8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar"

Transkript

1 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde çarpma 7. Doğal sayılar kümesinde sıralama 8. Doğal sayılar kümesinde çıkarma 9. Doğal sayılar kümesinde bölme 10. Alıştırmalar 1. Eşit güçlü kümeler 1.Tanım: A, B iki küme, bir fonksiyon olsun. f fonksiyonu birebir ve örten ise bu fonksiyona birebir eşleme denir. A dan B ye en az bir birebir eşleme varsa A ve B kümelerine eşit güçlü kümeler denir. Simgesi: 1.Örnek: A={a,b,c} ve B={x,y,z} 1.Teorem: Herhangi bir kümeler ailesinde tanımlanan eşit güçlü olma bağıntısı bir denklik bağıntısıdır. İspat: kümeler ailesinde {( ) bir bağıntı olsun. Denklik olmak için bağıntı: 1. Yansıyan, 2. Simetrik. 3. Geçişli olmalıdır. 1. Yansıyan: ( ) ( ) 2. Simetrik: ( ) birebir ve örtendir birebir ve örtendir ( ) 3. Geçişli: [( ) ve ( ) ] ( birebir ve örtendir) ve ( birebir ve örtendir birebir ve örten 2.Sonlu ve sonsuz kümeler 1.Tanım: En az bir öz alt kümesine eşit güçlü olan bir kümeye sonsuz küme denir. Sonsuz olmayan bir kümeye sonlu küme denir. 1.Teorem: Boş küme sonlu küme 2.Teorem: A={a} olduğuna göre, A kümesi sonlu küme 3.Teorem: A ve B iki küme ve olsun. A kümesi sonsuz küme ise B kümesi de sonsuz küme 4.Teorem: A ve B iki küme ve olsun. B kümesi sonlu küme ise A kümesi de sonlu küme 5.Teorem: En az biri sonlu olan iki kümenin arakesiti sonlu küme 6.Teorem: A sonlu küme ve B herhangi bir küme olsun. küme sonlu küme 1

2 7.Teorem: A bir küme ve olsun. A kümesi sonsuz küme ise { kümesi de sonsuz küme 8.Teorem: Sonlu iki kümenin birleşimi sonlu küme 9.Teorem: Sonlu iki kümenin kartezyen çarpımı sonlu küme 3.Doğal sayılar kümesi 1.Tanım: Herhangi sonlu bir X küme için, { kümeye X in denklik sınıfı denir. Doğal sayıların elemanlarını aşağıdaki gibi tanımlayalım: kümenin denklik sınıfını 0 ile gösterelim, yany 0= { {0} kümenin denklik sınıfını 1 ile gösterelim, yany 1= { { { {0,1} kümenin denklik sınıfını 2 ile gösterelim, yany 2= { { { 3= { { { 4= { { {.. Doğal sayılar kümesi ile gösterilir: { 2.Tanım: Sonlu kümeler ailesinde tanımlanan eşit güçlü olma bağıntısına göre elde edilen ve 0,1,2,3,4, ile gösterilen denklik sınıflarının her birine doğal sayı denir. 1.Teorem: İki doğal sayı ya eşittir, veya birbirinden farklıdır. 2.Teorem: Doğal sayılar kümesi sonsuz bir küme 4.Sayılabilir kümeler 1.Tanım: Doğal ayıların bir alt kümesine eşit güçlü olan kümeye sayılabilir küme denir. Bir küme sayılabilir değilse bu kümeye sayılamayan küme denir. 1.Örnek: A={a,b,c,x,y} kümesi {0,1,2,3,4} kümeye eşit güçlüdür. 2.Örnek: kendisine eşit güçlü olduğuna göre sayılabilir sonsuz küme 2.Tanım: Bir küme {1,2,3,..,n} kümesine eşit güçlü ise n sayısına A nın elemanlarının sayısı denir. Boş kümenin elemanlarının sayısı 0 dır. n(a) veya s(a) biçimde gösterilir. 3.Tanım: { kümesine sayma sayıları kümesi denir. { 1.Teorem: Boş kümeden farklı bir A kümesinin sayılabilir olması için A den ye birebir bir f fonksiyonunun var olması gerektir ve yeter. 2.Teorem: Sayılabilir bir kümenin her alt kümesi sayılabilir 5.Doğal sayılar kümesinde toplama 1.Tanım: x ve y iki doğal sayı olsun. x sayısını temsil eden bir A kümesi ile y yi temsil eden ve A ile ayrık olan B kümesinin birleşiminin bulunduğu denklik sınıfına x ile y nin toplamı denir. Toplamı bulmak için yapılan işleme toplama denir. 2

