ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ"

Transkript

1 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ SERBEST İDEAL HALKALARI ÜZERİNDEKİ MODÜLLER MATEMATİK ANABİLİM DALI ADANA, 2013

2 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SERBEST İDEAL HALKALARI ÜZERİDEKİ MODÜLLER YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI Bu Tez /07/2013 Tarihinde Aşağıdaki Jüri Üyeleri Tarafından Oybirliği/Oyçokluğu ile Kabul Edilmiştir Yrd.Doç.Dr.Zeynep ÖZKURT Prof. Dr. Naime EKİCİ Yrd.Doç.Dr.Cennet ESKAL DANIŞMAN ÜYE ÜYE. Bu Tez Enstitümüz Matematik Anabilim Dalında hazırlanmıştır. Kod No: Prof. Dr. Mustafa GÖK Enstitü Müdürü Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

3 ÖZ YÜKSEK LİSANS TEZİ SERBEST İDEAL HALKALARI ÜZERİNDEKİ MODÜLLER ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Danışman : Yrd. Doç. Dr. Zeynep ÖZKURT Yıl: 2013, Sayfa: 62 Jüri : Yrd.Doç. Dr. Zeynep ÖZKURT : Prof. Dr. Naime EKİCİ : Yrd. Doç. Dr. Cennet ESKAL Bu çalışmada serbest ideal halkalarının incelenmesi amaçlanmıştır. Serbest ideal halkaları ve local serbest ideal halkaları tanımlanarak bu halkaların özellikleri ifade edilmiştir. Serbest ideal halkaları üzerinde, esas ideal bölgesi olmanın, Noetherian olma ve Ore koşulunu sağlama ile eşdeğer olduğu gösterilmiştir. Ayrıca serbest ideal halkalarının serbest çarpımları inşa edilerek bu çarpımın da yine bir serbest ideal halkası olduğu elde edilmiştir. Anahtar Kelimeler: Serbest İdeal Halkası, Local Serbest İdeal Halkası, Modül I

4 ABSTRACT PhD THESIS MODULS OVER FREE IDEAL RINGS ÇUKUROVA UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATİCS Supervisor : Asst. Prof. Dr. Zeynep ÖZKURT Year: 2013, Pages:62 Jury : Asst. Prof. Dr. Zeynep ÖZKURT : Prof. Dr. Naime EKİCİ : Asst. Prof. Dr. Cennet ESKAL In this thesis, our aim is to establish free ideal rings. It has given that definition of free ideal ring, local free ideal rings and their properties. It has shown that Principal ideal domain, Noetherian, Ore condition has same meaning in free ideal rings, In addition, it has indicated that free product of free ideal rings is constructible and is also a free ideal ring. Key Words: Free Ideal Ring and Local Free Ideal Rings, Module II

5 TEŞEKKÜR Çalışmamın hazırlanmasında bilgi ve tecrübeleriyle beni aydınlatan, her aşamada bana yardımcı olan, yapıcı ve yönlendirici fikirleri ile bana daima yol gösteren danışman hocam Sayın Yrd. Doç. Dr. Zeynep ÖZKURT a sonsuz teşekkürler. Hayatım boyunca sevgi ve desteklerini benden esirgemeyen, varlıkları ile hayatımı anlamlandıran anneme, babama ve çok kıymetli ablacığım Seher TAŞ a sonsuz şükranlarımı sunuyorum. Can dostum Eser Ördem e destek ve yardımları için teşekkür ediyorum. III

6 İÇİNDEKİLER SAYFA ÖZ... I ABSTRACT... II TEŞEKKÜR... III İÇİNDEKİLER.....IV 1. GİRİŞ TEMEL TANIM VE TEOREMLER Temel Yapılar Modül Serbest Modül Modüllerin İç direkt Toplamı ve Tensör Çarpım Noetherian Modül ve Ore Koşulu Kısa Tam dizi,projektif Injektif Modül Tek Çarpan Bölgesi SERBEST İDEAL HALKALARI SERBEST İDEAL HALKALARININ SERBEST ÇARPIMI Genişletilmiş Halkaların Serbest Çarpımı Serbest İdeal Halkalarının Serbest Çarpımı KAYNAKLAR ÖZGEÇMİŞ IV

7 IVI

8 1. GİRİŞ 1. GİRİŞ bir halka ve (,+) abelyen bir grup olmak üzere her, için, :, (, ) =. olarak tanımlanan fonksiyonu her,, ve,, için, ) ( + ) = + ) ( + ) = + ).(. ) = (. ). koşullarını sağlıyorsa ye halkası üzerinde bir sağ -modül denir. Eğer nin lineer bağımsız bir üreteç kümesi varsa serbest -modül olarak adlandırılır. sıfırdan farklı elemanları içeren bir halka olsun. : dönüşümünü ele alalım. ) ( ) 0, h 0 ç ) ( ) [ ( ), ( )] ) ( ) ( ) + ( ) ) (1) =0 koşulu sağlanıyorsa zayıf algoritmayı sağlar denir. Zayıf algoritmalı bir halkada tüm sağ ideallerin, halka üzerinde modül olarak serbest olduğu gösterilebilir. Ve bu durum değişmeli halkalardakine benzer olarak zayıf algoritmalı halkaları içeren ve değişmeli olma durumunda esas ideal bölgesine (PID) e indirgenen halkaların bir sınıfını bulma problemini akla getirir. Problemin açık bir çözümü tüm sağ idealleri serbest modül olan halkalar sınıfını almaktır. Tüm sağ idealleri serbest modül olan tamlık bölgeleri serbest ideal halkası olarak adlandırılır ve kısaca fir ile ifade edilir. Sadece sonlu üretilmiş sağ idealleri serbest olan tamlık bölgeleri ise lokal serbest ideal halkası (local fir) olarak adlandırılır. Bazı durumlarda serbest ideal halkaları yerine lokal serbest ideal halkalarını düşünmek daha uygundur. 1

