inv(w)*g; AG = inv(wd)*gd; X= [, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^, x^, x^2, x^3, x^4] L=X*H'; YP=L*AP; YG=L*AG; ezplot (SG,[,]) ezplot (SP,[,])

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

Cahit Arf Liseler Arası Matematik Yarışması 2008

Cahit Arf Liseler Arası Matematik Yarışması 2008 Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

Fizik 101: Ders 24 Gündem

Fizik 101: Ders 24 Gündem Terar Fizi 101: Ders 4 Günde Başlangıç oşullarını ullanara BHH denlelerinin çözüü. Genel fizisel saraç Burulalı saraç BHHte enerji Atoi titreşiler Proble: Düşey yay Proble: taşıa tuneli BHH terar BHH &

Detaylı

Doç. Dr. Mehmet ÇEVİK

Doç. Dr. Mehmet ÇEVİK Doç. Dr. Mehmet ÇEVİK ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Boğaziçi Üniversitesi İnşaat Mühendisliği 986-990 Y. Lisans Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

Doç. Dr. Mehmet ÇEVİK

Doç. Dr. Mehmet ÇEVİK Doç. Dr. Mehmet ÇEVİK ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Boğaziçi Üniversitesi İnşaat Mühendisliği 986-990 Y. Lisans Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Salih YALÇINBAŞ 2. Doğum Tarihi: Unvanı: Doç.Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Salih YALÇINBAŞ 2. Doğum Tarihi: Unvanı: Doç.Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Salih YALÇINBAŞ 2. Doğum Tarihi: 01.07.1969 3. Unvanı: Doç.Dr. 4. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Öğr. Dokuz Eylül Üniversitesi 1990 Y. Lisans Matematik

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Klasik Ortogonal Polinomlar (MATH484) Ders Detayları

Klasik Ortogonal Polinomlar (MATH484) Ders Detayları Klasik Ortogonal Polinomlar (MATH484) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Klasik Ortogonal Polinomlar MATH484 Her İkisi 3 0 0 3 6 Ön Koşul Ders(ler)i

Detaylı

CURRICULUM VITAE NİYAZİ ŞAHİN

CURRICULUM VITAE NİYAZİ ŞAHİN CURRICULUM VITAE NİYAZİ ŞAHİN Yıldırım Beyazıt Üniversitesi Tel (Ofis): (312) 324-1555 Mühendislik ve Doğa Bilimleri Fak. Matematik-Bilgisayar Bölümü Fax: (312) 324-1505 Ankara, Türkiye E-mail: nisa70@gmail.com

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 6 (06) 0330 (576-584) AKU J Sci Eng 6 (06) 0330 (576-584) DOI:

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Diferansiyel Denklemler ve Lineer Cebir BIL271 3 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans

Detaylı

CELÂL BAYAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ/MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ/MEKANİK ANABİLİM DALI

CELÂL BAYAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ/MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ/MEKANİK ANABİLİM DALI 1986-2017 yılları arasında özgeçmiş MEHMET ÇEVİK E-Posta Adresi cevik2002@gmail.com Telefon (İş) Telefon (Cep) Faks Adres 2323293535-2000 5543021584 İzmir Katip Çelebi Üniversitesi Fen Bilimleri Enstitüsü

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. -

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. - MAT 202-DİFERENSİYEL DENKLEMLER-Güz 2016-2017 Dönemi Ders Uygulama Planı 04 02 ve 03 01 Öğretim Üyesi Prof. Dr. Ömer AKIN (Ders Koordinatörü) Prof. Dr. Abdullah ALTIN Doç. Dr. Niyazi ŞAHİN Ofis No 226

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI BAZI KISMİ TÜREVLİ DİFERANSİYEL DENKLEMLERİN DİFERANSİYEL DÖNÜŞÜM YÖNTEMİ İLE ÇÖZÜMÜ VE DİĞER YÖNTEMLERLE KARŞILAŞTIRILMASI YÜKSEK

