Katı Cismin Uç Boyutlu Hareketi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Katı Cismin Uç Boyutlu Hareketi"

Transkript

1 Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /,

2 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0

3 Đme : d d a ( wx a wx ɺ wxɺ wx ɺ wx( wx, a wx ɺ ( w w ( w w wx ɺ we ɺ x( he be wbe ɺ a n n θ t at wb ɺ αb ax( bxc ( a c b ( a b c wxwx wen x[ wen x( hen be ] 2 an wxwx wenx( bweθ bw e Nomal Đme 2 an bw. w 0,. wɺ 0, a. w 0, a. wɺ 0

4 Üç outlu Genel Katı Cisim Haeketi (Öteleme apan x--z Eksenle ağıl haeket kaamını üç boutlu haekete genelleştieek inceleeceğiz. XYZ sabit eksen takımını, xz ise haeketli eksen takımını ifade etsin.

5 w açısal hız ektöü, / /, a a a / idi. Düzlemsel haekette elde ettiğimiz bu ifadele anen üç boutlu haekette de geçelidi. Sadece uzaklığının sabitliğine dikkat edilmelidi. xz ile anı ötelemei apan deki gözlemcie göe, katı cismin noktası mekezinde olan bi küe üzeinde kalı. Yani, katı cismin üç boutlu genel haeketini nin ötelemesi etafında katı cismin dönmesinin süpepozisonu olaak göebiliiz. NO: / ektöü katı cisme değişmez olaak lıdı. nen wxi, wxi d wx ifadeleinde olduğu gibi, / biçiminde azılabili. d d d / ( / wx / sonucu elde edili. / di di Đme : d d a ( wx / a a a wx ɺ wx( wx / / wx ɺ / wxɺ /

6 biçiminde imele alanı elde edili. w : Katı cismin ani dönme ektöü w ɺ : Katı cismin açısal imesi Not : xz ekseni da alınısa; wx a a wx ɺ biçimindedi. / / wx( wx /, / / Not : noktasının katı cisim üzeinde hızı bilinen bi nokta olaak seçmek fadalıdı. Not : Eğe şekildeki e noktalaı katı cismin uzasal mekanizmasının ijid kontol lantı uçlaı isele ki bu tü lantı elemanlaı küesel mafsal (ball and socket şeklinde uçlaından lanıla. ağlantı

7 kolunun ( nin kendi ekseni etafındaki hehangi bi dönmesi nin sistem w temsil ede. üzeindeki etkisini etkilemez. ölece nin etkisini e dik olan n u da bize, wn wn / 0 şatını ei. enze şekilde nin açısal imesinin etkisini e dik olan α n 0 denklemini ei. u son iki denklem poblem çözümünde eksik kalan denklem saısını ei. Dönen Refeans Sistemine Göe Genel Haeket Katı cismin üç boutlu haeketinde genel haeketin (öteleme e dönme tam olaak açıklaabilmek için, haeketli ekse takımının (xz haeketini de genel haeket (öteleme e dönme olaak almak geeki. xz nin açısal hızı Ω e oijini noktasıdı. xz nin açısal hız ektöü Ω ile katı cismin w açısal hız ektöü faklı olabili,

8 Hız : d / ( / ɺ xi ɺ j ɺ zk ɺ xi ɺ j ɺ zk ağ xɺ Ωxi ɺ Ωxj 2Ωxk Ωx ağ / b d ( xi j zk Đme : d d a ( d a a ( Not : ağ ağ Ωx / ɺ d / Ωx / Ωx 5inci bölümde xz ekseninde azılan hehangi bi ektöün XY eksen takımındaki tüei: d d wx XY x biçimde unutmamışladı. u ifadenin 3 boutlu ifadesi

9 d d ağ XYZ d d ağ / Ω XYZ xz x ağ d ağ ɺ d / a a Ω xağ Ω x / Ω x( Ωx / ɺ a a aağ Ω xağ Ω x / Ω xağ Ωx( Ωx / ɺ a a aağ 2 Ω xağ Ω x / Ωx( Ωx / xɺ i j ɺ zk ɺ a ɺɺ xi ɺɺ j ɺɺ zk ağ biçimleini alı. ağ Ωx xz ağ ifadesi elde edili. una göe,