9 1. GİRİŞ Serbest ideal halkalarına önemli bir örnek olarak serbest birleşmeli cebirler (Cohn, Paul, 1963) tarafından verilmiştir. Yine değişmeli olmayan polinom halkaları da (Cohn, Paul, 2000) de özel bir örnek olarak verilmiştir. Bu çalışmanın 2.bölümde serbest ideal halkasını ifade edebilmek için gerekli olan temel tanım ve teoremler verilmiştir. 3.bölümde serbest ideal halkalarının ve bu halkalar sınıfının temel özellikleri incelenmiştir. Ayrıca serbest ideal halkası üzerinde esas ideal bölgesi, Ore koşulu, Noetherian özelliği arasındaki ilişkiler araştırılmıştır. Buna ek olarak, lokal serbest ideal halkalarının bir karakterizasyonu oluşturularak serbest ideal halkası üzerindeki modüllerin yapısı araştırılmıştır. 4.bölümde genişletilmiş halkaların serbest çarpımı ile serbest ideal halkalarının serbest çarpımının varlığı gösterilmiştir. Bu tezin temel amacı serbest ideal halkaları ve bu halkaların temel özellikleri ile ilgili önemli çalışmaları araştırıcıların kolaylıkla erişebileceği bir kaynak derlemesi yapmaktır. 2

10 2.TEMEL TANIM VE TEOREMLER 2.TEMEL TANIM VE TEOREMLER 2.1. Temel Yapılar Tanım 2.1.1: boş olmayan bir küme olmak üzere den ye tanımlı bir (, ) fonksiyonuna üzerinde bir ikili işlem denir. Eğer, üzerinde bir ikili işlem ise (, ) ifadesine de bir cebirsel yapı denir. Tanım 2.1.2: boş olmayan bir küme ve üzerinde bir + ikili işlemi tanımlı olsun. Eğer aşağıdaki koşullar sağlanırsa (,+) cebirsel yapısına grup denir. i) Her, için + (Kapalılık özelliği) ii) Her,, için ( + ) + = +( + ) (Birleşme özelliği) iii) Her için + = + = olacak şekilde bir vardır. (Birim elemanın varlığı) iv) Her için + = + = olacak şekilde bir vardır. (Ters elemanın varlığı) Eğer (,+) grubunda her, için + = + ise bu gruba değişmeli ya da abelyen grup denir. 3

11 2.TEMEL TANIM VE TEOREMLER Tanım 2.1.3: boş olmayan bir küme ve üzerinde "+" ve " " ikili işlemleri tanımlanmış olsun. Eğer aşağıdaki koşullar sağlanırsa (,+, ) cebirsel yapısına halka denir. i) (,+) bir değişmeli gruptur. ii) Her,, için ( ) = ( ) dir. iii) Her,, için ( + ) = + ve ( + ) = + dir. Eğer her, için = oluyorsa ye değişmeli halka denir. Eğer her için 1 =1 = olacak şekilde bir 1 varsa ye birimli halka denir. Bu çalışmadaki tüm halkalar birimli olarak düşünülecektir. Buna ek olarak herhangi bir halkasının herhangi bir alt halkasının nin birimini içerdiği düşünülecektir. Tanım 2.1.4: bir halka olsun. ile aynı elemanlara sahip olan ve çarpmanın ters yönden sağlandığı halkaya nin ters halkası denir. nin ters halkası ile gösterilir. Tanım 2.1.5: bir halka ve ve olsun. Eğer kümesi halkasındaki işlemlerle birlikte bir halka oluyorsa kümesine halkasının bir alt halkası denir. Teorem 2.1.6: bir halka ve ve olsun. kümesinin halkasının bir alt halkası olması için gerek ve yeter koşul aşağıdaki koşulların sağlanmasıdır. i) Her, için olmasıdır. ii) Her, için. olmasıdır. 4

12 2.TEMEL TANIM VE TEOREMLER Tanım 2.1.7: bir halka ve 0 olmak üzere =0 olacak şekilde 0 varsa elemanına sol sıfır bölen denir. Benzer şekilde 0 olmak üzere =0 olacak şekilde varsa a elemanına sağ sıfır bölen denir. Eğer elemanı hem sağ hem de sol sıfır bölen ise elemanına sıfır bölen denir. Tanım 2.1.8: Birimli, değişmeli, sıfır bölensiz bir denir. halkasına tamlık bölgesi Tanım 2.1.9: bir halka ve, nin bir alt halkası olsun. Eğer her ve her için. ve. ise ya nin bir ideali denir. Tanım : bir tamlık bölgesi,,, { : } da nin alt kümesini içeren ideallerin bir ailesi olsun. Bu durumda, nin tarafından doğrulan idealidir. Bu ideal ile gösterilir. in elemanları idealinin üreteçleri (doğurayları) olarak adlandırılır. Eğer ideali tek bir eleman tarafından üretiliyorsa idealine esas ideal denir. Tanım : bir tamlık bölgesi olsun. nin her ideali esas ideal ise ye esas ideal halkası (principal ideal domain) denir. Kısaca PID ile ifade edilir. Tanım : birimli, değişmeli bir halka olsun. nin sıfırdan farklı her elemanının çarpmaya göre tersi varsa o zaman bu halkaya cisim denir Modül Tanım 2.2.1: bir halka ve (,+) abelyen bir grup olsun. Eğer her, için, :, (, ) (, )= olarak tanımlanan fonksiyonu aşağıdaki koşulları sağlıyorsa ye halkası üzerinde sol -modül denir. Her, ₁, ₂ ve, ₁, ₂ için, 5

13 2.TEMEL TANIM VE TEOREMLER i) ( ₁ + ₂) = ₁+ ₂ ii) ( ₁ + ₂) = ₁ + ₂ iii) ( ₁ ₂) = ₁ ( ₂ ) Eğer her, için :,(, ) (, )= olarak tanımlanan f fonksiyonu aşağıdaki koşulları sağlıyorsa ye halkası üzerinde bir sağ - modül denir. Her, ₁, ₂, ₁, ₂ için i) ( ₁ + ₂) = ₁ + ₂ ii) ( ₁ + ₂) = ₁ + ₂ iii) ( ₁ ₂)=( ₁) ₂ Eğer birimli bir halka ise 1 ve her için fonksiyonu iv) 1= koşulunu sağlıyorsa ye birimli (üniter) sağ -modül denir. Not 2.2.2: bir -modül ve ise bir -modüldür. Tanım 2.2.3: R bir halka, M bir R-modül olsun. N ve N, M nin bir alt kümesi olmak üzere N, bir R-modül ise N ye M nin alt modülü denir. Teorem 2.2.4: R bir halka, M bir R-modül olsun. N M nin bir altmodülü olması için gerek ve yeter koşul i) ii) Her ve, için +. olmasıdır. İspat: (: ) altmodül ise altgruptur. Böylece 0 ve dır., ve alalım. N bir -modül olduğundan. ve altgrup olduğundan 6