Detaylı

Doç. Dr. Mehmet ÇEVİK

Doç. Dr. Mehmet ÇEVİK Doç. Dr. Mehmet ÇEVİK ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Boğaziçi Üniversitesi İnşaat Mühendisliği 986-990 Y. Lisans Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. HARRAN ÜNİVERSİTESİ FEN BİİMERİ ENSTİTÜSÜ YÜKSEK İSANS TEZİ ÇATAK İÇEREN DEĞİŞKEN KESİTİ KİRİŞERDE TİTREŞİM PROBEMİNİN SONU EEMANAR METODUYA MODEENMESİ Mehmet HASKU MAKİNE MÜHENDİSİĞİ ANABİİM DAI

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar

Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar Matemati Dünyası Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar İler Birbil / sibirbil@sabanciunivedutr / wwwbolbilimcom Princeton Üniversitesi Yayınları ndan 15 yılında bir itap çıtı [1] Kapsamlı

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

Adi Diferansiyel Denklemler (MATH 262) Ders Detayları

Adi Diferansiyel Denklemler (MATH 262) Ders Detayları Adi Diferansiyel Denklemler (MATH 262) Ders Detayları Ders Adı Adi Diferansiyel Denklemler Ders Kodu MATH 262 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i

Detaylı

DİFERANSİYEL DENKLEMLER-2

DİFERANSİYEL DENKLEMLER-2 DİFERANSİYEL DENKLEMLER- SINIR DEĞER ve ÖZDEĞER PROBLEMLERİ Bu bölümde adi diferansiyel denklemlerde sınır ve özdeğer problemleri ( n) ( n1) incelenecektir. F( y, y,..., y, x) 0 şeklinde verilen bir diferansiyel

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Akademik Ünvanı : Y. Doç. Dr. Çalışma Alanları: Cebir, Cebirsel Sayı Teorisi, Cebirsel Geometri, Kodlama Teorisi, Kriptoloji, Cebirsel Topoloji.

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇOK DEĞİŞKENLİ ORTOGONAL POLİNOMLAR. Rabia AKTAŞ MATEMATİK ANABİLİM DALI ANKARA 2007

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇOK DEĞİŞKENLİ ORTOGONAL POLİNOMLAR. Rabia AKTAŞ MATEMATİK ANABİLİM DALI ANKARA 2007 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇOK DEĞİŞKENLİ ORTOONAL POLİNOMLAR Rabia AKTAŞ MATEMATİK ANABİLİM DALI ANKARA 2007 Her hakkı saklıdır ÖZET Yüksek Lisans Tezi ÇOK DEĞİŞKENLİ

Detaylı

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU)

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU) HÜSEYİN IŞIK YARDIMCI DOÇENT E-Posta Adresi : h.isik@alparslan.edu.tr Telefon (İş) Telefon (Cep) Faks Adres : : : : 3122021084-5071865605 MUŞ ALPARSLAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ Öğrenim Durumu

Detaylı

ÖZGEÇMĐŞ. B. ADRESLERĐ VE TELEFON NUMARALARI Ev :0(232)3756219 Đş :0(236)2013225 Cep :0(536)8802842

ÖZGEÇMĐŞ. B. ADRESLERĐ VE TELEFON NUMARALARI Ev :0(232)3756219 Đş :0(236)2013225 Cep :0(536)8802842 ÖZGEÇMĐŞ A. KĐMLĐK BĐLGĐLERĐ Adı ve Soyadı :Mehmet SEZER Doğum Yeri :Dutluca/AKSEK Doğum Tarihi :20.03.1954 Yabancı Dili :Đngilizce Uzmanlık Alanı :Uygulamalı Matematik B. ADRESLERĐ VE TELEFON NUMARALARI

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK III Dersin Orjinal Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT Dersin Öğretim

Detaylı

POLİNOMLAR Test I m P x 3 2x x 4x. P x x 5 II. III. A) 13 B) 12 C) 11 D) 10 E) 9

POLİNOMLAR Test I m P x 3 2x x 4x. P x x 5 II. III. A) 13 B) 12 C) 11 D) 10 E) 9 POLİNOMLAR Test -. I. P x x 5 II. III. P x x P x ifadelerinden hangileri polinom belirtir? 6. P x x x x 7 polinomunun katsayılar toplamı A) B) C) D) 0 E) 9 A) Yalnız I B) Yalnız II C) I ve II D) I ve III

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi 9-11 Aralı 2009 Ço Yüse Mobiliteli Sönümlemeli Kanallardai OFDM Sistemleri için Kanal Kestirimi İstanbul Üniversitesi Eletri-Eletroni Mühendisliği Bölümü {myalcin, aan}@istanbul.edu.tr Sunum İçeriği Giriş

Detaylı

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi.