3 Simgesi: x+y 1.Örnek: 2 ile 3 doğal sayılarının toplamını bulunuz., olmak üzere A ve B kümeleri seçelim. A={a,b}, B={x,y,z}. { olduğundan 2+3=5 olur. 1.Teorem: Aşağıdaki önermelerden her biri doğrudur. a) Doğal sayılar kümesi toplama işlemine göre kapalıdır. b) Toplama işleminin değişme özelliği vardır. c) Toplama işleminin birleşme özelliği vardır. d) Doğal sayılar kümesinin toplama işlemine göre etkisiz (birim) elemanı 0 dır. İspat: olsun., olmak üzere A, B ve C kümeleri seçelim. a) (, ) b) (, ) c) (, ) ( ) ( ) ve ( ) ( ] ) ( )=( ) d) (, ve ) = 2.Teorem: ( ) İspat:,, biçiminde olacak A,B,C,D kümeleri seçelim. Buna göre, birebir ve örtendir birebir ve örten ( ) { ( ) birebir ve örtendir ( ) Buradan elde edilir. 1.Sonuç: 3.Teorem: 4.Teorem: İspat:,, olmak üzere A,B kümeleri seçelim. ( ) ( ) x=0 ve y=0 x+5=3 açık önermesinin deki doğruluk kümesinin boş küme olduğunu gösteriniz. Çözüm: x+5=3 x+(2+3)=3 (x+2)+3=0+3 3

4 (x=0 ve 2=0) Bu önermeyin yanlış olduğundan açık önermesinin doğruluk kümesi 6.Doğal sayılar kümesinde çarpma 1.Tanım: x ve y iki doğal sayı olsun. x sayısını temsil eden bir A kümesi ile y yi temsil eden B kümesinin Kartezyen çarpımının bulunduğu denklik sınıfına x ile y nin çarpımı denir. Çarpımı bulmak için yapılan işleme çarpma denir. Simgesi: x.y 1.Teorem: Aşağıdaki önermelerden her biri doğrudur. a) Doğal sayılar kümesi çarpma işlemine göre kapalıdır. b) Çarpma işleminin değişme özelliği vardır. c) Çarpma işleminin birleşme özelliği vardır. d) Doğal sayılar kümesinin çarpma işlemine göre etkisiz (birim) elemanı 1 İspat: olsun., olmak üzere A, B ve C kümeleri seçelim. a) ( ) A,B kümeler sonlu AxB de sonludur. Buna göre x.y= b) (, ) c) (, ) ( ) ( ) ve ( ) ( ] ) ( )=( ) d) (, { ) { ve { = 2.Teorem: İspat: = ve 0.x= x.0=0.x= = =0 3.Teorem: ( ) 1.Sonuç: 4.Teorem: ( ) 5.Teorem: 6.Teorem: ( ) 7.Doğal sayılar kümesinde sıralama { { { { solu kümelerinin her biri sıra ile, 4