14 2.TEMEL TANIM VE TEOREMLER +. dir. ( :) olsun., ve = +( 1). dir., nin bir altgrubudur. Her ve için 0+. olduğundan., dolayısıyla dir. N, M nin bir altmodülüdür. Teorem 2.2.5: bir -modül olsun., ve, modülünün alt modülleri ve olsun. Bu durumda dir. + ( ) =( + ) İspat: + ( ) + ve olduğundan, + ( ) + dir. + ( ) ( + ) bulunur. Tersine, ( + ) alalım. = + olacak şekilde bir y ve bir bulunabilir. K ve olduğundan, = bulunur. = + +( ) olur. ( + ) + ( ) elde edilir. O halde, + ( ) =( + ) dir. Tanım 2.2.6: R bir halka, M bir R-modül ve N de M nin bir alt modülü olsun. Rx M N M N skaler çarpımını (, + ) + ile tanımlayarak, toplamsal bölüm grubu, bir R-modül yapılabilir. ye bölüm modülü denir. Tanım 2.2.7: M ve N, R halkası üzerinde iki sağ R-modül olmak üzere ϕ:m N fonksiyonu aşağıdaki koşulları sağlıyorsa ϕ dönüşümüne M den N ye bir sağ R- modül homomorfizmi denir. 7

15 2.TEMEL TANIM VE TEOREMLER i) Her m₁,m₂ M için ϕ(m₁+m₂)=ϕ(m₁)+ϕ(m₂) ii) Her m M ve r R ϕ(m r)=ϕ(m) r Eğer ϕ homomorfizmi birebir ise ϕ ye monomorfizm denir. Eğer ϕ homomorfizmi örten ise ϕ ye epimorfizm denir. Eğer ϕ homomorfizmi birebir ve örten ise ϕ ye izomorfizm denir ve M N olarak gösterilir. Tanım 2.2.8: ϕ : bir modül homomorfizmi olmak üzere Ç ϕ = {m M: ϕ(m) =0} kümesine ϕ nin çekirdeği denir. Tanım 2.2.9: ϕ : bir modül homomorfizmi olmak üzere ö ϕ = ϕ(m) = {ϕ(m): m M} kümesine ϕ nin görüntü kümesi denir. Teorem (1.İzomorfizm Teoremi): ve iki modül ve : bir modül homomorfizmi olsun. Çek, M nin bir alt modülüdür ve /Ç ( ) dir. İspat: Ç ={ : ( ) =0 } olmak üzere Ç nin, nin bir alt modül olduğunu göstermeliyiz., Ç için ( ) = 0 ve ( ) = 0 dır. bir modülü olduğundan ( ) = ( ) ( ) =0 0=0 ve böylece Ç dir., Ç ve ( ) =0 olmak üzere 8

16 2.TEMEL TANIM VE TEOREMLER (. ) = ( ). =0. =0 dır. Ç, nin alt modülüdür. Ϝ: /Ç ö fonksiyonunu her için Ϝ( +Ç )= ( ) şeklinde tanımlayalım. Ϝ nin modül homomorfizmi olduğunu gösterelim. ₁, ₂ ve için Ϝ( ₁ +Ç + ₂ +Ç )= Ϝ( ₁+ ₂+Ç ) = ( ₁+ ₂) = ( ₁)+ ( ₂) = Ϝ( ₁ +Ç )+Ϝ( ₂+Ç ) Ϝ(( ₁ +Ç ) ) =Ϝ( ₁. +Ç )= ( ₁. )= ( ₁)=Ϝ( ₁+Ç ). Ϝ, modül homomorfizmidir. Ϝ nin birebir olduğunu gösterelim. Ϝ( ₁ +Ç )=Ϝ( ₂+Ç ) olsun. ( ₁) = ( ₂) ve ( ₁ ₂) =0 ise ₁ ₂ Ç olup Ϝ,1 1 dir. ₁ +Ç = ₂ +Ç Ϝ nin örten olduğunu gösterelim. Her ö için = ( ) = Ϝ( +Ç ) olacak şekilde m + Çekf M Çekf vardır., örtendir, izomorfizmdir. dir. Ç ö 9

17 2.TEMEL TANIM VE TEOREMLER Teorem (2.İzomorfizm Teoremi): + ={ +, } verilsin., + nin bir alt modülü ve, nın bir alt modülüdür. Bu durumda + dir. İspat: nin + nin alt modülü ve nin de nın alt modülü olduğu kolaylıkla gösterilebilir. : dönüşümünü ya kısıtlayarak / dönüşümünü ( ) = + şeklinde tanımlayalım. ₁, ₂ olsun. nin modül homomorfizmi olduğunu gösterelim. ( ₁ + ₂) = ₁+ ₂ + = ₁+ + ₂ + = ₁ + + ( ₂ + ) = ( ₁)+ ( ₂), modül homomorfizmidir. Ç ={ : ( ) = }={ : + = }={ : }= ö ={ ( ): } ={ + : ={ + + :, } = + / Birinci izomorfizm teoreminden /Ç ö dir. / + / 10

18 2.TEMEL TANIM VE TEOREMLER Teorem (3.İzomorfizm Teoremi): bir -modül; olmak üzere, nin alt modülleri olsun. dir. İspat: Ψ : dönüşümünü ( + ) = + şeklinde tanımlayalım. Ψ dönüşümün iyi tanımlı olduğunu göstermeliyiz., M için +A = +A olsun. - B ve +B = +B dir. Ψ, iyi tanımlıdır. Ψ, dönüşümünün modül homomorfizmi olduğunu gösterelim., M ve r R için Ψ( +A+r( +A))= Ψ( +A+r +A =Ψ( +r +A) = + +B = +B+r( +B) = Ψ( +A)+r Ψ ( +A) 1.izomorfizm teoreminden ç Ψ Gör Ψ dir. Çek Ψ={ m+a: Ψ(m+A)=B } ={ m+a: m+b=b } ={ m+a: m B }=B/A Gör Ψ= {Ψ(m+A): m+a }={m+a: m+b=b}={m+b: m B}= olduğundan dir. 11