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Ünvanı : Doç. Dr. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. 1. Öğrenim

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME)

HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME) . ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Erciyes Üniversitesi, Kayseri 09 - Haziran 005 HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME) Göhan

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: Ünvanı: Doç. Dr. 4. Öğrenim Durumu: 1. Adı Soyadı: Bahaddin SİNSOYSAL 2. Doğum Tarihi: 02.0.1969. Ünvanı: Doç. Dr.. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Karadeniz Teknik Üniversitesi 1991 Y. Lisans Matematik

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2012 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 ralı 2012, Bursa Lineer Olmayan Dinami Sistemlerin Yapay Sinir ğları ile Modellenmesinde MLP ve RBF Yapılarının Karşılaştırılması

Detaylı

Sayısal Analiz (MATH381) Ders Detayları

Sayısal Analiz (MATH381) Ders Detayları Sayısal Analiz (MATH381) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Analiz MATH381 Güz 3 2 0 4 7 Ön Koşul Ders(ler)i MATH 135 Matematik Analiz

Detaylı

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA BEYKENT ÜNİVERSİTESİ FEN VE MÜHENDİSLİK BİLİMLERİ DERGİSİ Sayı 7(1) 2014, 25-36 İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA Tuğba PİŞTOFOGLU (tugbapistofoglu@gmail.com)

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Binom Katsayıları ve Pascal Üçgeni 3. Bölüm Emrah Ayar Anadolu Üniversitesi Fen Faültesi Matemati Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Binom Teoremi Binom Teoremi ( ) n 1. Derste

Detaylı

Hızlı Ağırlık Belirleme İçin Yük Hücresi İşaretlerinin İşlenmesi

Hızlı Ağırlık Belirleme İçin Yük Hücresi İşaretlerinin İşlenmesi Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Tenoloji GU J Sci Part:C 4(3):97-102 (2016) Hızlı Ağırlı Belirleme İçin Yü Hücresi İşaretlerinin İşlenmesi Zehan KESİLMİŞ 1,, Tarı BARAN 2 1 Osmaniye

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

e e ex α := e α α +1,

e e ex α := e α α +1, s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik - Bilgisayar Bölümü MC 886 ntegral Denklemler... Yßliçi Sßnavß CEVAPLAR Talimatlar: Sßnav süresi 9 dakikadßr. lk dakika sßnav salonunu terk etmeyiniz.

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Sayısal Yöntemler (COMPE 350) Ders Detayları

Sayısal Yöntemler (COMPE 350) Ders Detayları Sayısal Yöntemler (COMPE 350) Ders Detayları Ders Adı Sayısal Yöntemler Ders Kodu COMPE 350 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Bahar 2 2 0 3 5.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

ÇALIŞMA ŞARTLARINDA MODAL ANALİZ

ÇALIŞMA ŞARTLARINDA MODAL ANALİZ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇALIŞMA ŞARTLARINDA MODAL ANALİZ YÜKSEK LİSANS TEZİ Y. Müh. Ales KUYUMCUOĞLU Anabilim Dalı: Meatroni Mühendisliği Programı: Meatroni Mühendisliği HAZİRAN

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Uygulamalı Matematik Dersin Orjinal Adı: Applied Mathematics Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu:

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK I Dersin Orjinal Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1009 Dersin Öğretim

Detaylı

Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubukların Stoke Dönüşümü Yardımıyla Burkulma Analizi

Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubukların Stoke Dönüşümü Yardımıyla Burkulma Analizi XIX. UUSA MEKANİK KONGRESİ 4-8 Ağustos 15, Karadeni Teni Üniversitesi, Trabon Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubuların Stoe Dönüşümü Yardımıyla Burulma Analii M. Öür YAYI 1, A. Erdem