10 Katı Cismin ağıl Dönmesi x--z eksen takımını katı cismin hehangi noktasına laalım. dat katı cismin sabit uzaklığıdı. Katı cismin sabit OXYZ e göe dönmesi θ olsun. Yani xz ekseni θ kada dönsün. nı dönmei doğusuda apa. ıca, doğu paçasının xz e göe θ θ ıl dönmesine izin eelim. ölece nin toplam dönmesi; OXYZ e göe θ ile xz e göe θ θ ıl dönmeleinin toplamı kada olu. oplam dönme θ θ θ azılı. θ ile bölünüp limite geçileek, θ t θ t θ lim t lim t 0 lim t 0 w Ω w ifadesi bulunu. t

11 Üç boutlu haekette, Ω Ωxi1 Ω j1 Ωzk1 w w i w j w k x biçiminde olabili. w Ω w Ω i z j k x 1 Ω 1 Ω z 1 w i w x j w k z Ω : Katı cismin OXYZ e göe açısal hız ektöü, w : Katı cismin haeketli eksen takımına göe açısal hız ektöü. Not : OXYZ ile xz paalel ise, i1 i ; j1 j; k1 k alını. ksi halde i1, j1, k1 ; i, j, k cinsinden ada tam tesi azılmalıdı.

12 oplam çısal Đme α α α α dw d ( Ω w Ωɺ xi ɺ j ɺ zk wɺ 1 Ω 1 Ω 1 ɺ Ω α wx ( Ωxi w ɺ Ω α Ωxw x i wɺ j wɺ zk w ( Ωxj w ( Ωxk z x i ɺ w ɺ ɺ j w k ifadesi elde edili Ω ɺ : Katı cismin (xz OXYZ e göe açısal imesidi α : paçasının xz e göe açısal imesidi. Not : Düzlemsel haekette Ω ile w anı doğultulu olula. Ω w x 0 azılı. Düzlemsel halde toplam açısal ime ise, ɺ α Ω α şeklinde azılı. z

13 Not : Eğe Ω sabit ise (üüklüğü e doğultusu değişmiosa Ω ɺ 0 azılı. nı hal w için de a ise α w ɺ 0 alını. u duumda toplam ime α Ω x w şeklinde elde edili. ( Ω e w nın sabit olduğu hal unlaa ilae olaak eğe haeketle düzlemsel ise Ω// w Ωxw 0 olu e bölece sabit açısal hız ile düzlemsel haeket apan katı cismin ıl haeketinde toplam açısal ime α 0 alını. ( Ω e w sabit, haeket düzlemsel

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

Dönerek Öteleme Hareketi ve Açısal Momentum

Dönerek Öteleme Hareketi ve Açısal Momentum 6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

O xyz OXYZ. Düzgün Doğrusal Öteleme. O 1 in yörüngesi bir Doğru olacak

O xyz OXYZ. Düzgün Doğrusal Öteleme. O 1 in yörüngesi bir Doğru olacak 3.14 Bağıl Hareket Bu ana kadar Newton un ikinci kanununu, enerji-iş eşitliklerini ve impuls-momentum eşitliklerini, sait ir eksen takımına göre uyguladık. Gerçekte hiç ir eksen takımı ise gerçekte sait

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5.

Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5. 2 Ünie ue e Hareke 1. Bir Boyua Hareke 2. ue e Newon Hareke Yasaları 3. İş, Enerji e Güç 4. Basi Makineler. Dünya e Uzay 1 Bir Boyua Hareke Tes Çözümleri 3 Tes 1'in Çözümleri 3. 1. Süra skaler, hız ekörel

Detaylı

LYS MATEMATİK DENEME - 2

LYS MATEMATİK DENEME - 2 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

IfiIK VE GÖLGE. a) Benzerlikten, r K = 3 2 r olur. 6d Tam gölgenin alan 108 cm 2 oldu undan, 4d = r K

IfiIK VE GÖLGE. a) Benzerlikten, r K = 3 2 r olur. 6d Tam gölgenin alan 108 cm 2 oldu undan, 4d = r K IfiI VE GÖGE MODE SORU DE SORUARIN ÇÖZÜMER. P R. cm a) Benzelikten, cm cm a) Cismin çap cm ise ya çap cm i. Benzelikten tam nin ya çap, (+) (8++) 4 cm olu. b) Benzelikten ya nin ya çap, 8+ 0 5 cm olu.

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF ONU ANLATIMLI. ÜNİTE: UVVET VE HAREET. onu SABİT İVMELİ HAREET ETİNLİ VE TEST ÇÖZÜMLERİ Sabi İmeli Hareke. Ünie. onu (Sabi İmeli Hareke). (m/s) A nın Çözümleri. İme- grafiklerinde doğru ile ekseni

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

0.1 Katı Cismin Üç Boyutlu Hareketinin Kinetiği

0.1 Katı Cismin Üç Boyutlu Hareketinin Kinetiği F = m rg = ma G Şekil 1: Şekil 2: 0.1 Katı Cismin Üç Boyutlu Hareketinin Kinetiği UYARI :Düzlemsel hareketin kinetiğinin iyi çalışılması önemlidir.. Zira, aynı kavramlar ve bağıntıların benzerleri ile

Detaylı

ŞEKİL DEĞİŞTİRME HALİ

ŞEKİL DEĞİŞTİRME HALİ ŞEKİL DEĞİŞTİRME HALİ GİRİŞ Önceki bölümde cisme etkiyen kuvvetlerin dengesi incelenerek gerilme kavramı geliştirildi. Bu bölümde ise şekil değiştiren cisim mekaniğinin en önemli kavramlarından biri olan

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t 3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

IŞIK VE GÖLGE. 1. a) L ve M noktaları yalnız K 1. L noktası yalnız K 1. kaynağından, kaynağından, P ve R noktaları yalnız K 2

IŞIK VE GÖLGE. 1. a) L ve M noktaları yalnız K 1. L noktası yalnız K 1. kaynağından, kaynağından, P ve R noktaları yalnız K 2 BÖÜ IŞI VE GÖGE IŞTIRR ÇÖZÜER IŞI VE GÖGE a) c) N N O O P P R R pee pee ve noktalaı yalnız kaynağınan, P ve R noktalaı yalnız kaynağınan ışık alabili noktası yalnız kaynağınan, O ve P noktalaı yalnız kaynağınan

Detaylı

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI MÜHENDİSLİK MEKNİĞİ DİNMİK DERS NOTLR Ya. Doç. D. Hüsein aıoğlu EKİM 00 İSTNUL İçindekile 1 İRİŞ EKTÖREL NLİZ.1 ektö fonksionu. ektö fonksionunun tüevi.3 ektö fonksionunun integali 3 EĞRİLERDE DİFERNSİYEL

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki

Detaylı

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ TMMOB ELEKTİK MÜHENDİSLEİ ODASI ELEKTİK TESİSLEİNDE TOPAKLAMA ÖLÇÜMLEİ VE ÖLÇÜM SONUÇLAININ DEĞELENDİİLMESİ Not : Bu çalışma Elk.Y.Müh. Tane İİZ ve Elk.Elo.Müh. Ali Fuat AYDIN taafından Elektik Mühendislei

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜ BASİ AİNEER ODE SORU - DEİ SORUARIN ÇÖÜERİ. Ve im %00 ol du ğun dan sü tün me yok tu. İlk du um da 0 N ile ikin ci du um da 50 N ile den ge sağ la nı yo. İlk du um da ve im % 00 ise ikin ci du um

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK DÝFERANSÝYEL DENKLEMLER ( Genel Teka Testi-). Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) tü?. Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) ve

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

Sadece daha da iyisi.

Sadece daha da iyisi. TMMOB H A B E R DENEME Bildiğiniz ve güvendiğiniz heşey. Sadece daha da iyisi. %15 indiimle yeni bi Suit satın alabili veya mevcut Autodesk üünleinizi Suitlee yükseltebilisiniz. Autodesk Building Design

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N DENGE VE DENGE ŞARTLARI Bir cisim duruyorsa veya düzgün hızla bir doğru boyunca hareket ediyorsa ya da sabir hızla bir eksen etrafında dönüyorsa ``cisim dengededir`` denir. Cisim olduğu yerde duruyorsa,

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu Bölüm V: Newton un Hareket Yasaları İZ101 İZİK-I Ankaa Ünivesitesi en akültesi Kimya Bölümü B Gubu Bölüm V: Newton un Haeket Yasalaı 05.12.2014 Aysuhan OZANSOY Bölüm-V: Newton un Haeket Yasalaı: 1. Kuvvet Kavamı 2. Newton un I. Yasası (Eylemsizlik

Detaylı

ÖRNEK ÖRNEK ÖRNEK ÖRNEK

ÖRNEK ÖRNEK ÖRNEK ÖRNEK Öteleme ve yansımanın birlikte kullanıldığı dönüşümlere ötelemeli yansıma denir. Düzlemde yansıma ve ötelemeli yansıma dönüşümlerinde uzaklıklar korunurken açıların yönleri değişir. Ötelemeli yansıma dönüşümünde

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

RÖLATİF HAREKET ANALİZİ: İVME

RÖLATİF HAREKET ANALİZİ: İVME RÖLATİF HAREKET ANALİZİ: İVME AMAÇLAR: 1. Rijit bir cisim üzerindeki noktanın ivmesini ötelenme ve dönme birleşenlerine ayırmak, 2. Rijit cisim üzerindeki bir noktanın ivmesini rölatif ivme analizi ile

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

En Küçük Kareler Ve Toplam En Küçük Kareler Yöntemleri İle Deformasyon Analizi

En Küçük Kareler Ve Toplam En Küçük Kareler Yöntemleri İle Deformasyon Analizi En Küçük Kaele Ve oplam En Küçük Kaele Yöntemlei İle Defomasyon nalizi Mustafa CR,evfik YN, Ohan KYILMZ Özet u çalışmada, oplam En Küçük Kaele (EKK) yönteminin defomasyon analizinde uygulanması, elde edilen

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

MODEL SORU - 2 DEKİ SORULARIN ÇÖZÜMLERİ MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ. Yalnız K anahtarı kapatılırsa;

MODEL SORU - 2 DEKİ SORULARIN ÇÖZÜMLERİ MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ. Yalnız K anahtarı kapatılırsa; 1. BÖÜ EESTROSTATİ ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ ODE SORU - DEİ SORUARIN ÇÖZÜERİ 1.. 1. Z. yatay üzlem 8 yatay üzlem ve küeleinin ve küeciğinin yükleinin işaeti I., II. ve III. satılaaki gibi olabili.

Detaylı

IŞIK VE GÖLGE BÖLÜM 24

IŞIK VE GÖLGE BÖLÜM 24 IŞI VE GÖLGE BÖLÜM 24 MODEL SORU 1 DE SORULARIN ÇÖÜMLER MODEL SORU 2 DE SORULARIN ÇÖÜMLER 1 1 Dünya Ay Günefl 2 2 Bu olay ışı ğın fak lı say am o la a fak lı hız la a yayıl ı ğı nı açık la ya maz Şe kil

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 3. BÖÜ GAZ BASINCI ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ 3. ı ı Z ı 1. I II III,, muslukları açıldığında: I düzeneğinde: aptaki yüksekliği arttığından, kabın tabanına yapılan toplam basınç artar. Borudaki

Detaylı

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k

Detaylı

OO ' = d (Merkezler arası uzaklık) r 2 =d 2 +r' 2 KV= DERS: MATEMATĐK 8 KONU:KÜRE KISACA ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI:

OO ' = d (Merkezler arası uzaklık) r 2 =d 2 +r' 2 KV= DERS: MATEMATĐK 8 KONU:KÜRE KISACA ANLATIMI HAZIRLAYAN: ÖMER ASKERDEN ADI: SOYADI: ) KÜRE : Uzayda sabit bi noktadan eşit uzaklıkta bulunan noktalaın bileşim kümesine küe deni. Bi yaım daienin çapı etafında 0 0 döndüülmesi ile oluşan cisme küe deni. Uzayda bi noktadan eşit uzaklıktaki