19 2.TEMEL TANIM VE TEOREMLER Tanım : ve iki -modül olmak üzere den olan tüm homomorfizmlerin kümesi (, ) = {ϕ ϕ:m N,R modül homomor izmi} olarak tanımlanır. Önerme :, (, ) olsun. + fonksiyonu her için ( + )( ) = ( ) + ( ) şeklinde tanımlarsak bu toplama ile (, ) bir abelyen grup olur. R değişmeli halka olsun., (, ) için yi her için (, ) (, ) ( )( ) = ( ) olarak tanımlarsak (, ) bir -modül olur. İspat: ) (, ) abelyan bir gruptur. 1) Her ve, (, ) için ( + )( ) (, ) olduğundan kapalıdır. 2) Her ve, (, ) için ( + ) + h ( ) = ( + )( ) + h( ) = ( ) + ( ) + h( ) = ( ) + ( + h)( ) = + ( + h) ( ) olduğundan birleşmelidir. 12

20 2.TEMEL TANIM VE TEOREMLER 3) Her ve (, ) için (f+0)(x)=f(x)+0(x)=f(x) olacak şekilde 0( ) (, ) birim eleman vardır. 4) Her ve (, ) için (f+(-f))(x)=f(x)-f(x)=0(x) olacak şekilde ( f) (, ) ters elemanı vardır. 5) Her ve, (, ) için ( + )( ) = ( ) + ( ) = ( ) + ( ) = ( + )( ) olduğundan değişmelidir. ii) Her, (, ) için ( + )( ) = ( ) + ( ) = ( ) + ( ) =( )( ) +( )( ) iii) Her, (, ) için ( + ) ( ) = ( )+ ( ) =( )( ) +( )( ) iv) Her, (, ) için ( ) ( ) = ( ( )) = (( )( )) = ( ( ))( ) (, ) bir -modüldür. Tanım : bir -modülü ve bir alt küme olsun. X kümesini kapsayan, tüm alt modüllerin arakesitine in ürettiği alt modül denir ve < > ile gösterilir. Yani; < >= { } dir. < >, alt kümesini kapsayan en küçük -alt modülüdür. kümesine üreteç kümesi denir. 13

21 2.TEMEL TANIM VE TEOREMLER Tanım : bir -modülü ve bir alt küme olsun. sonlu bir alt küme olmak üzere, M=< > ise ye sonlu üretilmiş modül denir. Önerme : sonlu üretilmiş ise bölüm modülü de sonlu üretilmiştir. İspat:, {,, } tarafından üretilmiş olsun., nin altmodülü olmak üzere bölüm modülünü alalım. = { + } dir. Her için = + + şeklinde yazılabilir. Dolayısıyla her + için + = = = ( + )+ ( + )+ + ( + ) şeklindedir. Dolayısıyla her +, { +, +,, + } sonlu kümesi tarafından üretilir Serbest Modüller Tanım 2.3.1: Eğer herhangi bir sağ -modül ve. =0 (, ) olacak şekildeki =0 ise nin alt kümesi -bağımsızdır denir. Tanım 2.3.2: bir -modül olsun. nin bağımsız bir üreteç kümesi varsa bir serbest -modüldür. 14

22 2.TEMEL TANIM VE TEOREMLER Örnek 2.3.3: Her vektör uzayı bir serbest modüldür. Çünkü her vektör uzayının bir baz vardır. Örnek 2.3.4: Her {1 } alınabilir. halkası kendi üzerinde bir serbest modüldür. Taban olarak Teorem 2.3.5: bir halka, bir sağ -modül ve = {,.., } nin alt kümesi olsun. Aşağıdakiler birbirine denktir. (i), -modülünün bir bazıdır. (ii),, olmak üzere = + + olacak şekilde deki {,, } katsayıların kümesi tektir. İspat: (i) (ii), nin bir bazı olsun.,, ve olmak üzere = + + şeklinde yazabiliriz. Bu yazılışın tek türlü olmadığını kabul edelim. Bazı,, için = + + olsun. = + + = + + olmak üzere ifadeler eşitliğin bir tarafında toplanırsa 0=( ) + +( ) elde edilir. Böylece tüm ler için = olmak üzere {,, } katsayıların kümesi tektir. (ii) (i),, olmak üzere = + + olacak şekilde deki {,, } katsayıların kümesi tek ise nın yi ürettiği 15

23 2.TEMEL TANIM VE TEOREMLER açıktır. nin lineer bağımsız olduğunu göstermeliyiz. Kabul edelim ki bazı,, katsayıları için 0= + + olsun. Ayrıca 0= olacağından ve katsayıların tekliğinden her için =0. O halde lineer bağımsızdır. Teorem 2.3.6: bir halka ve bir sol modül olsun. : tüm -modül izomorfizmlerinin kümesi ile nin tüm = {,, } bazların kümesi arasında birebir olan bir dönüşüm vardır. Bu dönüşüm altında izomorfizmi nın,, standart bazını ( ),, ( ) bazına dönüştürür. Özel olarak, bir -modüldür ancak ve ancak bazı lar için dır. İspat: = {,, } olmak üzere =1,, için : = olacak şekilde bir dönüşüm verilsin. bir baz olduğunu göstermek için lineer bağımsız olduğunu ve yi ürettiğini göstermeliyiz. olmak üzere bazı için = ( ) dir. Böylece örtendir. Bazı,, için = + + dır ve = ( ) = ( ) + + ( ) = ( ) + + ( ) = + + olduğundan nın yi ürettiğini görülür. Eğer 0= + + ise ( + + ) =0 dır. birebir olduğundan da 0= + + ve = = =0 dır. 16

24 2.TEMEL TANIM VE TEOREMLER Tersine, bazı verilsin. Teorem den deki her elemanı = + olacak şekilde tek türlü yazılabilir. : ( + + )= + + ve : ( + + ) = + + dönüşümlerini tanımlayalım., -modül homomorfizmidir., birbirinin tersi olduğu aşikardır. (, 1998, ) den bir izomorfizmdir. dan dolayı dönüşüm birebir ve örtendir. herbirini tek şekilde belirler. Sonuç 2.3.7: R[X] polinomlar halkası bir serbest R-modül ve dir. R[X] R ( ), n N Tanım 2.3.8: Eğer serbest, -modüllerin tüm bazlarının eleman sayısı aynı ise ye değişmez baz sayılı halka denir. Bu sayı nin rankı olarak adlandırılır ve r( ) ile gösterilir. Böylece rank, serbest modüller için tanımlanır fakat bunun nasıl genelleştirileceğini daha sonra göstereceğiz. 17