Detaylı

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Düzce Üniversitesi Bilim ve Tenoloji Dergisi, 3 (2015) 414-431 Düzce Üniversitesi Bilim ve Tenoloji Dergisi Araştırma Maalesi Moment Taşıyan Çeli Çerçeveli Sistemlerin Titreşim Periyotları ve Deprem Yülerinin

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

Belirli sıcaklık ve sürelerde kürlenen hibrid tabakalı kompozit plakalarının titreşim davranışlarının incelenmesi

Belirli sıcaklık ve sürelerde kürlenen hibrid tabakalı kompozit plakalarının titreşim davranışlarının incelenmesi icle Üniversitesi Mühendisli Faültesi mühendisli dergisi Cilt: 6, 1, 61-7 3-9 Haziran 015 elirli sıcalı ve sürelerde ürlenen hibrid tabaalı ompozit plaalarının titreşim davranışlarının incelenmesi Tamer

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYNN BİLGİSAYAR DESTEKLİ ANALİZİ Cen GEZEGİN Muammer ÖZDEMİR Eletri Eletroni Mühendisliği Bölümü Mühendisli Faültesi Ondouz Mayıs Üniversitesi, 559, Samsun e-posta:

Detaylı

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ Ders List ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ 17.11.2016 Yüksek Lisans Dersleri Kod Ders Adı Ders Adı (EN) T U L K AKTS MTK501 Reel

Detaylı

STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ NUMERICAL EIGENVALUES OF STURM-LIOUVILLE OPERATORS

STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ NUMERICAL EIGENVALUES OF STURM-LIOUVILLE OPERATORS Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 2, Sayı 2, (2013), 43-49 STURM-LIOUVILLE OPERATÖRÜNÜN SAYISAL ÖZDEĞERLERİ Güldem YILDIZ 1*, Bülent YILMAZ 2 Matematik Bölümü, Fen Edebiyat Fakültesi,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: LINEAR ALGEBRA. Dersin Kodu: CME 1004

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: LINEAR ALGEBRA. Dersin Kodu: CME 1004 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: LİNEER CEBİR Dersin Orjinal Adı: LINEAR ALGEBRA Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: CME 004 Dersin

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5 11 12 6 K 13 Örnek Kararlılık Tablosunu hazırlayınız 14 7 15 Kapalı çevrim kutupları ve kararlıkları a. Kararlı sistem; b. Kararsız sistem 2000, John Wiley & Sons, Inc. Nise/Cotrol

Detaylı

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ Kaynaklar: S.S. Rao, Mechanical Vibrations, Pearson, Zeki Kıral Ders notları Mekanik veya yapısal sistemlere dışarıdan bir

Detaylı

Yrd. Doç. Dr.Yiğit Aksoy

Yrd. Doç. Dr.Yiğit Aksoy Yrd. Doç. Dr.Yiğit Aksoy ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Y. Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Doktora Celal

Detaylı

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number: 1, Article Number: 1A0156 ENGINEERING SCIENCES Yavuz Ünal Received: October 010 Ufu Eim Accepted: January 011 Murat Kölü Series

Detaylı

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü Serbestli Dereceli Taşıt Modeli PID Kontrolü Matematisel Modelin Çıarılması: Hareet denlemlerinin çıarılmasında Lagrange yöntemi ullanılmıştır. Lagrange yöntemi haında detaylı bilgi (Francis,978; Pasin,984;

Detaylı

Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları

Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları Kısmi Diferansiyel Denklemler (MATH378) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Kısmi Diferansiyel Denklemler MATH378 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15.

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15. HARMONİK DENKLEM Harmonik denklemin sağ tarafının sıfır olması haline Laplace, sağ tarafının sıfır olmaması haline de Possion denklemi adı verilir. Possion ve Laplace denklemi, kısaca harmonik denklem

Detaylı

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları

Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Karmaşık Fonksiyonlar ve Uygulamaları (MATH274) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Karmaşık Fonksiyonlar ve Uygulamaları MATH274 Bahar 3 0 0

Detaylı