Detaylı

Çembersel Hareket. Test 1 in Çözümleri

Çembersel Hareket. Test 1 in Çözümleri 5 Çebesel Haeket est in Çözülei.. düşey eksen tabla He üç cisi aynı ipe bağlı olduğundan peiyotlaı eşitti. Açısal hız bağıntısı; ~ di. Bağıntısındaki sabit bi değedi. Ayıca cisilein peiyotlaı eşitti. hâlde

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

v.t dir. x =t olup 2x =2t dir.

v.t dir. x =t olup 2x =2t dir. ) m/s hızla düşe olarak ükselen balondan, balona göre m/s hızla aa aılan cisim aıldığı nokanın düşeinden 5 m uzaka ere çarpıor. Buna göre cisim ere çarpığı anda balon erden kaç m üksekedir? A)5 B)5 C)6

Detaylı

KONU 3. STATİK DENGE

KONU 3. STATİK DENGE KONU 3. STATİK DENGE 3.1 Giriş Bir cisme etki eden dış kuvvet ve momentlerin toplamı 0 ise cisim statik dengededir denir. Kuvvet ve moment toplamlarının 0 olması sırasıyla; ötelenme ve dönme denge şartlarıdır.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

2009 Ceb ır Soruları

2009 Ceb ır Soruları Genç Balkan Matemat ık Ol ımp ıyatı 2009 Ceb ır Soruları c www.sbelian.wordpress.com sbelianwordpress@gmail.com 2009 yılında Bosna Hersek te yapılan JBMO sınavında ki shortlist sorularının cebir kısmının

Detaylı

ÜNİTE: KUVVET VE HAREKETİN BULUŞMASI - ENERJİ KONU: Evrende Her Şey Hareketlidir

ÜNİTE: KUVVET VE HAREKETİN BULUŞMASI - ENERJİ KONU: Evrende Her Şey Hareketlidir ÜNTE: UET E HAREETN BUUŞMASI - ENERJ NU: Evende He Şey Haeketlidi ÖRNE SRUAR E ÇÖZÜMER. x M +x Bi adam önce noktasından noktasına daha sona ise noktasından M (m) 3 3 (m) noktasına geldiğine göe adamın

Detaylı

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır.

Katı cisimlerin hareketlerinin tanımlanması ve analizi iki yönden önem taşır. RİJİT (KTI) CİSMİN KİNEMTİĞİ Ktı cisimlein heketleinin tnımlnmsı e nlizi iki yönden önem tşı. iincisi sıkç kşılşıln bi duum olup mç, değişik tipte km, dişli, çubuk e bu gibi mkin elemnlını kullnk belili

Detaylı

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması Evensel kuvvet - haeket eşitliklei ve güneş sistemi uygulaması 1. GİRİŞ Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

YAŞ PROBLEMLERĐ GENEL ÖRNEKLER. Yaş Problemleri MATEMATĐK ĐM YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 003 004 005 006 007 008 009 010 011 ÖSS-YGS 1 - - 1 1 1 - - - - YAŞ PROBLEMLERĐ Belli bir yıl sonra herkesin yaşı aynı miktarda artar Đki kişinin yaşları toplamı t yıl sonra t artar, t yıl önce

Detaylı

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın,

Detaylı

ELEKTRİK POTANSİYELİ

ELEKTRİK POTANSİYELİ 38 III.3. ELEKTRİK POTANSİYELİ III.3.0l., POTANSİYEL FARKI VE EŞPOTANSİYELLİ YÜZEYLER. Potansiyel eneji kavamı, yeçekimi ve yayın esneklik kuvveti gibi kounumlu kuvvetle inceleniken ele alınmıştı. Çeşitli

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR Tüm aın haklaı Doç. D. Bülent Yeşilata a aitti. İinsi çoğaltılama. III/ 7. İSKOZ ( SÜTÜNMELİ ) AKIŞLA 7.. Giiş Bi akışta iskoite etkisi önemli ise bu akış isko (sütünmeli) akış adını alı. Akışkan iskoitesinden

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ DENEY ADI RADYAL KAYMALI YATAKLARDA SÜRTÜNME KUVVETİNİN ÖLÇÜLMESİ DERSİN ÖĞRETİM ÜYESİ YRD.DOÇ.DR.

Detaylı