25 2.TEMEL TANIM VE TEOREMLER 2.4. Modüllerin İç Direkt Toplamı ve Tensör Çarpımı Tanım2.4.1 ve birimli halka, değişmeli bir grup olsun. bir sağ -modül ve bir sol -modül iken her,, için ( ) = ( ) oluyorsa ye (, ) bimodül denir. Özel olarak, hem sağ -modül hem de sol -modül iken = ise ye (, ) bimodül kısaca bimodül denir. Örnek 2.4.2: Her halka kendi üzerine sağ ve sol modül yapılabilir. Dolayısıyla değişmeli bir halka olmak üzere bir bimodüldür. Tanım 2.4.3: bir -modül olsun. { } ailesi;, -alt modüllerinin bir ailesi olsun. Her elemanı, olmak üzere sonlu toplam olarak =. şeklinde yazılabilir. Bu yazılış tek türlü ise, { } alt modüllerinin iç direkt toplamı denir ve ile gösterilir. = Tanım 2.4.4: { } bir R-modüller ailesi olsun. Bu ailenin direkt çarpımı ={ f:i M, f( ) M, her I} dır. bir R-modüldür. f, g, r ve olmak üzere 18

26 2.TEMEL TANIM VE TEOREMLER ( + )( ) = ( ) + ( ) (. )( ) =. ( ) işlemleriyle bir R-modül olur. ya Eğer I sonlu ise = dır. ların direk çarpımı denir. Tanım 2.4.5: bir sağ -modül ve de bir sol -modül olsun. herhangi bir abelyan grup ve : bir fonksiyon olsun. Eğer,, ;,, ; için ( +, ) = (, ) + (, ) (, + ) = (, ) + (, ) (, ) = (, ) oluyorsa ye -dengeli bilineer fonksiyon denir. Tanım 2.4.6: herhangi bir küme ise üzerindeki serbest abelyen grup Z- modül olarak ( ) ile gösterilsin. ( ) =., Z, ı ç 0 bir sağ -modül, bir sol -modül olsun. = ( ), üzerinde serbest abelyen gruptur. = (, )(, ):,, ı (, ) 0, (, ) Z nin içinde,, ;,, ; için ( +, ) (, ) (, ) (, + ) (, ) (, ) (, ) (, ) 19

27 2.TEMEL TANIM VE TEOREMLER şeklindeki elemanların doğurduğu alt grup ise grubu ile gösterilir. Bu gruba ve nin tensör çarpımı denir., ise sembolü ile (, ) + kosetini göstereceğiz Noetherian Modül ve Ore Koşulu Tanım 2.5.1: bir halka ve bir -modül olsun. nin alt modüllerinin her artan zinciri sonlu adımda duruyorsa ye Noetherian modül denir. Önerme 2.5.2: bir halka ve bir -modülü olsun. Noetherian modül ise nin her alt modülü sonlu üretilmiştir. İspat:, nin herhangi bir alt modülü olsun. sonlu üretilmiş olmasın. ( ) olacak şekilde bir, (, ) olacak şekilde ( vardır. Bu şekilde devam ederek, bir ) (,,, ) bulunabilir. Böylece M nin alt modüllerinin ( ) (, ) (,,, ) olacak şekildeki sonsuz bir zinciri elde edilir. Bu ise çelişki oluşturur. O halde N sonlu üretilmiştir. Tanım 2.5.3: bir tamlık bölgesi olsun., 0 ve, olmak üzere 0 koşulu sağlanıyorsa ye sağ Ore bölgesi denir. 20

28 2.TEMEL TANIM VE TEOREMLER 2.6. Kısa Tam Dizi, Projektif ve Injektij Modül Tanım 2.6.1: R-modüllerin bir dizisi ve bunlar arasında da R-homomorfizmleri verilsin. Eğer her 0 için, Im =Ç ise bu diziye tam dizi denir. Eğer belli bir yerden sonra modüller hep sıfırsa, 0 veya belli bir yerden önce modüller hep sıfırsa, 0 ile gösterilir. Özel olarak, 0 0 şeklinde tam diziye de bir kısa tam dizi denir. Önerme 2.6.2: R bir halka, M ve N iki R-modül olsun (i) : ve :, R-homomorfizmleri için =1 ise örten, birebir ve =Ç dir. (ii) 0, -monomorfizmi için, =1 olacak şekilde bir :, -homomorfizmi bulunabilmesi için gerek ve yeter koşul nin, M nin bir direkt toplamında bir terim olmasıdır. 21

29 2.TEMEL TANIM VE TEOREMLER (iii) 0, -epimorfizmi için, = 1 olacak şekilde bir :, -homomorfizmi bulunabilmesi için gerek ve yeter koşul Ç nin, M nin bir direkt toplamında bir terim olmasıdır. Bu takdirde =Ç ise, Ç olduğundan, de nin direkt toplamında bir terimdir. İspat: (i) : ve :, -monomorfizmi için, =1 ise için, ( ) = olacağından, nin örten, nin de birebir olduğu görülür. Her M için, = ( ) + ( ) dir. ( ) = ( ) ( ) = ( ) ( ) =0 olduğundan, ( ) Ç ve ( ) olduğu göz önünde tutularak, önceki eşitlikten =Ç + olduğu görülür. Ayrıca, Ç =0 olduğunu gösterelim. Ç ise bir için, = ( ) ve ( ) =0 olduğundan, 0= ( )= ( ) = ( ) = ve = ( )=0 bulunur. Şu halde, =Ç dir. (ii): 0, -monomorfizmi için, =1 olacak şekilde bir :, -homomorfizmi bulunabildiğini kabul edelim. 1.şıktan, bulunur. =Ç : = olacak şekilde, nin bir alt modülünün varlığını kabul edelim. Toplam, direk toplam olduğundan, her elemanı ve 22