5 0,1,2,3,4, doğal sayılarını temsil eder. Bu kümelere doğal sayıların kanonik temsilcileri diyelim. 1.Tanım: x ve y iki doğal sayılarının kanonik temsilcileri A ve B olsun. ise x doğal sayısı y doğal sayısından küçüktür denir. x<y (x<y veya x=y) ifadesi kısaca biçiminde yazılır. 2.Tanım: x ve y iki doğal sayılar olmak üzere, x<y,x>y,, açık önermelerden her birine doğal sayılar kümesinde bir eşitsizlik denir. 1.Teorem: x ve y iki doğal sayılar olsun. x<y,x>y, ifadelerden biri ve yalnız biri doğrudur. 2.Teorem: x doğal sayısının y den küçük olması için, x+k=y olacak biçimde sıfırdan farklı bir tek k doğal sayısının var olması gerektir ve yeter. 3.Teorem: Doğal sayılar kümesinin en küçük elemanı 0 dır. 4.Teorem: kümesinde tanımlanan bağıntısı bir sıralama bağıntısıdır. kümesi bu bağıntıya göre tam sıralı bir küme 5.Teorem: 1.Sonuç: 6.Teorem: ( ) 2.Sonuç: ( ) 7.Teorem: 8.Teorem: 0 ile 1 arasında olan doğal sayı yoktur. 9.Teorem: ) 10.Teorem: ( ) 11.Teorem: Doğal sayılar kümesinin boş kümeden farklı her alt kümesinin bir en küçük elemanı vardır. Bu eleman yalnız bir tane 12.Teorem: Doğal sayılar kümesinin boş kümeden farklı her sonlu alt kümesinin bir en büyuk elemanı vardır. Bu eleman yalnız bir tane 8.Doğal sayılar kümesinde çıkarma 1.Tanım: olsun. a+x=b olacak biçimde bir x doğal sayısı varsa, b ile a nın farkı x dir, denir. Farkı bulmak için yapılan işleme çıkarma denir. Simgesi: b-a 1.Teorem: 1.Sonuç: Doğal sayılar kümesi çıkarma işlemine göre kapalı değil 2.Teorem: olsun. (z+x)-(y+x) veya z-y ise (z+x)-(y+x)=z-y 3.Teorem: için (x+y)-y=x 4.Teorem: için y ise x+(y-z)=(x+y)-z 5.Teorem: olsun. (x-y)-z veya x-(y-z) ise 5

6 (x-y)-z = x-(y-z) 6.Teorem: olsun. x-(y-z) veya (x-y)+z ise x-(y-z)= (x-y)+z 9.Doğal sayılar kümesinde bölme 1.Tanım: ve olsun. a=bx olacak biçimde bir x doğal sayısı varsa, x sayısına b ye bölümü, b sayısına a nin bir çarpanı veya böleni denir. a sayısının b doğal sayısına bölümü varsa bu bölüm a:b ile gösterilir ve a bölü b diye okunur. Öte yandan b sayısının a nın bir böleni olduğu b a biçiminde gösterilir ve b böler a diye okunur. 1.Örnek: Her a doğal sayı için a=1.a ve olduğundan 1 a dır. a:1=a 2.Örnek: Her a { için 0=a.0 ve olduğundan a 0 dır. 0:a=0 1.Teorem: bağıntısıdır. { kümesi bölünebilme bağıntısına göre bir sıralama İspat: { a=a.1 a a (yansıyan) { olsun. (a b ve b a) (,b=ax ve a=by) (,b=(by)x=b(yx)) (,xy=1) (,x=1 ve y=1) Yanı b=a olur. { olsun. (a b ve b a) (,b=ax ve c=by) (ters simetrik) (, c=(ax)y=a(xy)) a c (geçişli) 2.Teorem: { olsun. a b 3.Teorem: olsun a) ise (ab):b=a dır. b) a b ve c d ise (ac) (bd) olup (bd): (ac)=(b:a)(d:c) c) a b ve a c ise a (b+c) olup (b+c): a=(b:a)+(c:a) d) a b, a c ve c<b ise a (b-c) olup (b-c): a=(b:a)-(c:a) e) a b ise a (cb) olup (cb): a=c(b:a) 6

7 10.Alıştırmalar 1. 3 ve 4 doğal sayılarının toplamını bulunuz. 2. x+6=4 açık önermesinin deki doğruluk kümesinin boş küme olduğunu gösteriniz. 3. A kümesi ile Ax{a} kümesinin eşit güçlü olduğunu gösteriniz. 4. A,B,C,D kümeler olsun. ise ( ) ( ) olduğunu gösteriniz. 5. için x+x=2x olduğunu gösteriniz. 6. de 2x+7=29 açık önermesinin doğruluk kümesini bulunuz den ne ye kadar doğal sayıların çarpımına faktöriyel denir ve n! Biçiminde gösterilir. n!=1.2.3 n. Özel olarak 0!=1. Buna göre 2!,3!,4!,5! sayıları bulunuz. 8. önermesinin doğru olduğunu gösteriniz. 9. { olduğuna göre, A kümesinin liste yöntemi ile gösteriniz. 10. olsun, y x, z (x:y) ve yz x ise (x:y):z=x:(yz) olduğunu gösteriniz. 11. olsun, z y, (y:z) x ve y x ise x:(y:z)=(x:y)z olduğunu gösteriniz. 12. olsun, (yz) (xy), z x ve y 0 ise (xy):(yz)=x:z olduğunu gösteriniz. 13. ve n>1 oduğuna göre, n(n!+(n-1)!) doğal sayısını en sade biçimde gösteriniz sayısına bölünebilen her doğal sayının ardışık iki tek tek sayının toplamı biçimine yazılabileceğini gösteriniz. 15. Ardışık dört doğal sayının çarpımının 8 sayısına bölündüğünü gösteriniz. Tanımlar: 1. Eşit güçlü küme. 2. Doğal sayılar. 3. Sonlu ve sonsuz kümeler 4. Doğal sayılar kümesinde toplama 5. Doğal sayılar kümesinde çarpma 6. Doğal sayılar kümesinde sıralama 7. Doğal sayılar kümesinde çıkarma 8. Doğal sayılar kümesinde bölme 7

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

ÜNİVERSİTEYE HAZIRLIK

ÜNİVERSİTEYE HAZIRLIK ÜNİVERSİTEYE HAZIRLIK YGS MATEMATİK KONU ANLATIMLI SORU BANKASI CEVAP ANAHTARI RASYONEL SAYILAR ONDALIK SAYILAR ÖRNEKLER (Sayfa -) 6 ) ) ) 6) ; ; ) 0) ) ; 8 ) ) ) 0 ) 6 0 0 8) 0 ) 0) 6 ) 8 ) 8 8) ) ; 6

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ :

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : a ve b elemanlarının belirttiği ( a, b ) şeklindeki ikiliye sıralı ikili denir. Sıralı ikili denilmesindeki sebep bileşenlerin yeri değiştiğinde ikilinin değişmesindendir.

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız.

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. KÜMELER Küme nesneler topluluğudur. u bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. Küme kavramı matematiğe girmeden önce matematik denilince akla sayılar ve şekiller gelirdi. Kümeler kuramının

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

FONKSİYONLAR Bu materyal, mevcut proje için geliştirilen örnek sayfalardan oluşmaktadır.

FONKSİYONLAR Bu materyal, mevcut proje için geliştirilen örnek sayfalardan oluşmaktadır. FONKSİYONLAR Bu materyal, mevcut proje için geliştirilen örnek sayfalardan oluşmaktadır. İster oku, ister dinle, ister izle. Dilediğince öğren... NELER ÖĞRENECEĞİZ? 1. Fonksiyon kavramı 2. Fonksiyonların

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

MODÜLER ARİTMETİK. Örnek:

MODÜLER ARİTMETİK. Örnek: MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme

SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme 2. ÖLÇÜLER 2.1 BazıKüme Sınıfları SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin bir sınıfıolsun. A sınıfıx üzerinde bir σ cebir midir? ÇÖZÜM 1: A := {B P (X) : B sonlu} X / A

Detaylı

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır. 0.1 GRUPLAR Tanım 1 A kümesi boştan farklıolmak üzere işlemine göre aşağıdaki koşulları gerçekliyorsa (A, ) ikilisine bir Grup denir. 1. kapalılık özelliğine sahiptir, yani her x, y A için x y A olur.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız.

( 2x+1, 3y 1. Örnek...4 : A = {1, 2, 3} ve B = {a, b} kümeleri için, AxB ve BxA kümelerini liste biçimde yazınız. SIRALI İKİLİ a ve b'nin (a,b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir. Burada a' ya ikilinin birinci bileşeni, b' ye ise ikinci bileşeni denir. Örneğin ; (4, 3)

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar,

6. Ali her gün cebinde kalan parasının (2009) a, b ve c farklı pozitif tamsayılar, 9. x, y, z pozitif gerçek sayılar, 1. 9 2 x 2 ifadesinin açılımında sabit x terim kaç olur? A) 672 B) 84 C) 1 D) -84.E) -672 6. Ali her gün cebinde kalan parasının %20 sini harcamaktadır. Pazartesi sabahı haftalığını alan Ali ni Salı günü

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 4. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar Boole Cebiri Uygulamaları Standart Formlar Standart Formlar: Sop ve Pos Formlarının Birbirlerine Dönüştürülmesi

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATĠK DENEMESĠ-1 Muharrem ġahġn TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEġĠLYURT Gökhan KEÇECĠ Saygın DĠNÇER Mustafa YAĞCI Ġ:K Ve TMÖZ üyesi 14 100 matematik ve geometri sevdalısı

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

AYRIK YAPILAR. ARŞ. GÖR. SONGÜL KARAKUŞ- FıRAT ÜNIVERSITESI TEKNOLOJI FAKÜLTESI YAZıLıM MÜHENDISLIĞI BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR. ARŞ. GÖR. SONGÜL KARAKUŞ- FıRAT ÜNIVERSITESI TEKNOLOJI FAKÜLTESI YAZıLıM MÜHENDISLIĞI BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez.

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez. MTEMTĐK ĐM YILLR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - 1 - - - - - 1 1 1/1 /LYS KÜMELER TNIM: in tam bir tanımı yoksa da matematikçiler kümeyi; iyi tanımlanmış nesneler topluluğu olarak kabul

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

KARTEZYEN ÇARPIM VE BAĞINTI

KARTEZYEN ÇARPIM VE BAĞINTI KRTEZYEN ÇRPIM VE BĞINTI 3. Bölüm TEST -2 1. β={(x,y):2x+y=8,x,y N} şeklinde tanımlı β bağıntısı kaç elemanlıdır? ) 4 B) 5 C) 6 D) 7 E) 8 6. R'de bağıntısı yansıyan ise a.b kaçtır? ) 18 B) 9 C) 2 D) 18

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

Bölüm 2 Matematik Dili

Bölüm 2 Matematik Dili Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7}

Detaylı

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI T.C ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI ÖĞRETİM ÜYELERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR:

Detaylı

9. SINIF MATEMATİK KONU ÖZETİ

9. SINIF MATEMATİK KONU ÖZETİ 2012 9. SINIF MATEMATİK KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: MANTIK İnsan diğer canlılardan ayıran en önemli özelliklerden biri düşünebilme yeteneğidir. Bireyler karşılaştıkları günlük

Detaylı

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar

MATE 409 SAYILAR TEORİSİ BÖLÜM: 8. Muazzez Sofuoğlu Nebil Tamcoşar MATE 409 SAYILAR TEORİSİ BÖLÜM: 8 LİNEER KONGRÜANSLAR Muazzez Sofuoğlu 067787 Nebil Tamcoşar 8.1. Bir Değişkenli Lineer Kongrüanslar a,b ve m/a olmak üzere; Z ax b(modm) şeklindeki bir kongrüansa, birinci

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür

Detaylı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı 1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA

DOĞAL SAYILARDA TOPLAMA VE ÇARPMA YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS DOĞAL SAYILARDA TOPLAMA VE ÇARPMA Örnek( 1 ) - - - - (I) yandaki işleme x 1 (II) göre (I) çarpan - - - - kaçtır? 40 + - - - - - - - - - - (ÖSS-8) 40

Detaylı

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar HESAP Hesap soyut bir süreçtir. Bu çarpıcı ifade üzerine bazıları, hesaplayıcı dediğimiz somut makinelerde cereyan eden somut süreçlerin nasıl olup da hesap sayılmayacağını sorgulayabilirler. Bunun basit

Detaylı

ÇARPANLARA AYIRMA. çözüm. Çarpanlarına Ayrılacak İfade Ortak Çarpan İfadenin Çarpanlarına Ayrılmış Hali. 2a+4 2 2a+4=2.(a+2) 5x+5 5 5x+5=5.

ÇARPANLARA AYIRMA. çözüm. Çarpanlarına Ayrılacak İfade Ortak Çarpan İfadenin Çarpanlarına Ayrılmış Hali. 2a+4 2 2a+4=2.(a+2) 5x+5 5 5x+5=5. ÇARPANLARA AYIRMA ÇARPANLARA AYIRMA Bir polinomu farklı polinomların çarpımı şeklinde yazabilme işlemine çarpanlara ayırma işlemi denir. P()=A().B().C() şeklindeki yazılımda A(), B(), C() polinomlarına

Detaylı