30 2.TEMEL TANIM VE TEOREMLER olmak üzere, = + olacak şekilde tek türlü yazılabilir. olduğundan, bir için, = ( ) dir. Şimdi bu nin alınan elemanı için, teklikle belli olduğunu gösterelim. Gerçekten, = + ( ) =m + ( ), (m,m M,x,x ) olsa, ( ) ( ) = =0 olmasından, ( ) = ( ) ve birebir olduğundan, = elde edilir. Böylece, tek türlü = + ( ) yazılışı yardımıyla, ( ) = tanımlayarak bir : fonksiyonu bulunmuş olur. =1 olduğunu göstermek kolaydır. Böylece de bir -homomorfizmidir. (iii) : 0, -epimorfizmi için, =1 olacak şekilde bir :, -homomorfizmi bulunabilsin. 1.şıktan, =Ç bulunur. : =Ç olacak şekilde, nin bir alt modülünün varlığını kabul edelim. h: fonksiyonunu, h( ) = ( ) ile tanımlayalım. Her elemanı için, örten olduğundan, ( ) = olacak şekilde bir vardır. elemanı, Ç ve için = + olacak şekilde tek türlü yazılabilir. Buradan, = ( ) = ( )+f( )=f( )=h( ) bulunacağından, h nın örten olduğu anlaşılır. Ayrıca, Ç h =Ç =0 olduğundan, h birebir olur. = h alırsak, : için, =1 sağlanır. örten homomorfizmi ve =1 homomorfizmi olduğundan, nin bir - homomorfizmi olduğu görülür. 23

31 2.TEMEL TANIM VE TEOREMLER Teorem 2.6.3: R bir halka olsun. L, M ve N birer R-modül ve 0 0 bir kısa tam dizi ise aşağıdakiler birbirine denktir. (i) = 1 olacak şekilde bir :, -homomorfizmi vardır. (ii) =1 olacak şekilde bir :, -homomorfizmi vardır. ( ) N dir. İspat: (i) (ii): Dizi kısa tam dizi olduğundan, Ç = dir. Önerme tenistenen elde edilir. (ii) (iii): 0, -monomorfizmi için =1 olacak şekilde bir :, -homomorfizmi varsa, olacak şekilde nin bir alt modülünün varlığını Önerme tenbiliyoruz. Şu halde, = Ç ve olduğundan, N bulunur. (iii) (i): N olsun. Dizi kısa tam dizi olduğundan, dir. Böylece, M nin direkt toplamında bir terimdir. Önerme e göre, istenen elde edilir. Tanım 2.6.4: Teorem nın koşullarından birini sağlayan kısa tam diziye, parçalanabilir kısa tam dizi denir. 24

32 2.TEMEL TANIM VE TEOREMLER Teorem 2.6.5: R bir halka M, N ve P de R-modüller olsun. Aşağıdakiler birbirine denktir. (i) Her 0, R-epimorfizmi için, f = 1 olacak şekilde bir :, R-homomorfizmi vardır. (ii) P, bir F serbest R-modülünde bir direkt toplam terimidir. (iii) Her 0, R - epimorfizmi ve her h : P, R homomorfizmi için h = h olacak şekilde bir h :, R- homomorfizmi vardır. İspat: (i) (ii) Her modül, bir serbest modülün homomorfik görüntüsü idi. Şu halde verilen modülü için, bir :, -epimorfizmi ve bir serbest - modülü bulunabilir. üzerine her epimorfizmi için yaptığımız kabule göre, = 1 olacak şekilde bir :, homomor izmi bulunabilir. Önerme den P, F serbest -modülünde bir direkt toplam terimi olur. (ii) (iii) olsun. Herhangi bir h:, -homomorfizmi ve 0, -epimorfizmi alalım. : = içerme fonksiyonu ve : = izdüşüm fonksiyonu için. =1 dir. F serbest modülünün bir tabanı { } olsun. Her için, örten olduğundan, ( ) = h ( ) olacak şekilde bir bulunabilir. Böylece :, ( ) = ile tanımlı bir -homomorfizmini tanımlayabiliriz. Her taban elemanı için, ( ) = ( ) = ( ) = h ( ) olduğundan, = h bulunur. Aranan h :, -homomorfizmi olarak h : alınabilir. Gerçekten, h = h = = h olur. 25

33 2.TEMEL TANIM VE TEOREMLER (iii) (i) Her 0, -epimorfizmi için, (iii) hipotezi altında, (N=P alarak) 1 0 diyagramı değişmeli = 1 olacak şekilde bir :, -homomorfizmi bulunmuş olur. Tanım 2.6.6: Yukarıdaki teoremin koşullarından birini sağlayan R -modüle projektif modül denir. Sonuç 2.6.7: R bir halka ve P bir projektif -modül ise her 0 0 kısa tam dizisi parçalanabilir dizidir. Sonuç 2.6.8: Her serbest modül projektiftir. Teorem 2.6.9: R bir halka ve E bir R-modül olsun. Aşağıdakiler birbirine denktir. (i) Her 0, R-monomorfizmi için, =1 olacak şekilde bir :, -homomorfizmi vardır. (ii) Her 0, R-monomorfizmi ve her h - homomorfizmi için h = h olacak şekilde bir h :, - homomorfizmi vardır. Bu özelliği aşağıdaki değişmeli diyagram gösterebiliriz. 26

34 2.TEMEL TANIM VE TEOREMLER 0 h E h İspat: (i) (ii) Bir 0, monomorfizmi ve bir h: - homomorfizmi verildiğinde, h= h olacak şekilde bir h :, - homomorfizmi varlığını gösterelim. 0 E h h nin S={(h( ), ( )): } alt modülüne göre, L=( ) bölüm modülünü göz önüne alalım. ve : ( ), (0, ) + : ( ), (,0)+ ile tanımlı fonksiyonları alalım. = h olduğu açıktır. Ayrıca birebir olduğundan, de birebirdir. Çünkü, ( ) =0 olsa, 0= ( )=(,0)+ den, bir m için, (,0) = (h( ), ( )) olduğundan ( )=0, yani =0 ve h( )=y=0 elde edilir. Şu halde, monomorfizmi için, (1) den u =1 olacak şekilde bir : homomorfizmi bulabiliriz. Eğer h = alırsak istenen elde edilmiş olur. Çünkü, h = = h = h dır. 27

35 2.TEMEL TANIM VE TEOREMLER (ii) (i) Her 0, -monomorfizmi için, (2) kullanılarak, 0 1 E =1 olacak şekilde bir :, -homomorfizmi bulunmuş olur. Tanım : R bir halka olsun. Yukarıdaki teoremin koşullarından birini sağlayan R-modülüne injektif R-modülü denir. Sonuç : R bir halka ve E bir injektif R-modül olsun. Her 0 0 kısa tam dizisi parçalanabilir dizidir. Sonuç : Bir injektif modülün her direkt toplam terimi de injektiftir. Tanım : Her serbest modül projektif olduğundan, her modül bir projektif modülün izomorfik görüntüsü olarak yazılabilir. Böylece projektif olmak üzere her -modül için 0 0 kısa tam dizisi elde edilir. Bu ise nin takdimi olarak adlandırılır. nin diğer takdimleri aşağıdaki lemmada kıyaslanmıştır. Schanuel s Lemma : M herhangi bir M modül olsun., projektif olmak üzere M nin iki farklı takdimi 28

36 2.TEMEL TANIM VE TEOREMLER 0 0 ve 0 0 olsun. Buna göre, dir Tek Çarpan Bölgesi Tanım 2.7.1: birim elemanlı ve değişmeli bir halka olsun. için i), sıfır veya birim değildir. ) =. ise ya ya da birimdir. koşulları sağlanıyorsa ye de indirgenemez eleman denir. Tanım 2.7.2: tamlık bölgesi olsun. Sıfır ve birim olmayan her elemanı indirgenemez elemanların bir çarpımı şeklinde yazılabiliyorsa ve bu yazılış tek türlü ise ye tek çarpan bölgesi (Unique Factorization Domain) denir. Kısaca UFD ile gösterilir. 29

37 2.TEMEL TANIM VE TEOREMLER 30

38 3.SERBEST İDEAL HALKALARI 3.SERBEST İDEAL HALKALARI Tanım 3.1.1: değişmez baz sayılı bir tamlık bölgesi olsun. nin tüm sağ idealleri serbest -modül ise ye sağ serbest ideal halkası (free ideal ring) denir. nin tüm sol idealleri serbest -modül ise ye sol serbest ideal halkası (free ideal ring) denir. Hem sağ hem de sol serbest ideal halkası kısaca fir olarak yazılır. Tanım 3.1.2: değişmez baz sayılı bir tamlık bölgesi olsun. nin sonlu üretilmiş tüm sağ idealleri serbest ise ye lokal serbest ideal halkası denir. Tüm sonlu üretilmiş alt modülleri serbest olan modüle lokal serbest modül denir. Bir serbest modül lokal serbest olmak zorunda değildir. Bunun olabilmesi için bir kriter verelim. Teorem 3.1.3: Serbest zorunda değildir. (Leavitt, W.G., 1956) -modüllerin farklı bazları, aynı sayıda eleman içermek Önerme 3.1.4: bir halka olsun. Serbest -modüller lokal serbesttir., sağ - modül olarak lokal serbesttir. İspat: (: ) Eğer tüm -modüller lokal serbest ise serbest olan local serbesttir. ( :) Kabul edelim ki lokal serbest olsun. bir serbest -modül ve, nin sonlu üretilmiş alt modülü olsun. nin sonlu üreteç kümesi, nin bazından sadece sonlu çoklukta üreteç içerir. Kalan baz elemanlarını, yı etkilemeksizin "0" ile eşleyelim. Böylece, elemanlarının kümesi tarafından sonlu üretilmiş alınabilir. üzerinde tümevarım kullanalım. Verilen bazın ilk 1 elemanı tarafından üretilen nin alt modülü 1 serbest üreteç üzerinde serbesttir ve / dir. = alınırsa / + / / 31

39 3.SERBEST İDEAL HALKALARI olur. sonlu üretilmiş olduğundan / de sonlu üretilmiştir. Böylece + /, / nün sonlu üretilmiş bir alt modülüdür. / altmodüllü, sağ ideallerdir. lokal serbest olduğundan nin alt modülleri de serbest olmak zorundadır. Böylece / serbesttir. ", nin bir serbest alt modülü olmak üzere = " (1) elde edilir. Burada / " yine sonlu üretilmiş ve nün alt modülüdür. Tümevarım hipotezinden serbesttir ve (1) den dolayı serbesttir. bir lokal serbest ideal halkası ise üzerinde tüm serbest modüller lokal serbesttir. Bir fir üzerinde bir serbest modülün her alt modülünün serbest olduğu daha genel bir şekilde gösterilebilir.(cohn, Paul, 1959, Teorem 1.5.3) Bu tanımlamaların bir sonucu olarak aşağıdaki önermeyi verelim: Önerme 3.1.5:, lokal fir üzerinde herhangi bir modül olsun., elemenlı sonlu bir üreteç kümesine sahip olsun. ( ) dir, üzerinde serbesttir. (2) Bunların hepsi özellikle fir üzerindeki modüllerde sağlanır. Fakat fir olmak üzere üzerindeki sonlu üretilmiş modüllerin alt modülleri sonlu üretilmiş olmak zorunda değildir. Bu durum ancak, sağ Noetherian iken sağlanır. Şimdi Noetherian fir lerin bir karakterizasyonunu verelim. Teorem 3.1.6:, herhangi bir fir olsun. Buna göre aşağıdakiler birbirine denktir: (i), esas sağ ideal bölgesidir. (ii), sağ Noetheriandır. (iii) Her, ve, 0 için 0 (3) olacak şekilde, Ore sağ çarpım koşulu sağlanır. 32

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı 9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 13 (2013) 011301 (1-7) AKU J. Sci. Eng. 13 (2013) 011301 (1-7)

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon. 12. Ders Mahir Bilen Can Mayıs 24, 2016 1 Yerel Kaldırma Özellikleri Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon ι : Sym(g) n 0 U n /U n+1 bize bir derecelendirilmiş

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA BEYKENT ÜNİVERSİTESİ FEN VE MÜHENDİSLİK BİLİMLERİ DERGİSİ Sayı 7(1) 2014, 25-36 İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA Tuğba PİŞTOFOGLU (tugbapistofoglu@gmail.com)

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona

Cebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona , 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE 2012 ÖNSÖZ Bu kitap Çanakkale Onsekiz Mart Üniversitesi Matematik Bölümünde lisans dersi olarak Cebirden

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 4 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 4 (336 sayfa) ANALİZ CEBİR 1 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

BÖLÜM 24 PAULI SPİN MATRİSLERİ

BÖLÜM 24 PAULI SPİN MATRİSLERİ BÖLÜM 24 PAULI SPİN MATRİSLERİ Elektron spini için dalga fonksiyonlarını tanımlamak biraz kullanışsız görünüyor. Çünkü elektron, 3B uzayda dönmek yerine sadece kendi berlirlediği bir rotada dönüyor. Elektron

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN LİNEER CEBİR Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU Ders Notu: Prof. Dr. Şaban EREN 1.BOLUM DOGRUSAL CEBIR VE DIFERANSIYEL DENKLEMLER LİNEER EŞİTLİKLER 1.1. LİNEER EŞİTLİKLERİN TANIMI x 1, x 2,...,

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

3 Altuzaylar, altuzaylar için toplama ve direkt toplama 4 Span, lineer bağımsızlık, taban

3 Altuzaylar, altuzaylar için toplama ve direkt toplama 4 Span, lineer bağımsızlık, taban Konular Hafta İşlenen Konular 1 Karmaşık sayılar 2 Vektör uzayı tanımı, vektör uzayı özellikleri 3 Altuzaylar, altuzaylar için toplama ve direkt toplama 4 Span, lineer bağımsızlık, taban 5 Boyut, lineer

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi. Esra Pınar AKKAYMAK

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi. Esra Pınar AKKAYMAK T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Yüksek Lisans Tezi α, α YAKIN-HALKALARIN REGÜLERLİĞİ ÜZERİNE Esra Pınar AKKAYMAK Tez Danışmanı Yrd. Doç. Dr. Akın Osman ATAGÜN Yozgat

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d)

Bu durumu, konum bazında bileşenlerini, yani dalga fonksiyonunu, vererek tanımlıyoruz : ) 1. (ikx x2. (d) Ders 10 Metindeki ilgili bölümler 1.7 Gaussiyen durum Burada, 1-d de hareket eden bir parçacığın önemli Gaussiyen durumu örneğini düşünüyoruz. Ele alış biçimimiz kitaptaki ile neredeyse aynı ama bu örnek

Detaylı

Bazı Sonlu Klingenberg Düzlemleri İçin Üzerinde Olma Matrisleri

Bazı Sonlu Klingenberg Düzlemleri İçin Üzerinde Olma Matrisleri BAÜ FBE Dergisi Cilt:12, Sayı:1, 91-99 Temmuz 2010 Bazı Sonlu Klingenberg Düzlemleri İçin Üzerinde Olma Matrisleri Atilla AKPINAR * Uludağ Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü, Görükle,

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

MB1001 ANALİZ I. Ders Notları. Yrd. Doç. Dr. Emel YAVUZ DUMAN. İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü

MB1001 ANALİZ I. Ders Notları. Yrd. Doç. Dr. Emel YAVUZ DUMAN. İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü MB1001 ANALİZ I Ders Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü c 2013, Emel Yavuz Duman Tüm hakkı saklıdır. Bu notlar Örgün Öğretimde Uzaktan Öğretim

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

Mat624 Cebir II. Ders Notları. Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/

Mat624 Cebir II. Ders Notları. Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/ Mat624 Cebir II Ders Notları Bülent Saraç Hacettepe University Department of Mathematics http://www.mat.hacettepe.edu.tr/personel/akademik/bsarac/ İçindekiler Kısım 1. CİSİM TEORİSİ iii Bölüm 1. Eşitliklerin

Detaylı

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ :

( a, b ) BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : BAĞINTI, FONSİYON, İŞLEM SIRALI İKİLİ : a ve b elemanlarının belirttiği ( a, b ) şeklindeki ikiliye sıralı ikili denir. Sıralı ikili denilmesindeki sebep bileşenlerin yeri değiştiğinde ikilinin değişmesindendir.

Detaylı

Grassmann Uzaylarının Geometrisi

Grassmann Uzaylarının Geometrisi Grassmann Uzaylarının Geometrisi İzzet Coşkun University of Illinois at Chicago 5 Ağustos, 2010 V nin n-boyutlu bir vektörler uzayı olduğunu varsayalım. V nin n-boyutlu bir vektörler uzayı olduğunu varsayalım.

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE. Hatice Kübra SARI

TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE. Hatice Kübra SARI TOPOLOJİK ROUGH KÜMELERİ ÜZERİNE Hatice Kübra SARI Yüksek Lisans Tezi Matematik Anabilim Dalı Topoloji Bilim Dalı Prof. Dr. Abdullah KOPUZLU 2014 Her hakkı saklıdır ATATÜRK ÜNİVERİSTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl ÖZGEÇMİŞ Kişisel Bilgiler Adı Soyadı: Evrim AKALAN Doğum Tarihi: 11/ 07/ 1979 Doğum Yeri: Antakya/HATAY Adres: Hacettepe Üniversitesi, Matematik Bölümü, Beytepe, Ankara E-mail: eakalan@hacettepe.edu.tr

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR ÖZEL EGE LĠSESĠ ġeklġndekġ ĠFADELERĠN SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR HAZIRLAYAN ÖĞRENCĠ: Ersin ĠSTANBULLU DANIġMAN ÖĞRETMEN: Defne TABU ĠZMĠR 2013 ĠÇĠNDEKĠLER 1.

Detaylı

Cebirsel Geometri Güz Çalıştayı 2009

Cebirsel Geometri Güz Çalıştayı 2009 Cebirsel Geometri Güz Çalıştayı 2009 Kürşat Aker Feza Gürsey Enstitüsü, İstanbul 18 Ekim 2009 Kursat Aker (FGE) CG-GUZ-09 18 Ekim 2009 1 / 9 Özet Başlamadan Önce... Kursat Aker (FGE) CG-GUZ-09 18 Ekim

Detaylı

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss

Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Motivasyon Matrislerde Satır İşlemleri Eşelon Matris ve Uygulaması Satırca İndirgenmiş Eşelon Matris ve Uygulaması Matris Tersi ve Uygulaması Gauss Jordan Yöntemi ve Uygulaması Performans Ölçümü 2 Bu çalışmada,

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı