AYIRMA KOLONLARININ TASARIMI-1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "AYIRMA KOLONLARININ TASARIMI-1"

Transkript

1 AYIRMA KOLONLARININ TASARIMI-1 DİSTİLASYON KOLONLARININ TASARIMI Prof.Dr.Hasp Yenova İÇİNDEKİLER: 1. Grş 1 2. Sürekl Dstlasyon Prosesn Tanımı 1 Buhar- sıvı denge verler Ger akma Besleme noktasının yer Kolon basıncının seçlmes 5 3. Sürekl dstlasyon- Temel Prenspler Kademe denklkler Çğleşme ve kaynama noktaları Flaş dstlasyon 6 4. Dstlasyon kolonları çn tasarım değşkenler 9 5. İk bleşenl karışımların ayrılması çn dstlasyon kolon tasarımı Temel eştlkler McCabe-Thele Yöntem Ürün derşmnn küçük olması hal Smoker bağıntıları Çok bleşenl karışımların dstlasyonu Anahtar bleşenler Kolon sayısı Çok bleşenl karışımların dstlasyonunda raf sayısı ve ger akma oranlarının bulunması çn kestrme yöntemler Eşdeğer kl sstemler Smth Brnkley Yöntem Emprk bağıntılar Mnumum raf sayısı; Fenske Bağıntısı Mnumum ger akma oranı Besleme noktasının yer 27 Ankara Ünverstes Mühendslk Fakültes Kmya Mühendslğ Bölümü Mart

2 7.4 Anahtar olmayan bleşenler dağılımı Çok bleşenl karışımları dstlasyonunda kullanılan kolonların tasarımı çn Kesn çözüm yöntemler Keskl dstlasyon Raf verm Raf verm tahmn yöntemler O Connel Yöntem Van Wnkle Bağıntısı AIChE Yöntem Kolon boyutlarının yaklaşık olarak hesaplanması Raf tpler Raf tpnn seçlmes Rafların hdrolk tasarımı Rafların hdrolk tasarımında zlenecek adımlar Raf alanları Kanama hızından yararlanarak kolon çapı hesabı Raf üzernde sıvı akış şekller Sürüklenme Sızma noktası Savak üzernde berrak sıvı yükseklğ Savak boyutları Perfore alan Delk çapı ve delk merkezler arasındak uzaklık Raflarda basınç düşmes Savak kanalının tasarımı 57 KAYNAKLAR 64

3 ŞEKİLLER DİZİNİ Şekl-1. Sürekl akımla şletlen dstlasyon kolonu 2 Şekl-2. Kademe akımları 5 Şekl-3. Flaş dstlasyon 7 Şekl-4. Br kademeye gren buhar ve sıvı akımları 10 Şekl-5. McCabe-Thele Dagramı 13 Şekl-6. Raf verm 13 Şekl-7. Erbar Maddox Dagramı 58 Şekl-8 Ürün dağılımı (örnek 6 çn) 29 Şekl-9 Kabracık başlıklı raflar çeren kolonlar çn kolon verm (O Connel) 45 Şekl-10 a) Raflı kolonların genel görünümü, b) Delkl rafların görünümü 48 Şekl-11 Sıvı ve buhar aktarım üntelernn sayısına bağlı olarak raf vermnn bulunması 49 Şekl-12 Nokta verm le raf verm arasındak bağıntının Peclet Sayısı le değşm 49 Şekl-13 Delkl raflar çn performans dagramı 53 Şekl-14 Kanama hızı 59 Şekl-15 Delkl raflarda sıvı akış şekller 59 Şekl-16 Delkl raflar çn sürüklenme kesr 60 Şekl-17 Sızma noktası hesabı çn korrelasyon katsayısı 59 Şekl-18 Savak kanalının alanı le savak uzunluğu arasındak lşk 60 Şekl-19 Delk alanı le delk merkezler arasındak lşk 61 Şekl-20 Orfs katsayısı 61 Şekl-21 De Prester Dagramı, düşük sıcaklık bölges çn 62 Şekl-22 De Prester Dagramı, yüksek sıcaklık bölges çn 63

4 AYIRMA KOLONLARININ TASARIMI-1 DİSTİLASYON KOLONLARININ TASARIMI 1.GİRİŞ Bu bölümde ayrma kolonlarının tasarımı üzernde durulacaktır. Burada verlen tasarım yöntemlernn çoğu her ne kadar dstlasyon proseslerne yönelkse de bu tasarım yöntemler sıyırma (strppng), absorpsyon ve özütleme (extracton) gb dğer çok kademel ayırma proseslerne de uygulanablr. Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan günümüzde uygulanan ham petrolün fraksyonlarına ayrılması proseslerne kadar uzanır. Tasarım çn gerekl temel prenspler bu bölümde kısa br şeklde örneklerle açıklanmıştır. Daha fazla ve genş blg çn J.M. Coulson (2.clt, 1976), Robbnson ve Glland (1950), Norman(1961), Olver(1966), Smth(1963), Kng (1971), Hengstebeck(1961) n yayınlamış olduğu ktaplardan yararlanılablr. Dstlasyon ve dğer denge-kademel prosesler y br şeklde anlayablmek çn buhar-sıvı denge verlernn korrelasyonunda kullanılan yöntemler blmek gerekr. Bu konu J.M. Coulson'un yazmış olduğu "Chemcal Engneerng" adlı dznn 6. cldnn 8. bölümünde bast ve anlaşılır br dlle açıklanmıştır. Dstlasyon Kolonlarının Tasarımı : Br dstlasyon kolonunun tasarımında genellkle aşağıda adımlar zlenenr. 1. İstenlen ayırma derecesnn belrlenmes. Ürün spesfkasyonu. 2. İşletme koşullarının seçlmes. Keskl veya sürekl dstlasyon proseslernden brnn seçlmes ve şletme basıncının belrlenmes. 3. Kolon çndek temas tpnn seçlmes: Raflı veya dolgulu kolonlar. 4. Kademe ve ger akma oranınının (reflux) belrlenmes: Denge kademe sayısının bulunması. 5. Kolon boyutlarının hesaplanması:çap, yükseklk, gerçek kademe sayısı ve benzer değerler. 6. Kolon ç tasarımı. 7. Mekank tasarım. Kolon tasarımında öneml adımlardan brs kademe sayısının ve ger akma oranının belrlenmesdr. Besleme akımı kl br karışım olduğunda bu hesaplamalar nspeten kolaydır. Fakat besleme çok bleşenl br karışım olduğunda kompleks ve zordur. Bu notlar çerğnde, özellkle çok bleşenl karışımların dstlasyonu çn gerekl kademe sayısının ve ger akma oranının hesaplanmasına yer verlmştr. 2. SÜREKLİ DİSTİLASYON: Prosesn Tanımı Br sıvı karışımının damıtılarak ayrılması, karışımı oluşturan bleşenlern uçuculukları arasındak farka dayanır. İzaf uçuculuğun büyük olması ayırmanın kolay olması anlamına gelr. Sürekl dstlasyon amacıyla kullanılan br ekpmanın şeması şekl-1'de gösterlmştr.şekl-1.a'da tek br beslemeden dp ve üst ürün olarak blnen k ürün akımının elde edldğ br kolon gösterlmştr. Dstlasyon kolonunda buhar akımı kolonun yukarı kısmına doğru, sıvı se ters yönde aşağıya doğru akar. Sıvı ve buhar raflar veya dolgu maddeler üzernde brbryle temas ederler. 1

5 Yoğuşturucudan alınan kondensatın br kısmı, besleme noktasının üstünde br sıvı akımı temn etmek çn, kolonun üst kısmına ger gönderlr ve kolonun dbnden alınan sıvının br kısmı buhar akımı temn etmek çn, kazanda buharlaştırılarak tekrar kolona gönderlr. Yoğuşturucu Ger akım Ger akım Grd Grdler Yan akımlar Kazan a b Şekl- 1. Sürekl akımla şletlen dstlasyon kolonu. Besleme akımının kolona grdğ bölgenn altında kalan bölümde zaf olarak daha uçucu olan bleşen sıvı çersnden sıyrılarak alınır. Bu bölüme sıyırma bölges denr. Besleme noktasının üst kısmındak bölümde daha uçucu bleşenn derşm artar. Bu bölüme de zengnleştrme bölges adı verlr. Kolonlar, Şekl-1b'de gösterldğ gb genellkle brden fazla besleme akımı verlerek ve kolon boyunca yan akımlar alınarak kullanılırlar. Bu, temel şletm değştrmez fakat prosesn analzn daha kompleks yapar. Prosesde stenen, uçucu olmayan br çözelt çersnden nspeten uçucu olan br bleşenn ayrılması olduğu durumlarda, tasarım çalışmasında zengnleştrme bölges hmal edlr. Bu kolonlara sıyırma kolonları adı verlr. Üst ürünün buhar olarak stendğ bazı şletm şekllernde, kolonda ger akım temn etmek çn sadece yeter kadar sıvı yoğuşturulur. Bu tp yoğuşturuculara kısm yoğuşturucu adı verlr. Sıvının tümü yoğuşturulduğunda kolona gönderlen sıvı üst ürün le aynı bleşmde olur. Br kısm yoğuşturucuda, ger akım le yoğuşturucudan çıkan buhar akımı dengededr. Gerçekte bast br kolon kullanarak k bleşenl br beslemeden saf dp ve üst ürünler elde edleblr. Fakat besleme kden fazla bleşen çeryorsa kolonun üstünden veya altından sadece br tek saf ürün alınablr. O nedenle çok bleşenl br grdy bleşenlerne ayırablmek çn genellkle daha fazla sayıda kolona gerek vardır. 2

6 BUHAR - SIVI DENGE VERİLERİ: H.Yenova Brçok kl sstem ve çok bleşenl sstemler çn yayınlanmış buhar sıvı denge verler lteratürde bulunablr. Kaynaklarda bulunamayan değerler hesaplamak çn ekstrapolasyon, nterpolasyon veya buhar sıvı denge verlern doğrudan tahmn etmek çn verlmş yöntemler vardır. Bu yöntemler ayrıntılı olarak aşağıda yazılı kaynaklardan bulunablr: Null H.R., Phase Equlbrum n Processes Desgn, Wley 1970 Prausntz J.M., Molecular Thermodynamcs of Flud Phase Equlbra, Prentce Hall, Prausntz J.M., et al; Computer Calculaton of Vapor Lqud Equlbra, Prentce Hall, 1967 Raoult yasasına göre sıvı ve buhar faz bleşmler arasında y = x P /P bağıntısı vardır. Burada ; x = 'nn sıvı fazdak mol kesr. y = 'nn buhar fazdak mol kesr. P = Saf bleşennn buhar basıncı. P = Toplam basınç. İdeal halden sapmaların küçük olduğu durumlarda, gerçek karışımlar çn Raoult yasası kullanılablr. İdeal karışımlardan sapmalarda aktflk katsayısı σ ; gazlar çn verlmş yasalardan sapma durumunda fügaste katsayısı φ kullanılır. Buhar ve sıvı fazlardak maddesnn bleşmler arasındak bağıntı denge sabt, K le belrtlr. İk bleşenn zaf (relatf) uçuculuğu α j se K değerlernn oranı olarak fade edlr. y K = K α j = x K j İdeal karışımlar (Raoult Yasasına uyan karışımlar) çn o o o o P K K = P oσ α j = = K P o o = K K j P φ j σ bleşennn sıvı fazdak aktflk katsayısı, φ se gaz fazdak aktflk katsayısıdır. Düşük basınçlarda (1-2 bar) φ =1 alınablr. K = K o σ = σ P o / P Gaz fazda deal halden sapmalar sıkıştırma faktörünün büyüklüğü le belrleneblr. Ayırmadak zorluk bleşenlern K değerlernn brbrne yakın olması halndedr. Son olarak verdğmz k bağıntı kolay ayırmalar çn geçerldr. Ayırma şlem çn 50'den daha az kademe gerekyorsa bu kolay br ayırmadır. Daha yüksek basınçlarda (yaklaşık 20 bar), gazf azda deal karışımlar çn verlen yasalardan sapmalar hmal edlemez ve deal gaz yasalarından sapmaları telaf etmek çn hal denklemndek knc vral katsayılar olan B 'nn de kullanılması gerekr. o y σ P (V B )(P P ) K = = m, exp x P RT Vm, = bleşennn molar hacm. (sıvı hal) B = bleşen çn hal denklem vral hale getrldğnde, knc vral katsayıdır. z =1 + (BP / RT) 3

7 , bleşennn sıvı fazdak aktflk katsayısı olup sıcaklık, basınç ve sıvı bleşmnn fonksyonudur. Bunu tayn etmek çn çeştl yöntemler vardır. Örneğn Wlson Denklem kullanılablr. Hdrokarbonlar çn K değerler se Deprester dagramlarından bulunablr. Bu dagramlar ekte verlmştr. 2.1 GERİ AKMA (Reflux): Ger akma oranı: R = (Ger akan akım)/(alınan üst ürün akımı) olarak tanımlanır. Br ayırma şlem çn kullanılacak gerekl kademelern sayısı kullanılan ger akma oranına bağlıdır. İşletlen br kolonda etkn ger akma oranı, kolon cdarındak ısı kaçaklarından dolayı kolon çersnde yoğuşan buhar le artar. İy yalıtılmış kolonlarda ısı kaybı çok az olacağından tasarım sırasında, artan akım göz önüne alınarak toleranslı hesap yapılmasına gerek yoktur. İy yalıtılmamış kolonlarda se, dış koşulların an değşmnden dolayı kolon çersnde, örneğn br sağanak yağmur şeklnde, ç ger akmanın değşmes, kolonun şletlmes ve kontrolü üzerne öneml br etk yapar. Toplam Ger Akma (Total Reflux): Tüm yoğuşmun ger akım olarak kolona gönderldğ, hç br ürün alınmadığı ve besleme yapılmadığı koşullardak ger akıma toplam ger akma denr. Toplam ger akmada, stenlen br ayırma çn gerekl kademe sayısı, ayırmayı yapablmek çn teork olarak mümkün olan mnmum kademe sayısıdır. Bu her ne kadar pratk br şletme şekl değlsede, gerekl kademe sayısının bulunması çn yaralı br yöntemdr. Kolonlar, başlangıçta hç br ürün alınmadan yatışkın hale ulaşılıncaya kadar toplam ger akma le şletlrler. Kolonların test edlmes de toplam ger akma koşulunda yapılır. Mnmum Ger Akma: Ger akma oranı öylesne kısılablrk, ayırma şlem ancak sonsuz sayıda kademeden oluşmuş kolonda yapılablr. Bu stenlen br ayırma çn mümkün olan mnmum ger akma oranıdır. Optmum Ger Akma Oranı: Pratktek ger akma oranları, stenlen br ayırma çn gerekl mnmum ve toplam ger akma oranları arasındadır. Tasarımcı, stenlen ayırmanın mnmum malyetle yapılması çn br değer seçmeldr. Ger akmanın artırılması, kademe sayısını azaltır ve böylece yatırım malyet azalır, fakat şletme malyet artar. Optmum ger akma oranı, en düşük yıllık şletme malyetnn elde edldğ orandır. Tasarımda, ger akma oranının seçm çn kesn sonuç veren ve çabuk uygulanan kurallar verlemez, fakat brçok sstem çn optmum ger akma oranı, mnmum ger akma oranının 1.2 le 1.5 katı arasındadır. Deneymlerden yararlanılarak, ger akma oranının saptanamadığı yen tasarımlar çn bu notlarda verlen kestrme yöntemler (Short-cut methods) kullanılablr. Bu yöntemlerle elde edlen değerler kabaca yapılacak br tasarım çn kullanılablr. Küçük ger akma oranları çn hesaplanacak kademe sayısı kullanılan buhar-sıvı denge verlernn doğruluğuna yakından bağlıdır. Eğer, buhar-sıvı denge verlerne yeter kadar güvenlmyorsa, tasarımın güvenlr olması çn daha yüksek br ger akma oranı seçlmeldr. 2.2 BESLEME NOKTASININ YERİ Besleme noktasının yer, stenlen br ayırma çn gerekl kademe sayısını ve buna bağlı olarakda kolon şletme koşullarını etkler. Genel br kural olarak, beslemenn kolona grdğ yer, beslemenn bleşm le buhar ve sıvı akımlarının bleşmlernn brbrlerne en uygun oldukları nokta olmalıdır. Pratkte, tasarım hesaplamalarındak hataları ve yetersz tasarım verlernn neden olduğu hataları bertaraf etmek ve kolon şletmeye alındıktan sonra besleme bleşmnde yapılacak muhtemel 4

8 değşklkler hesaba katmak amacıyla besleme yapılması düşünülen rafın alt ve üstündek raflarada besleme nozulları yerleştrlmeldr. 2.3 KOLON BASINCININ SEÇİLMESİ Kolon basıncını seçerken ısıya hassas maddelern damıtılması harcndek dğer maddeler çn yoğuşumun çğleşme noktasının (dew pont) fabrkada kullanılan soğutma suyu le elde edleblecek kadar düşük olmasına dkkat edlr. Yaz aylarında kullanılan soğutma suyunun maksmum sıcaklığı 30 o C alınır. Eğer bu sstem yüksek basınçlara gerek gösteryorsa, soğutulmuş tuz çözelts le soğutma yapılması düşünüleblr. Isıya hassas maddelern damıtılması çn kolon sıcaklığını düşürmek ve nspeten uçucu olmayan maddelern damıtılması çn çok yüksek sıcaklıklar gerektğnde vakum altında şletme yapılmalıdır. Kademe ve ger akma oranlarının hesaplanması stendğnde genellkle kolon basıncı, kolon boyunca sabt olarak alınır. Vakum altında şletmede kolon basıncındak düşme toplam basıncın hmal edleblecek br kesr kadardır ve kademe sıcaklıklarını hesaplarken, kolon çnde yukarıya doğru basınç değşmne göz yumulmalıdır. Kademe sayısı hesaplanmadan önce kolondak basınç düşmesnn hesaplanamayacağı çn deneme yanılma yöntemyle hesap yapmak gerekr. 3. SÜREKLİ DİSTİLASYON: Temel Prenspler. 3.1 KADEME DENKLİKLERİ Çok kademel br prosesn her kademes çn madde ve enerj denklkler yazılablr. V n y n L n-1 x n-1 F n z n n. kademe S n x n V n+1 y n+1 L n x n Şekl-2 Kademe akımları Şekl-2 de br dstlasyon kolonunun n. kademesne gren ve çıkan akımlar gösterlmştr. Her br bleşen çn bu kademeye kütle ve enerj denklkler uygulanır. V n+ 1yn+ 1 + Ln 1x n 1 + Fn zn = Vn yn + Lnxn + Snxn (1) V n+ 1Hn Ln 1h n 1 + Fn hf + qn = Vn Hn + Lnhn + Snhn (2) Vn : Kademey terkeden buhar akımı. Vn+1 : Kademeye gren buhar akımı. Ln : Kademey terkeden sıvı akımı. Ln+1 : Kademeye gren sıvı akımı. Fn : Kademeye gren besleme akımı. Sn : Kademeden ayrılan yan akım. 5

9 qn : Kademeye gren veya terkeden ısı akımı. Z : Besleme akımındak bleşennn mol kesr (besleme k fazlı olablr.) x : Sıvı akımındak bleşennn mol kesr. y : Buhar akımındak bleşennn mol kesr. H : Buhar fazın özgül entalps. h : Sıvı fazın özgül entalps. hf : Beslemenn özgül entalps (sıvı + buhar). H.Yenova Akımlar mol/zaman, entalpler J/mol olarak boyutlandırılır. Analzler, kademelern dengede olduğu kabul edlerek yapılır. Denge kademesnde (teork kademede), kademey terkeden buhar ve sıvı akımları dengede olup bu akımların bleşmler sstem çn verlen buhar-sıvı denge verlernden elde edleblr. Denge sabtlerne bağlı olarak; y = K x (3) yazılablr. Gerçek kademelern performansı, raflı kolonlar (plate contactors) çn kademe verm ve dolgulu kolonlar çn eşdeğer teork raf yükseklğ le fade edlen denge kademesne bağlıdır. Kolondak herbr kademe ve yoğuşturucu le kazan çn madde ve enerj denklkler ve denge bağıntıları yazılablr. Kademeler çn yazılan bu bağıntılar, kademel prosesler çn gelştrlen tüm kesn yöntemlern temeln oluşturur. 3.2 ÇİĞLEŞME ve KAYNAMA NOKTALARI Kademe, yoğuşturucu ve kazan sıcaklıklarını hesaplamak çn kullanılan yöntemler çğleşme ve kaynama noktalarının hesaplanmasını gerektrr. Tanım olarak, doygun sıvı; kaynama noktasında bulunan sıvıdır. Sıcaklığın yükselmesyle buhar kabarcıkları oluşur. Doygun buhar se çğlenme noktasındak k buhardır. Sıcaklığın düşmesyle sıvı damlacıkları oluşur. Çğleşme ve kaynama noktaları, sstem çn buhar-sıvı denge verlernden yararlanılarak hesaplanablr. Kaynama noktası : Σy = Σ K x =1.0 (4) Çğleşme noktası : Σx = Σ y / K =1.0 (5) Verlen br sstem basıncı çn çok bleşenl karışımlarda bu denklemler sağlayan uygun sıcaklık deneme yanılma yöntemyle bulunur. İkl sstemler çn bu denklkler çözmek kolaydır.çünkü bleşenler bağımsız olmayıp br dğer cnsnden fade edleblr. ya = 1 - yb (6a) xa = 1 - xb (6b) çğleşme ve kaynama noktalarının hesaplanması örnek 9'da verlmştr. 3.3 FLAŞ DİSTİLASYON Flaş dstlasyonda, besleme akımı brbrler le dengede bulunan sıvı ve buhar akımlarına ayrılır. Akımların bleşm beslemenn buharlaşan mktarına bağlıdır. Denge flaş hesaplamaları çn kullanılan denklkler aşağıda verlmş ve Örnek-1'de uygulaması yapılmıştır. 6

10 Flaş dstlasyon çn yapılan hesaplamalarda dstlasyon kolonuna yapılan beslemenn koşullarını ve kazandan veya eğer br kısm yoğuşturucu kullanılıyorsa, yoğuşturucudan gelen buhar akımının koşullarını blmemz gerekr. Br besleme akımı çersndek haff bleşenler ayırablmek çn lk adım olarak tek kademel flaş dstlasyon prosesn uygulamak yararlıdır (ham petrolün damıtılmasında olduğu gb).şekl-3'de tpk br flaş dstlasyon proses gösterlmştr. V y F z n L x Bu prosesde herhang br bleşen çn kütle denklğ, F z = V y + L x (7) Enerj denklğ, F hf = VH + L h (8) Şekl-3 Flaş dstlasyon Buhar-sıvı denge bağıntısı denge sabtlerne bağlı olarak fade edlp (7) bağıntısı yenden yazılırsa aşağıdak eştlkler elde edlr. V Fz = VKx + Lx = Lx K + 1 L Fz L = (9) Fz V = (10) VK + 1 L L + 1 VK Sıvı ve buhar akış hızları le denge sabtlern çeren bu denklkler ayırma proses hesaplamalarında oldukça önemldr. L/VK, Absorpsyon faktörü olarak blnr ve A le gösterlr. Herhang br bleşenn sıvı akımı çersndek mol sayısının, buhar akımı çersndek mol sayısına oranıdır. VK/L, Sıyırma faktörü olarak adlandırılır, S le gösterlr. Absorpsyon faktörünün tersne eşttr. Çok bleşenl karışımların flaş damıtılması çn yapılan hesaplamalarda deneme yanılma yöntemnn kullanılması terch edlr. Bu yöntemle hesaplama çn Smth 1963, Olver 1966, Hengstebeck 1961, Kng 1971, tarafından örnekler verlmştr. Örnek 1: Bleşm aşağıda verlen br besleme, 14 bar basınç ve 60 C'de dstlasyon kolonuna beslenmektedr. Sıvı ve buhar fazların akış hızlarını ve bleşmlern hesaplayınız. Denge verler çn De Prester dyagramından yararlanılablr. Besleme kmol/st z Etan, C2 20 0,25 Propan, C3 20 0,25 İzobütan, C4 20 0,25 npentan, nc5 20 0,25 7

11 Çözüm: Besleme akımının kaynama noktası çn Σ K z > 1.0 Besleme akımının çğleşme noktası çn Σ z / K > 1.0 H.Yenova olup, önce besleme akımının koşulları daha sonrada çeştl L/V değerler çn varsayımda bulunarak sıvı ve buhar akımların bleşmler saptanır. Saptanan bu bleşmlerden yararlanılarak L/V değerler hesaplanır. Varsayılan L/V le hesaplanan L/V değerlernn aynı olduğu akım bleşmler aranan sonuçtur. Besleme akımı çn: K K z z / K C2 3,8 0,95 0,07 C3 1,3 0,33 0,19 C4 0,43 0,11 0,58 n-c5 0,16 0,04 1,56 Σ 1,43 Σ 2,40 Bu sonuç, besleme akımının k fazlı olduğunu göstermektedr. Flaş dstlasyon üntesn dengede terkeden akımların bleşmlernn hesaplanması, L/V=1,5 L/V=3,0 Bleşen K A=L/VK V=Fz/(1+A) A V C2 3,8 0,395 14,34 0,789 11,17 C3 1,3 1,154 9,29 2,308 6,04 C4 0,43 3,488 4,46 6,977 2,51 nc5 0,16 9,375 1,93 18,750 1,01 ΣV=30,02 L/V = (80-30,02)/30,02=1,67 L/V=2,80 ΣV=20,73 L/V değer çn üçüncü br varsayımda bulunurken, Hengstebec yöntemnden yararlanılır. Hesaplanan değerlere karşı varsayılan değerler grafğe geçrlr. Yen varsayım olarak L/V =2,4 alınırsa aşağıdak değerler elde edlr. L/V = 2,4 A V y =V/V x = (Fz V) / L C2 0,632 12,26 0,52 0,14 C3 1,846 7,03 0,30 0,23 C4 5,581 3,04 0,13 0,30 nc5 15,00 1,25 0,05 0,33 Σ V =23,58 Σ y = 1,00 Σ x = 1,00 L = 80 23,58 = 56,42 kmol/st L/V = 56,42 /23,58 = 2,39 8

12 Adyabatk Flaş dstlasyon: H.Yenova Br çok flaş dstlasyon prosesnde besleme akımının basıncı, flaş edlen basınçtan daha yüksektr ve buharlaşma ısısı besleme akımının entalps tarafından temn edlr. Bu durumda flaş sıcaklığı blnemez, deneme yanılma yöntemyle bulunması gerekr. Bulunan sıcaklık, kütle ve enerj denklklern sağlamalıdır. 4. DISTILASYON KOLONLARI İÇİN TASARIM DEĞİŞKENLERİ Br tasarımcı, tasarım hesaplamalarını yapablmek çn belrl sayıdak bağımsız değşkenlern sayısal değerlern belrterek problem tanımlaması gerekr. Çözümün kolay olması genellkle seçlecek tasarım değşkenlerne bağlıdır. Blgsayar kullanmadan yapılacak hesaplamalarda, tasarımcı değşkenler kend nsyatfyle seçer, daha sonra hesaplamalar lerledkçe dğer değşkenler ortaya çıkar. Eğer problem tam olarak tanımlanamıyorsa daha farklı br tasarım değşkenler grubunu ele alarak tekrar hesaplama yapılır. Bu şeklde hesaplamaların zorlukları göz önüne alınarak blgsayarla çözüm yapılması yeğlenr. Bu konu hakkındak açıklamalar Tasarıma Grş bölümünde verlmştr. Herhang br problemdek bağımsız değşkenlern sayısı, toplam değşken sayısı le blnen denklemler ve dğer bağıntılar arasındak farka eşttr. Ayırma proses hesaplamalarında bağımsız değşkenlern sayısının tayn edlmes çn bu yöntemn uygulamalı örnekler: Glland ve Reed 1942, Kwauk 1956, Hanson ve Somervlle 1963, tarafından verlmştr. Çok bleşenl karışımların damıtıldığı, çok kademel br dstlasyon kolonunda her br kademe, kazan ve yoğuşturucu çn ayrı ayrı her br bleşen göz önüne alarak kütle, entalp denklkler ve denge bağıntıları yazılablr. Eğer kademe sayısı fazla se değşkenlern ve denklemlern hesaplanmasında hata yapılablr. Bağımsız değşkenlern sayısını tayn etmek çn daha pratk br yöntem, 'TANIMLAMA KURALI' (Descrpton Rule) olup Hanson ve arkadaşları tarafından (1962) verlmştr. Bu kurala göre tasarımcının seçtğ bağımsız değşkenlern sayısı kolonun yapılması çn gerekl değşken sayısına ve şletme parametrelerne eşt olmalıdır. Bu kuralın uygulanması çn tasarımcının kolonun yapılması ve şletlmes çn gerekl tüm değşkenler lste halnde sıralaması gerekr. Bu yöntem y br şeklde açıklayablmek çn çok bast olarak şletlen br kolonu göz önüne alalım: Br grd akımının olduğu, yan akımın olmadığı, toplam yoğuşturucu ve br kazanın bulunduğu bast br kolonun tasarımında besleme noktasının altındak ve üstündek kademe sayısı sabt tutulacaktır (2 tane değşken) üst akımın değşkenlerne bağlı olarak besleme bleşm ve toplam entalp sabt olacaktır. n adet bleşen çn üst akım değşkenler sayısı, 1+(n-1) dr. Bunlara bağlı olarak besleme hızı, kolon basıncı, yoğuşturucu ve kazan, akımlar (soğutma suyu ve buhar akımı) kontrol edlecektr (4 tane değşken). Sabt tutulan toplam değşken sayısı, = (n-1) + 4 = n + 6 Bu kolonun tasarımını yapablmek çn bu değşkenler belrlenmeldr. Tpk br problem, verlen br besleme çn belrl br ger akış oranında, belrl br kolon basıncında ve belrl br ürün bleşm çn (k anahtar bleşenn derşm) ve belrl br ürün akış hızı çn kademe sayısının tayndr. Problem bu şeklde tanımlanmış olur. Grd hızı, bleşm, entalps = 2 + (n-1) Ger akış = 1 Üst ve alt üründe anahtar bleşenn derşm = 2 9

13 Ürün akış hızı = 1 Kolon basıncı = 1 H.Yenova n + 6 Teork olarak n + 6 tane bağımsız değşkenn tanımlanması le problem ortaya konmuş olur. Yukarıdak değşkenler seçmek problem çözmemz kolaylaştıracaktır. Daha farklı değşkenlern seçlmes halnde bu değşkenlern gerçekten bağımsız değşkenler olduğundan emn olmak gerekr. 5. İKİ BİLEŞENLİ KARIŞIMLARIN AYRILMASI çn DİSTİLASYON KOLON TASARIMI Dstlasyon prosesn tam olarak anlayablmek çn kl sstemler çn türetlmş temel denklklern y blnmes gerekr. Temel İşlemler Derslernde kl karışımların dstlasyonunu ayrıntılı olarak gördünüz. Bu nedenle burada sadece en çok kullanılan tasarım yöntemlern kısaca gözden geçreceğz. Ayrıca, daha lerde vereceğmz çok bleşenl sstemler çn tasarım yöntemler de kl sstemler çn kullanılablr. İkl sstemlerde bleşenlerden brnn derşmn belrlemekle dğer bleşenn derşmde belrlenmş olur. Dolayısıyla kademe sayısını ve ger akma oranını tayn etmek çn alternatf yöntemler kullanmaya gerek yoktur. Bast grafk yöntemler kullanmak yeterldr. 5.1 TEMEL EŞİTLİKLER İlk kez Sorel (1899) kl sstemler çn temel kademe eştlklern türetmş ve uygulamıştır. Aşağıda verlen şekl-4 de br kolonun alt ve üst kısımlarındak n. raflara gren ve çıkan akımların bleşmler gösterlmştr. V 1 qc y n V n L n+1 x n+1 H n h n+1 x d 1 L o D h d n n 1 y n+1 x n V n+1 L n B q b H n+1 h n+1 x b h b a) Besleme rafının üstünde b) Besleme rafının altında Şekl-4. Kolon akımları ve bleşmler. Yukarıdan tbaren 1'den n'e kadar olan kademeler ve yoğuşturucuyu çne alan sstem çn aşağıdak denklkler yazılablr. 10

14 Toplam kütle denklğ ve bleşen denklğ Vn + 1 = Ln + D (11) V n+ 1yn+ 1 = Lnxn + Dxd (12) Enerj denklğ V H = L h + Dh + q n+ 1 n+ 1 n n d c (13) 11 ve 12 no'lu bağıntılardan; L n D y n + 1 = x n + x d (14) L n + D L n + D 11 ve 13 no'lu bağıntılardan V + n+ 1H n+ 1 = (Ln + D)Hn 1 = Lnhn + Dh d qc (15) Benzer şekldek bağıntılar sıyırma bölges çnde yazılablr : x n + 1 = ' Vn ' Vn + y n B + B ' Vn + x b B (16) L ' ' ' n + 1h n + 1 = (Vn + B)h n + 1 = Vn H n + Bh b q b (17) Sabt basınçta kademe sıcaklıkları sadece buhar ve sıvı bleşmnn (çğleşme ve kaynama noktalarının) br fonksyonudur. Dolayısıyla özğül entalplerde bleşmn fonksyonu olur. H = f(y) h = f(y) (18a) (18b) Lews-Sorel Yöntem - Eşmolar akış hızı yöntem: Brçok dstlasyon problem çn yapılablen bast br varsayımdır. 1909'da Lews tarafından yapılan bu varsayımda kademeler çn enerj denklklern çözmek gerekmez. Zengnleştrme ve sıyırma bölgesndek sıvı ve buharın molar akış hızları sabt alınablr. Her kademedek sıvı ve buharın molar akış hızları sabttr. Bu varsayım bleşenlern buharlaşma çn molar duyulan ısıları aynı olduğunda ve kolonun şletldğ sıcaklık aralığında özgül ısıları sabt olduğunda geçerldr. Böylece karışma ısısının öneml olmadığı ve ısı kayıplarının hmal edlecek kadar küçük olduğuda kabul edlmş olur. bleşenlern deal br sıvı karışımı oluşturduğu sstemlerde bu koşullar sağlanabllr. Bleşenlern duyulan ısılarının çok farklı olduğu koşullarda, eşmolar akış olduğu kabul edlerek kademe sayısının hesaplanmasından gelecek hatalar çok küçük olupkabul edleblr br aralıktadır. Eş molar akış çn (14) ve (16) nolu denklkler alt ndslern kullanılmasına gerek görülmeden de yazılablr. L D y n + 1 = x n + x d (19) L + D L + D ' V B x n + 1 = y ' n + x ' b (20) V + B V + B 11

15 (19) ve (20) bağıntılarda L : Zengnleştrme bölgesnde sıvının sabt akış hızı. Lo : Ger akma hızı. V : Sıyırma bölgesnde sabt buhar akış hızı olarak verlmektedr. (19) ve (20) bağıntılarını tekrar yazarsak ' L D L B y n + 1 = x n + x d (21) y n = x n 1 x b V V ' + (22) ' V V Zengnleştrme bölgesndek sabt buhar akış hızı V = (L + D) ve sıyırma bölgesndek sabt sıvı akış hızı L' = V' + B dr. Bu bağıntılar eğmler L/V ve L'/V' olan doğru denklemlerdr. Bunlara İŞLETME DOGRULARI adı verlr. Özetle dengedek br raf çn, rafı terk eden sıvı ve buhar akımlarının bleşmler denge bağıntılarıyla verleblr. 5.2 McCABE - THIELE YÖNTEMİ (21) ve (22) no'lu eştlkler le denge bağıntıları McCabe ve Thele (1925) tarafından verlen grafksel yöntemle çözüleblr. Yöntem aşağıda bast olarak açıklanmıştır. 1. Kolon şletme basıncında buhar sıvı denge eğrs mevcut verlerden yararlanarak çzlr. Relatf uçuculuğa bağlı olarak ; αx y = 1 + ( α 1)x α : Uçucu olan bleşenn daha az uçucu olan bleşene göre ortalama zaf uçuculuğu. 2. Verlerden yararlanarak kolon çn kütle denklğ yapılır üst ve alt ürünlern bleşm xd ve xb saptanır. 3. Üst ve alt şletme doğrularının köşegen kestğ noktalar olan xd ve xb dagram üzernde şaretlenr. 4. İk şletme doğrusunun kesm noktası beslemenn faz koşullarına bağlıdır. q = 1 mol beslemenn buharlaşması çn verlen ısı Beslemenn molar duyulan ısısı Eğm (q-1)/q olan ve köşegen zf noktasında kesen q doğrusu çzlr. 5. Ger akma oranı seçlr ve üst şletme doğrusu uzatılarak y eksenn kestğ nokta bulunur. x d φ = 1 + R 6. Üst şletme doğrusu; Köşegen üzerndek xd değerne ve y eksen üzerndek ф değerne tekabül eden noktalar brleştrlerek çzlr (AB doğrusu). 7. Alt şletme doğrusu; Köşegen üzernde xb değerne tekabül eden nokta le üst şletme doğrusu le q doğrusunun kesm noktası brleştrlerek çzlr. 8. xd veya xb' den başlayarak kademeler çzlr. 12

16 13

17 Raflardak buhar ve sıvı akış hızları sabt değlse yan eşmolar akış koşulları olmadığında yne McCabe - Thele yöntem kullanılablr. Bu durumda şletme doğruları yerne şletme eğrlernden yararlanılır. İşletme eğrlernn eğmlern yaklaşık olarak bulablmek amacıyla (yeter sayıda nokta belrleyeblmek çn) enerj deklklernn kurulması gerekr (Hengstebeck, 1961). Dğer br seçenek olarak daha kesn, hassas fakat zor br yöntem olan Ponchon - Savart Dagramı kullanılablr. McCabe Thele dagramının yeter kadar doğru sonuçlar vermedğ durumlarda kompleks grafk yöntemler kullanmak yerne kesn ve hassas sonuçlar veren fakat zor olan yöntemlern kullanılması blgsayar uygulamalarının artmasıyla yaygınlaşmıştır. 5.3 ÜRÜN DERİŞİMİNİN KÜÇÜK OLMASI HALİ : Ürünlerden brs çnde uçucu bleşenn derşmnn az olması halnde McCabe-Thele Dagramı'nda çzlecek kademeler çok küçük olacağından grafk üzernde göstermek zor olacaktır. Alt ve üst bölmeler daha büyük br skalada veya log-log kağıtlarda ayrı ayrı göstermekle bu problem çözümleneblr. Logartmk dagramda şletme çzgler doğru olmayacaktır. Bu durumda şletme çzgsn, (21) ve (22) nolu bağıntılarından yararlanarak bulunan noktaları grafk üzernde brleştrerek çzmek mümkündür. Bunun çn br yöntem Alleva (1962) tarafından tanımlanmış ve örnek-2 de açıklanmıştır. Eğer şletme ve denge çzgler br doğru halndeyse (ürün derşm küçük olduğunda genellkle doğru olarak alınablr), kademe sayısını hesaplamak çn, C.S. Robnson ve G.R. Glland'ın (Elements of Fractonal Dstllaton, McGraw Hll, 1950) verdğ bağıntı kullanlılablr. Zengnleştrme bölges çn ' ' K x log 1 r 1 ' x * s b = (25) N s 1 log ' ' s (K 1) Sıyırma bölges çn (1 s) + x / x (s K) log r d ' 1 K N r = (26) log(s/ K) Ns* : xb'den xr gb referans br noktaya kadar olan bölge çn gerekl deal kademe sayısı. xb : Alt üründe daha uçucu bleşenn mol kesr. xr': Daha uçucu bleşenn referans noktadak mol kesr s' : Alt şletme doğrusunun eğm. K : Uçucu bleşen çn denge sabt. Nr* : Referans nokta xr le xd arasındak bölge çn gerekl deal kademe sayısı. xd : Az uçucu bleşenn üst üründek mol kesr. xr : Az uçucu bleşenn referans noktadak mol kesr. K : Az uçucu bleşen çn denge sabt. s :Üst şletme doğrusunun eğm. Not : Küçük konsantrasyonlarda K=α alınablr. Bu bağıntıların kullanılması örnek 3'de verlmştr. Örnek 2: Br atık akımı çersnde bulunan seyreltk aseton sürekl dstlasyon le ger kazanılmaktadır. Besleme ağırlıkça %10 aseton çermekte olup sıcaklığı 20 C'dr. %98 saflıkta aseton elde edlmes 14

18 ve dp ürünün 50 ppm'den fazla aseton çermemes gerekmektedr. Kolon çn deal kademe sayısını hesaplayınız. Örnek 3: Örnek 2 de verlen dstlasyon problemndek verlerden yararlanarak ve aseton derşmnn 0,01 den daha az oladuğunu varsayarak deal kademe sayılarını Robnson-Glland eştlğn kullanarak hesaplayınız. Örnek-2 ve Örnek-3 ün çözümler öğrencler tarafından yapılacaktır SMOKER BAĞINTILARI Relatf (zaf) uçuculuğun sabt olduğu sstemler çn gerekl kademe sayısını tayn etmek amacıyla Smoker tarafından bazı analtk bağıntılar türetlmştr (1938). Bu bağıntılar her ne kadar, zengnleştrme ve sıyırma bölgelernde relatf uçuculuğun sabt olduğu problemlere uygulanablrsede, özellkle relatf uçuculuğun düşük olduğu durumlarda kullanılır. Örneğn kaynama noktaları brbrne yakın olan zomerlern ayrılmasında kullanılır. Eğer relatf uçuculuk, 1'e yakınsa gerekl kademe sayısı çok fazla olacak, bu nedenle McCabe- Thele dyagramını çzmek pratk olmayacaktır. Bu durumda Smoker bağıntılarının kullanılması önerlr. Smoker bağıntılarının türetlş aşağıda verlmş, kullanılması se Örnek 4'de gösterlmştr. y=sx+c (27) y αx = (23) 1 + ( α 1)x İşletme doğrusu ve relatf uçuculuğa bağlı olarak y nn denge değer aşağıdak bağıntılar le verlr: Bu k bağıntıdan y 'y elmne edersek; 2 s( α 1)x + s + b( α 1) α x + b = (28) [ ] 0 Herhang br özel dstlasyon problem çn (28) no'lu denklem sadece br tek gerçek köke sahptr. Gerçek kök, k 0< k <1 arasındadır 2 s( α 1)k + s + b( α 1) α k + b = (29) [ ] 0 k, uzatılan şletme doğrularının buhar-sıvı denge eğrsn kestğ noktadak x'n değerdr. Smoker'ın kademe sayısı çn verdğ bağıntı ; * * x o (1 βx n ) log * * x β = n (1 x o ) sc ( α 1) N (30) β = (31) α 2 α sc log 2 sc N : Derşm xn* den xo* ; x=(x-k) ve xo* > xn* gerekl kademe sayısı'dır. c = 1 + (α-1)k (32) s : İşletme doğrusunun xn* ve xo* arasındak eğm. α : Relatf uçuculuk. (xn*, xo* aralığında sabt varsayılacak) değştrmek çn (ayırma yapmak çn) 15

19 Tek br beslemenn yapıldığı, yan akımın alınmadığı kolon çn, Zengnleştrme bölgesnde ; x * = x k (33) x n zf k * o d Sıyırma bölgesnde * x o zf k = (34) s R R + 1 = (35) = (37) x x k x b = d (36) R + 1 * n = b (38) H.Yenova s Rz f + x d (R + 1) x = b (39) (R + 1)( z f x b ) b (zf x (R + 1)(z )xb x = d (40) f b) Eğer besleme akımı kolona kaynama noktası sıcaklığına kadar yükseltlmeden verlyorsa, zf değer şletme doğrularının kesm noktasındak x' n değer le yer değştrmeldr. Bu değer, z b + z f /( q 1) q /( q 1) s * f = (41) Örnek 4 : Etlbenzen ve stren karışımını ayırmak çn br kolon tasarımı yapılacaktır. Besleme akımında stren mol kesr 0.5 olup strenn % 85'nn % 99.5 saflıkta elde edlmes stenyor. Kolon dbnde maksmum basınç 0.20 bar ve ger akım oranı 8 olduğuna göre denge kademelernn sayısını hesaplayınız. Çözüm : Etlbenzen daha uçucu bleşendr. Antone denklemnden Etlbenzen ve Strenn buhar basınçları hesaplanablr. lnp = A - B/T+C Etlbenzenn buhar basıncı, lnp o = T Strenn buhar basıncı, lnp o = T Bu denklemlerde P, bar ve T,Kelvn olarak kullanılmalıdır. Kütle denklğ : 100 kmol besleme akımı temel alınırsa, Dp üründe strenn % 85'nn ger kazanılması çn, grdde 50 kmol stren olduğuna göre dp üründe 50 x 0.85 = 42.5 kmol stren olacaktır. Dp üründe strenn %99.5 saflıkta olması stendğne göre dp üründe etlbenzen mktarı, 42.5 x 0.5 / 99.5 = 0.21 kmol üst üründe etlbenzen mktarı, = kmol üst üründe stren mktarı, = 7.5 kmol üst üründe etlbenzenn mol kesr = 49.79/( ) = 0.87 zf = 0.5 xb = xd = 0.87 'dr. Stren çn Antone eştlğnden yararlanarak kolon dp sıcaklığı bulunablr. 16

20 ln 0.2 = /(T-63.72) T = 366 K = 93.3 C H.Yenova 93.3 C'de etlbenzenn buhar basıncı, lnp o = /( ) = 0.27 bar ve o P 0.27 Re latf..uçuculuk = etlbenzen = = 1.35 dr. o P 0.20 stren Relatf uçuculuk, kolonun üst kısmına doğru gdldkçe, kolon basıncı ve bleşmlere bağlı olarak değşecektr. Kademe sayısı blnmedkçe kolon basınçları hesaplanamaz; Böylece lk deneme olarak, blnen kolon dp basınç değerler çn relatf uçuculuk sabt alınır. Zengnleştrme bölgesnde, s = R/(R+1) = 8/(8+1) = 0.89 x 0.87 b = d = = R s( α 1)k + s + b( α 1) α k + b = Bağıntısı kullanılarak [ ] (1.35-1)k 2 + [ (1.35-1)-1.35]k = 0 k = dır. x * o d = * n f = = x k = x = z k = c = ( α 1)k + 1= (1.35 1) = 1.10 sc( α 1) 0.89x1.10(1.35 1) β = = = α sc x1.1 N = log * x β * o (1 x n ) * x * n (1 β x o ) log α 2 sc 0.58( x0.21) log 0.21( x0.58) = 1.35 log x1.1 log N = = 8.87 Zengnleşme bölgesnde 9 kademe vardır. log Sıyırma bölges çn de benzer hesaplamalar aşağıda yapılmıştır. Rz x (R 1)x 8x (8 1)0.005 s f + d + b + + = = = (R + 1)(z f xb) (8 + 1)( ) z f x b = ( R + 1)( z f ) x ( d b 4 x ) b ( )0.005 = 4.15x10 (8 + 1)( )... sııfır 17

21 s( α 1)k 2 + = 1.084(1.35 1)k [ s + b( α 1) α] 2 + k + b = [ x10 (1.35 1) 1.35] k 4.15x10 = 0 k= x * o = zf k = = 202 x * n = x b k = = c = ( α 1)k + 1= (1.35 1) = H.Yenova sc( α 1) β = 2 α sc 1.084x(1.35 1) = x(1.246) 2 = 1.42 N = log * x o (1 β x * n x * n (1 * β x o ) ) log α 2 sc = log (1 ( x x ) ) log x ( ) N = log 3 [ 4.17x10 ] = log 0.8 Sıyırma bölgesnde 25 kademe vardır. 18

22 6. ÇOK BİLEŞENLİ KARIŞIMLARIN DİSTİLASYONU Genel Yaklaşım Çok bleşenl karışımların dstlasyonunda kademe sayısının ve ger akma oranının tayn edlmes kl karışımlara kıyasla çok daha kompleksdr. Çok bleşenl karışımlarda bleşenlerden brsnn derşmn blmekle dğerlernn derşmn ve kademe sıcaklığını hesaplamak mümkün değldr. Hatta besleme kden fazla bleşen çerdğnde alt ve üst ürün bleşmlern bağımsız olarak spesfye etmek mümkün değldr. Alt ve üst ürünler arasındak ayırma, ayrılması stenen k anahtar bleşen (key components) belrleyerek spesfye edleblr. Çok bleşenl karışımların (ÇBK) damıtılmasında kullanılacak kolonların tasarımı çn yapılacak hesaplamalar, kademe denklklernn blnen yöntemlerle çözümünü gerektrr. Kolonun üst ve alt noktalarından başlayıp besleme noktasına gelnceye kadar kademe denklkler her kademe çn ayrı ayrı çözülür. Bu hesaplamaların kesn olablmes çn aşağıdan yukarıya doğru gderken besleme noktası çn elde edlen bleşmlerle, yukarıdan aşağıya doğru gderken besleme noktası çn hesaplanan bleşmlern brbrne uygun olması gerekr. Bulunan bleşmler, alt ve üst ürün çn varsayılan bleşmlere bağlı olacaktır. Her nekadar anahtar bleşenlern derşmler çn besleme noktasında brbrne uygun değerler elde edleblrsede dğer bleşenlern derşmlernn besleme noktasında brbrne uygun düşmes ancak alt ve üst ürün bleşmler çn yapılan varsayımlara bağlıdır. Kesn ve tam br çözüm elde edlnceye kadar, yan kolonun altından yukarıya doğru ve üst kısmından aşağıya doğru kademe denklklernn sırasıyla her kademe çn çözülmesyle besleme noktasında tüm bleşenler çn (her k yoldan gdldğnde de) elde edlen derşmler brbrne uygun düşünceye kadar hesaplamalar tekrarlanır. Bleşen sayısı ne kadar çoksa problemn çözümününde o kadar güç olacağı açıktır. Daha önce bahsettğmz gb deneme-yanılma yöntemyle hesaplama yapablmek çn kademe sıcaklıklarının da belrlenmş olması gerekr. Ayrıca, İdeal karışımların söz konusu olmadığı durumlarda bleşenlern uçuculuğu, kademe bleşmlernn br fonksyonu olacağından ve kademe bleşmler de blnmedğnden hesaplamalar daha da güçleşecektr. Daha lerde 9 no'lu örnekte gösterldğ gb, brkaç kademeden fazla kademe çeren kolonlar çn hesaplamaların kademe kademe gdlerek çözülmes kompleks ve sıkıcı br ştr. Blgsayar uygulamaları bugün bu hesaplamaları kolaylaştırmıştır. Blgsayar uygulamalarının yaygın olmadığı tarhlerde çok bleşenl karışımların ayrılmasında kullanılan kolonların tasarımı çn gerekl hesaplamaların yapılması amacıyla bazı KESTİRME YÖTEMLER (Short-Cut Methods) gelştrlmştr. Özellkle hdrokarbon sstemler çn kullanılan bu yöntemlern br özet yılları arasında Edmster tarafından "The Petroleum Engneer" de verlmştr. Bugün her nekadar blgsayar yöntemler kullanılıyorsada bu yöntemlere hazırlık amacıyla kolonların ön tasarımında KESTİRME YÖNTEMLER hala kullanılmaktadır. Bu kestrme yöntemlern öncelkle denenmes halnde en azından blgsayar kullanım süres ve şgücü masraflarından tasarruf edlmş olur. KESTİRME YÖNTEMLER İKİ GRUBA AYRILIR : 1. Yukarıda açıklanan kademe denklklernn sırayla çözülmesn çeren yöntem bastleştrlerek hesaplamaların grafksel olarak veya hesap maknes le çözüleblecek hale getrleblmes mümkündür. Hengstebeck (1961) ve Smth Brnkley (1960) bu yaklaşım çn örnek vermşlerdr. 2. Bugün uygulamada kesn tasarımların sonuçlarını veya şletlen kolonların performanslarını temel alarak gelştrlmş olan emprk yöntemler kullanılmaktadır. Daha lerde açıklanacak olan 'Gllland bağıntısı' ve Erbar Maddox bağıntısı bu yaklaşım çn brer örnektr. 19

23 6.1 ANAHTAR BİLEŞENLER: H.Yenova Kolon tasarımına başlamadan önce, ayrılması stenen bleşenler arasında k tanes anahtar bleşen olarak seçlmeldr. Haff anahtar, dp üründe olmaması stenen bleşen, ağır anahtar, üst üründe olmaması stenen bleşen olarak tanımlanır. Spesfye etme, alt ve üst ürün çersndek anahtar bleşenlern maksmum derşmlern belrleyerek yapılır. Eğer anahtarlar, bleşenlern uçuculuk sırası lstesnde brbrlerne yakın seler "yakın anahtarlar" (adjacent keys) olarak adlandırılırlar. Eğer bunların uçuculukları arasında dğer bazı bleşenlern uçuculukları yer almışsa "ırak anahtarlar" (splt keys) adı verlr. Anahtarlar genellkle yakın anahtarlardır. Hang bleşenlern anahtar bleşenler olacağı kolaylıkla belrlenr. Fakat bazı durumlarda, özellkle kaynama noktaları brbrne çok yakın zomerlern karışım çersnde bulunması halnde herhang brsnn seçlmesne karar verlr (herhang br krter olmaksızın). Herhang br şüphel durumla karşılaşıldığında, ayırma çn en fazla kademe sayısını gerektren anahtar çft bulununcaya kadar farklı anahtarlar seçlerek hesaplar tekrarlanır. Örneğn Fenske Denklem, bu hesaplamalar çn kullanılablr. Fenske denklem Bölüm-7.3'de verlmştr. Anahtar olmayan bleşenlerden, dp ve üst ürünler çersnde bulunanlara "dağılmış bleşenler" adı verlr. Dp ve üst ürün çersnde öneml mktarda olmayan ve yne anahtar bleşenlern harcndek bleşenlere "dağılmamış bleşenler" denr. 6.2 KOLON SAYISI ÇBK dstlasyonunda tek br kolon kullanarak saf br bleşen elde etmek yan tam br ayırma yapmak mümkün değldr. Eğer ÇBK dan brkaç tane bleşen saf halde elde edlmek stenyorsa brkaç tane kolon kullanılması gerekr. Saf olmayan ürünler yan akım olarak alınablr. Önemsz br bleşenn konsantre olduğu br kademeden br yan akımın alınması o bleşenn ana ürün çndek derşmn azaltacaktır. Ayrıca raf sayısının çok fazla olduğu kolonlarda kolon boyunun büyüklüğünü azaltmak amacıyla tek kolon yerne k ayrı kolon kullanılması terch edlr. İstenlen ayırma teork olarak tek kolonda elde edlebldğ durumlarda ve vakum dstlasyonu yapılan kolonlarda, kolonda basınç düşmesn azaltmak ve kolon dp sıcaklığını lmtlemek amacıyla brden fazla kolon kullanılması terch edlr. 7. ÇOK BİLEŞENLİ KARIŞIMLARIN DİSTİLASYONUNDA RAF SAYISI ve GERİ AKMA ORANLARININ BULUNMASI İÇİN KESTİRME YÖNTEMLER (Short-cut Methods) Bu bölümde blgsayar kullanımını gerektrmeyen bazı kestrme yöntemler verlmştr. Kestrme yöntemlern çoğu petrol ve petrokmya endüstrsnde hdrokarbon karışımlarının ayrılmasında kullanılan ayırma kolonlarının tasarımı çn geçerldr. Bu nedenle dğer sstemler çn burada verlen bağıntıları kullanırken dkkatl olmak gerekr. Kestrme yöntemler genellkle sabt relatf uçuculuk varsayımını temel alır ve deal olmayan sstemler çn kullanılmamalıdır. 7.1 EŞDEĞER-İKİLİ SİSTEMLER (pseudo-bnary systems) Eğer dğer bleşenlern mevcudyet, anahtar bleşenlern uçuculuğunu öneml ölçüde etklemyorsa sstem anahtar bleşenlerden oluşan eşdeğer kl karışım gb düşünüleblr. Kademe sayısı, McCabe Thele dagramı veya kl sstemler çn verlen dğer yöntemler kullanılarak hesaplanablr. Bu bastleştrme, anahtar olmayan bleşenlern karışım çndek mktarı küçük olduğunda veya bleşenler hemen hemen deal br karışım oluşturduklarında yapılablr. 20

24 Anahtar olmayan bleşenlern derşm % 10'dan daha az se anahtar bleşenle brlkte ele alınır. Daha yüksek derşmlere sahp olduklarında se Hengstebeck (1946)' n önerdğ yöntem kullanılarak sstem, kl ssteme eşdeğer hale ndrgenr. Hengstebeck'n yöntem örnek-5'de açıklanmıştır. Hengstebeck Yöntem : Herhang br bleşen çn bölüm 5'de verdğmz Lews-Sorel kütle denklğ bağıntıları, bleşenlern derşmler yerne her br bleşenn molar akış hızlarına bağlı olarak yazılablr. v n+ 1, = ln, + d (42) V v n, = Kn, ln, L (43) Sıyırma bölges çn: ' ' l n+ 1, = vn, + b (44) ' ' V ' v n, = Kn, l ' n, L (45) V, L Buhar ve sıvı fazın toplam akış hızları l n, n. kademede bleşennn sıvı fazda akış hızı v n. kademede bleşennn buhar fazda akış hızı n, d bleşennn üst kısımda akış hızı. b bleşennn alt kısımda akış hızı. K n. kademede bleşen çn denge sabt'dr. (') smges sıyırma bölgesndek değerler fade etmek çn kullanılmıştır. V,L Toplam akış hızları olup, sabt olduğu kabul edlmştr. Çok bleşenl sstem, eşdeğer kl ssteme ndrgemek çn anahtar bleşenlern kolon boyunca akış hızlarını hesaplamak gerekr. Hengstebeck'n bu konudak yaklaşımına göre, anahtar olmayan haff bleşenlerden herbrnn akış hızı tpk br dstlasyonda sabt br değere yaklaşır. Daha açıkçası anahtar olmayan haff bleşenlern her brnn zengnleştrme bölgesndek akış hızı br lmt değere yaklaşır ve anahtar olmayan ağır bleşenlerden her brnn akış hızı sıyırma bölgesnde br lmt değere yaklaşır. Her br bölgedek anahtar olmayan bleşenlern akış hızlarını bu lmt hızlara eştleyerek anahtar bleşenlern eşdeğer akış hızları hesaplanır. = V Σv Le = L Σl e V L ' ' ' e = L Σl V ' ' ' e = V Σv (46) (47) (48) (49) Ve Le : Anahtar bleşenlern akış hızları. v l : Zengnleştrme bölgesnde, anahtar bleşenlerden daha haff olan bleşenlern kısıtlı ' v (lmtl) sıvı ve buhar akış hızları. ' l : Sıyırma bölgesnde anahtar bleşenlerden daha ağır bleşenlern lmtl sıvı ve buhar akış hızları olarak verlmektedr. Lmt akış hızlarını hesaplamak çn, Jenny (1939) tarafından aşağıdak bağıntılar verlmştr : l d ' ' v = l + d l = v + b ' αb v = α 1 α Lk α (50) (51) (52) (53) = 21

25 α LK: Haff anahtar bleşenn relatf uçuculuğu α : bleşennn relatf uçuculuğu (ağır anahtar bleşene göre) Eşdeğer anahtar bleşenlern hızlarının hesaplanmasından sonra eşdeğer kl sstem çn şletme doğrularını çzmek mümkün olur. Haff anahtar çn sabt br relatf uçuculuk varsayılarak denge eğrs çzleblr ; α x y = Lk 1 + (αlk 1)x (23) burada, y ve x haff anahtarın buhar ve sıvı fazdak derşmlerdr. Hengstebeck, relatf uçuculuğun sabt alınmadığı durumlar çn bu yöntemn ne şeklde kullanılableceğn de açıklamıştır. Hatta Lews-Matheson yöntemn temel alarak daha kesn sonuçlar veren br grafk yöntemde önermştr (bakınız 8.bölüm). Örnek 5. Bütan-pentan ayırıcısında aşağıda bleşm verlen karışımı ayırmak çn gerekl kademe sayısını hesaplayınız. Kolon 8.3 bar basınç altında çalıştırılacak ve ger akma oranı 2.5 olacaktır. Besleme akımı kaynama sıcaklığındadır. Bleşen Besleme, f Üst ürün, d Alt ürün, b Propan C bütan -C n-bütan n-c pentan -C n-pentan n-c Toplam, kmol Not : Benzer br problem blgsayar kullanılarak Lyster (1959) tarafından çözülmüş ve kademe sayısı 10 bulunmuştır. Çözüm : Kolonun üst ve alt sıcaklıkları; üst ürün çn çğleşme sıcaklığı ve alt ürün çn kaynama sıcaklığı hesaplanarak bulunur. Hesapklama yöntem örnek 9'da açıklanmıştır. Kolonun tepe sıcaklığı 65 dp sıcaklığı 120 o C bulunmuştur. Relatf uçuculuklar; K α j = K j K = y x K = j y x j j α = K K HK Bağıntılarından hesaplanır. Denge sabtler se Deprester dagramlarından okunur. 22

26 Relatf uçuculuklar Üst Alt Ortalama Sıcaklık, o C Propan C bütan -C n-bütan n-c pentan -C n-pentan n-c Anahtar bleşenlern harcndek bleşenlern akım hızları 50,51,52,53, nolu bağıntılardan yararlanılarak hesaplanır. α d l α d = v = l + d 1 C C Σ l = 10.7 Σ v =30.7 α b v ' α α Lk b ' ' = l = v + b α n-c Σ v = 25.9 Σ l = 25.9 Anahtar bleşenlern eşdeğer akış hızları: Le = L - Σ l = RD - Σ l Ve = V Σ v = D(R+1) - Σ v = 2.5x = = 45(2.5+1)-30.7 = Burada L, zengnleştrme bölgesnde sabt sıvı akış hızı olup ger akış hızına (Lo) eşttr. V, zengnleştrme bölgesnde sabt buhar akış hızı olup V=Lo + D = D(Lo/D +1) =D(R+1) Ve = V - Σ v = D(R+1) - Σ v Le' = L' - Σ l' =(V'+B) - Σ l' = 45(2.5+1)-25.9 = = (2.5+1) = burada, V' sıyırma bölgesnde sabt buhar akış hızıdır. V' = Lo+D = D(R+1) L se sıyırma bölgesnde sabt buhar akış hızıdır. L =V +B Üst şletme doğrusunun eğm Le/Ve = 101.8/126.8 =

27 ve alt şletme doğrusunun eğm Le'/Ve' = 151.6/131.6 =1.15 dr. LK 1 24 x b = = = 0.05 x 0.96 (LK+ HK) d = = x f = = α y = 1 + ( α Lk Lk x 1) x 2.0 x = 1 + (2 1) x 2x = 1 + x x y Yukarıdak hesaplamaların sonuçlarından yararlanılarak McCabe Thele dagramı çzlr. 1. Denge eğrs çzlr. 2. Dagram üzernde xb, xd noktaları şaretlenr. 3. Eğm Le/Ve = 0.8 olan ve xd 'den geçen üst şletme doğrusu çzlr. y = ax + b y = 0.8x + b x = 0.96 çn y = 0.96 olup b = x = 0.6 çn y = Eğm Le'/Ve' = 1.15 olan ve xb'=0.05 noktasından geçen alt şletme doğrusu çzlr. y = ax + b y = 1.15x + b xb = 0.05 çn y = 0.05 olup b = x = 0.4 çn y = McCabe-Thele Dagramı çzlldğnde ayırma çn 13 kademe gerektğ ve besleme akımının dpten tbaren 8.kademeden yapılması gerektğ görülür. 7.2 SMİTH - BRINKLEY YÖNTEMİ: Bu yöntem, br kolon tasarımı yapmaktan zyade raf sayısı blnen kolonların performansını tayn etmek amacıyla kullanılır. Tasarım çn, dğer yöntemler kullanılarak raf sayısını tayn etmek ve bu yöntem kullanarak alt ve üst akımların bleşmlern hesaplamak daha uygun olur. Geddes Hengstebeck yöntem bu yönteme kıyasla daha kullanışlıdır. Smth ve Brnkley'n, çok bleşenl karışımlar çn uygulanan ayırma proseslernde, bleşenlern dağılımını tayn etmek amacıyla önerdkler yöntem, çok kademel ayırma prosesler çn yazılablecek sonlu-dferansyel denklemlern çözümüne dayanmaktadır. Bu yöntem dstlasyon çn olduğu kadar absorpsyon ve ekstraksyon çnde kullanılır. Burada sadece dstlasyon çn kullanılan bağıntılar verlecektr. Bu bağıntıların çıkartılması aşağıdak kaynaklardan bulunablr. B.D. Smth ve W.K Brnkley,1960, AIChE J. 6,446 (1960) B.D. Smth,1963, Desgn of Equlbrum Stage Processes, McGraw Hll. Herhang br bleşen çn (denklem yazılışını karmaşık yapmamak çn alt ndsn yazmadan) aşağıdak eştlğ vermşlerdr. 24

28 b f = (1 S N r Ns r (1 S N r Ns r ) + R(1 S ) + R(1 S ) + GS r ) r N r Ns r (1 S Ns + 1 s ) H.Yenova b/f : Besleme le kolon db arasında kalan bölgede bleşenn ayrılma kesr Nr : Zengnleştrme bölgesnde denge kademeler sayısı. Ns : Sıyırma bölgesnde denge kademelernn sayısı. Sr : Zengnleştrme bölges çn sıyırma faktörü=kv/l Ss : Sıyırma bölges çn sıyırma faktörü=kv/l V,L : Zengnleştrme bölgesnde toplam buhar ve sıvı akış hızları. V', L': Sıyırma bölgesnde toplam buhar ve sıvı akış hızları. G : Besleme akımının koşullarına bağlı br faktör. Besleme akımı sadece sıvı se ; G ' K L = ' K L 1 S 1 S r s Besleme akımı sadece buhar se; L 1 S r G = ' L 1 Ss Besleme rafı sıyırma bölgesne dahldr. (54) no'lu bağıntı, kolon br toplam yoğuşturucu le kullanıldığında geçerldr. Eğer kolonla brlkte br kısm yoğuşturucu kullanılırsa bulunan raf sayısına 1 lave edlmeldr. Smth Brnkley yöntem aşağıdak şeklde uygulanır. 1. Spesfye edlen, ayrılacak bleşenlerden ve ger akma oranından yararlanarak L, V, L', V' hesaplanır. 4. Üst ve alt akım bleşenler çn varsayım yapılarak çğleşme ve kaynama noktaları hesaplanarak kolonun üst ve alt sıcaklıkları hesaplanır. 3. Besleme grş sıcaklığı hesaplanır. 4. Sıyırma ve zengnleştrme bölgelernde herbr bleşen çn ortalama K değerler hesaplanır. 5. Sıyırma ve zengnleştrme bölgelernde bleşen çn sıyırma faktörler Ss, Sr hesaplanır. 6. Her br bleşen çn ayırma kesrler, b/f hesaplanarak alt ve üst ürün bleşmler hesaplanmış olur. 7. Hesaplanarak bulunan değerler, varsayım yapılarak ortaya konan değerlerle kıyaslanır ve tüm kolon çn kütle denklğ yapılarak kontrol edlr. 8. Uygun br kütle denklğ elde edlnceye kadar hesaplamalar tekrarlanır. Genel olarak uygun kütle denklğ elde edlnceye kadar besleme sıcaklığı da değştrlr. Smth Brnkley yöntemnn uygulanması hakkında br örnek Smth (1963) tarafından verlmştr. 7.3 EMPİRİK BAĞINTILAR Çok bleşen karışımlarının ayrılması çn gerekl raf sayısının hesaplanması amacıyla en çok kullanılan emprk bağıntılar, Gllands(1940) ve Erbar Maddox(1961) tarafından verlmştr. Bu bağıntılar yardımıyla verlen br ger akma oranındak ayırma çn gerekl raf sayısı, toplam ger akma ve mnmum ger akma çn gerekl raf sayılarına bağlı olarak hesaplanablr. Gllands bağıntısı, Rchardson ve Coulson, Chemcal Engneerng, clt 2, bölüm 11, s.418 de verlmştr. Erbar Maddox bağıntısından yararlanarak ger akma oranının veya stenlen br ayırma çn gerekl raf sayısının bulunması amacıyla kullanılablecek br grafk ekte (Şekl-7) verlmştr. Bu grafğn kullanılablmes çn mnmum ger akma oranı ve mnmum raf sayısının blnmes 25

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL ŞAHİN

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

COMPUTER-AIDED DESIGN OF HORIZONTAL AXIS WIND TURBINE BLADE

COMPUTER-AIDED DESIGN OF HORIZONTAL AXIS WIND TURBINE BLADE 1 ÖZET 2008 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı: 22, s.1-11 YATAY EKSENLĐ RÜZGÂR TÜRBÜN KANADININ BĐLGĐSAYAR DESTEKLĐ TASARIMI Murat ÖNDER 1 Hüseyn Güçlü YAVUZCAN 2 Bu makalede yatay

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR wwwteknolojkarastrmalarcom ISSN:1304-4141 Makne eknolojler Elektronk Dergs 00 (4 1-14 EKNOLOJİK ARAŞIRMALAR Makale Klask Eş Eksenl (Merkezl İç İçe Borulu Isı Değştrcsnde Isı ransfer ve Basınç Kaybının

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON EVRİMEL ALGORİTMA İLE INIRLANDIRMALI DİNAMİK OPTİMİZAYON Ş. BALKU, R. BERBER Ankara Ünvetes Mühendslk Fakültes, Kmya Mühendslğ Bölümü Tandoğan, 06100 Ankara ÖZET Aktf çamur proses atıksu arıtımında kullanılan

Detaylı

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI BÖLÜM II D ÖRNEK 0 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 0 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI 0.1. BİNANIN GENEL ÖZELLİKLERİ...II.0/ 0.. TAŞIYICI

Detaylı

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi 01.01.2015 tarh ve 29223 sayılı Resm Gazetede yayımlanmıştır. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : 1 : 951-957

Detaylı

ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI

ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI M. Sedat HAYALİOĞLU *, S. Özgür DEĞERTEKİN * * Dcle Ünverstes, Müh.-Mm. Fak., İnşaat Müh. Böl., Dyarbakır ÖZET Bu çalışmada çelk uzay çerçevelern, Amerkan

Detaylı

KYM411 AYIRMA ĠġLEMLERĠ SIVI-SIVI EKSTRAKSİYONU. Prof.Dr.Hasip Yeniova

KYM411 AYIRMA ĠġLEMLERĠ SIVI-SIVI EKSTRAKSİYONU. Prof.Dr.Hasip Yeniova KYM411 AYIRMA ĠġLEMLERĠ SIVI-SIVI EKSTRAKSİYONU Prof.Dr.Hasip Yeniova AYIRMA ĠġLEMLERĠ Fiziksel Ayırma iģlemleri Dekantasyon,Filtrasyon vd BuharlaĢtırma Tek Kademeli, Çok Kademeli Distilasyon Basit, Azeotropik,

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:305-63X Yapı Teknolojler Elektronk Dergs 008 () - TEKNOLOJĐK ARAŞTIRMALAR Makale Başlığın Boru Hattı Etrafındak Akıma Etks Ahmet Alper ÖNER Aksaray Ünverstes, Mühendslk

Detaylı

Laser Distancer LD 420. Kullanma kılavuzu

Laser Distancer LD 420. Kullanma kılavuzu Laser Dstancer LD 40 tr Kullanma kılavuzu İçndekler Chazın Kurulumu - - - - - - - - - - - - - - - - - - - - - - - Grş - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Genel bakış

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm Resm Gazetenn 29.12.2012 tarh ve 28512 sayılı le yayınlanmıştır. TEİAŞ Türkye Elektrk İletm Anonm Şrket Bu Doküman

Detaylı

TEİAŞ Türkiye Elektrik İletim Anonim Şirketi. İletim Sistemi Sistem Kullanım ve Sistem İşletim Tarifelerini Hesaplama ve Uygulama Yöntem Bildirimi

TEİAŞ Türkiye Elektrik İletim Anonim Şirketi. İletim Sistemi Sistem Kullanım ve Sistem İşletim Tarifelerini Hesaplama ve Uygulama Yöntem Bildirimi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm EK-1 TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama

Detaylı

VANTİLATÖR TASARIMI. Şekil 1. Merkezkaç vantilatör tipleri

VANTİLATÖR TASARIMI. Şekil 1. Merkezkaç vantilatör tipleri 563 VANTİLATÖR TASARIMI Fuat Hakan DOLAY Cem PARMAKSIZOĞLU ÖZET Bu çalışmada merkezkaç ve eksenel vantlatör tpler çn gelştrlmş olan matematksel modeln çözümünü sağlayan br blgsayar programı hazırlanmıştır.

Detaylı

İDEAL GAZ KARIŞIMLARI

İDEAL GAZ KARIŞIMLARI İdeal Gaz Karışımları İdeal gaz karışımları saf ideal gazlar gibi davranırlar. Saf gazlardan n 1, n 2,, n i, mol alınarak hazırlanan bir karışımın toplam basıncı p, toplam hacmi v ve sıcaklığı T olsun.

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATILI RESMİ GAZETEDE YAYINLANMIŞTIR.

EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATILI RESMİ GAZETEDE YAYINLANMIŞTIR. EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATL RESMİ GAETEDE YAYNLANMŞTR. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama

Detaylı

---- >0.01. b0.05 >0.1 >0.1 >0.25 >0.25 70 Î 5 0.1 0.5 1 5 10 0.1

---- >0.01. b0.05 >0.1 >0.1 >0.25 >0.25 70 Î 5 0.1 0.5 1 5 10 0.1 Bna Kabuğunda Isı Ger Kazanımı Heat Recovery n Buldng Envelopes Max Howard SHERMAN, lan S. WALKER, Çevren: Devrm GÜRSEL ---- 1 >.1 25 >.1 b.5 Tpk Ev Pe Sayısı 9 f=.5 >.1 >.1 >.25 8 2 \ >.25 7 Tp» Ev Pesayısı

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı Sera İklmlendrme Kontrolü İçn Etkn Br Gömülü Sstem Tasarımı Nurullah Öztürk, Selçuk Ökdem, Serkan Öztürk Ercyes Ünverstes, Blgsayar Mühendslğ Bölümü, Kayser ozturk.nurullah@yahoo.com.tr,okdem@ercyes.edu.tr,

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

TE 06 TOZ DETERJAN ÜRETİM TESİSİNDEKİ PÜSKÜRTMELİ KURUTMA ÜNİTESİNDE EKSERJİ ANALİZİ

TE 06 TOZ DETERJAN ÜRETİM TESİSİNDEKİ PÜSKÜRTMELİ KURUTMA ÜNİTESİNDE EKSERJİ ANALİZİ Yednc lusal Kmya Mühendslğ Kngres, 5-8 ylül 26, Anadlu Ünverstes, skşehr 6 OZ DRJAN ÜRİM SİSİNDKİ PÜSKÜRMLİ KRMA ÜNİSİND KSRJİ ANALİZİ GÜLSÜN BKAŞ*, FİRZ BALKAN ge Ünverstes Kmya Mühendslğ Bölümü, 351,

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği

Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği S. ZENGİN KAZANCI, E. TANIR KAYIKÇI Konumsal Enterpolasyon Yöntemler Uygulamalarında Optmum Parametre Seçm: Doğu Karadenz Bölges Günlük Ortalama Sıcaklık S. ZENGİN KAZANCI 1, E. TANIR KAYIKÇI 1 1 Karadenz

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI

ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI Denizhan YILMAZ, Saliha YILMAZ, Eda HOŞGÖR, Devrim B. KAYMAK *

Detaylı

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM ECAS Uluslararası Yapı ve Deprem ühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye UZAY ÇERÇEVE SİSTEERİN STİK-PASTİK ANAİZİ İÇİN BİR YÖNTE Erdem Damcı, Turgay Çoşgun, Tuncer Çelk, Namık

Detaylı

2009 Kasım. www.guven-kutay.ch FRENLER GENEL 40-4. M. Güven KUTAY. 40-4-frenler-genel.doc

2009 Kasım. www.guven-kutay.ch FRENLER GENEL 40-4. M. Güven KUTAY. 40-4-frenler-genel.doc 009 Kasım FRENLER GENEL 40-4. Güven KUTAY 40-4-frenler-genel.doc İ Ç İ N D E K İ L E R 4 enler... 4.3 4. en çeştler... 4.3 4.3 ende moment hesabı... 4.4 4.3.1 Kaba hesaplama... 4.4 4.3. Detaylı hesaplama...

Detaylı

Pamukta Girdi Talebi: Menemen Örneği

Pamukta Girdi Talebi: Menemen Örneği Ege Ünv. Zraat Fak. Derg., 2002, 39 (3): 88-95 ISSN 1018-8851 Pamukta Grd Taleb: Menemen Örneğ Bülent MİRAN 1 Canan ABAY 2 Chat Günden 3 Summary Demand for Inputs n Cotton Producton: The Case of Menemen

Detaylı

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI Fath ÇİL GAZİ ÜNİVERSİTESİ Mühendslk Mmarlık Fakültes Endüstr Mühendslğ Bölümü 4. Sınıf

Detaylı

MADEN DEĞERLENDİRME. Ders Notları

MADEN DEĞERLENDİRME. Ders Notları MADEN DEĞERLENDİRME Ders Notları Doç.Dr. Kaan ERARSLAN 008 ĐÇĐNDEKĐLER. GĐRĐŞ... 3. REZERV SINIFLARI VE HESAPLAMALARI... 4. Görünür rezervler...4.. Muhtemel Rezervler...6.3 Mümkün Rezervler...7.4 Belrl

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001)

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001) ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 413-417 (1) TEKNK NOTrrECHNICAL NOTE ELEKTRK ARK FıRıNıNDA TERMODNAMGN KNC YASASıNıN

Detaylı

Servis Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanizması Tasarımı ve Kontrolü

Servis Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanizması Tasarımı ve Kontrolü Servs Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanzması Tasarımı ve Kontrolü Neşe Topuz, Hüseyn Burak Kurt, Pınar Boyraz, Chat Bora Yğt Makna Mühendslğ Bölümü İstanbul Teknk Ünverstes İnönü Cd. No:65,

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI İler Teknoloj Blmler Dergs Clt 2, Sayı 3, 10-18, 2013 Journal of Advanced Technology Scences Vol 2, No 3, 10-18, 2013 MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI M. Fath ÖZLÜK 1*, H.

Detaylı

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI Mehmet Aktan Atatürk Ünverstes, Endüstr Mühendslğ Bölümü, 25240, Erzurum. Özet: Dövz kurlarındak değşmler,

Detaylı

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ Burak KARAHAN Burak PEKEL Neşet BEDİR Cavt CAN Kırıkkale -2014-

Detaylı

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BA OKUR TMMOB JEOFİZİK MÜHENDİSLERİ ODASI EĞİTİM YAYINLARI NO: 5 ISBN 978-9944-89-969-7 Mll Müdafaa Cad. N: /7 Kızılay/ANKARA Tel: 3 48 4

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

MAK-LAB006 PARALEL ZIT AKIġLI ISI DEĞĠġTĠRĠCĠSĠ DENEYĠ

MAK-LAB006 PARALEL ZIT AKIġLI ISI DEĞĠġTĠRĠCĠSĠ DENEYĠ MAK-LAB006 PARALEL ZI AKIġLI ISI DEĞĠġĠRĠCĠSĠ DENEYĠ. GrĢ: Müendslk uygulamalarında en öneml ve en çk karşılaşılan knulardan brs farklı sıaklıklardak k veya daa fazla akışkan arasındak ısı transferdr.

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI Hall İbrahm KESKİN YÜKSEK LİSANS TEZİ ADANA 009 TÜRKİYE CUMHURİYETİ ÇUKUROVA

Detaylı

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1.

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1. ELEKONİK DEELEİ I Kntrl ve Blgsayar Bölümü Yıl ç Sınavı Nt: Nt ve ktap kullanılablr. Süre İKİ saattr. Sru.- r 00k 5k 5k 00Ω 5 6 k8 k6 7 k 8 y k5 0kΩ Mayıs 995 Şekl. Şekl-. de kullanılan tranzstrlar çn

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN PORTFÖY OPTİMİZASYOU Doç.Dr.Aydın ULUCA KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız olarak stratejk

Detaylı

Alev Fotometresinin Temel lkelerinin ncelenmesi ve Standart Katma Yöntemi le Verilen Bir Örnekteki Na + ve K + Deriiminin Bulunması

Alev Fotometresinin Temel lkelerinin ncelenmesi ve Standart Katma Yöntemi le Verilen Bir Örnekteki Na + ve K + Deriiminin Bulunması M.Hlm EREN 04-98 3636 www.mhlmeren.cjb.net Enstrümantel Analz II Lab. 9.Deney Grubu DENEY RAPORU DENEY ADI Alev Fotometrs le Na + ve K + Tayn ( No lu deney) DENEY TARH 1 Kasım 003 uma AMAÇ Alev Fotometresnn

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

ERGONOMİK KOŞULLAR ALTINDA MONTAJ HATTI DENGELEME

ERGONOMİK KOŞULLAR ALTINDA MONTAJ HATTI DENGELEME ERGONOMİK KOŞULLAR ALTINDA MONTAJ HATTI DENGELEME Pamukkale Ünverstes Fen Blmler Ensttüsü Yüksek Lsans Tez Endüstr Mühendslğ Anablm Dalı Elf ÖZGÖRMÜŞ Danışman: Yrd. Doç. Dr. Özcan MUTLU Ağustos, 2007 DENİZLİ

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜHENDİSLİĞİ

ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜHENDİSLİĞİ ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜHENDİSLİĞİ 2013 - S A M S U N DAMITMA (DİSTİLASYON) Distilasyon, bir sıvının ısıtılması ve buharlaştırılmasından oluşmaktadır ve buhar bir distilat ürünü oluşturmak için

Detaylı

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL KONTROL SİSTEMLERİ

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya DOĞRUSAL KONTROL SİSTEMLERİ DOĞRUSAL KONTROL SİSTEMLERİ 96 Anahtarlamalı Sstemler Kararlı Yapan PI Kontrolör Setnn Hesabı İbrahm Işık, Serdar Ethem Hamamcı Elektrk-Elektronk Mühendslğ Bölümü İnönü Ünverstes, Malatya {İbrahm.sk, serdar.hamamc}@nonu.edu.tr

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 109 125. TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ Yrd.Doç.Dr. Ahmet ERGÜLEN Nğde

Detaylı

Anahtar Kelimeler: Newton, En-dik iniș, Eșlenik Gradyen, Gauss-Newton ve Sönümlü En-küçük Kareler Ters-çözüm Yöntemleri, Tikhonov Düzgünleștiricisi.

Anahtar Kelimeler: Newton, En-dik iniș, Eșlenik Gradyen, Gauss-Newton ve Sönümlü En-küçük Kareler Ters-çözüm Yöntemleri, Tikhonov Düzgünleștiricisi. ÜREV ABANLI PARAMERE KESİRİM YÖNEMLERİ (DERIVAIVE BASED PARAMEER ESIMAION MEHODS) Ahmet uğrul BAȘOKUR Ankara Ünverstes Mühendslk Fakültes Jeofzk Müh. Bölümü, andoğankampusu, 61 Ankara basokur@eng.ankara.edu.tr

Detaylı

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ders Kodu Teork Uygulama Lab. Ulusal Kred Öğretm planındak AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ön Koşullar : Grafk İletşm I ve II, Tasarım Stüdyosu I, II, III derslern almış ve başarmış

Detaylı

TEKLİF MEKTUBU SAĞLIK BAKANLIĞI_. '.. m

TEKLİF MEKTUBU SAĞLIK BAKANLIĞI_. '.. m SAĞLIK BAKANLIĞI TC Kayıt No: 133709 TURKIYE KAMU HASTANELERI KURUMU ı TRABZON ILI KAMU HASTANELERI BIRLIGI GENEL SEKRETERLIGI Kanun Eğtm Araştırma Hastanes TEKLİF MEKTUBU Sayı : 23618724 12.10.2015 Konu

Detaylı

BOYUT ÖLÇÜMÜ VE ANALİZİ

BOYUT ÖLÇÜMÜ VE ANALİZİ BOYUT ÖLÇÜMÜ VE ANALİZİ.AMAÇ Br csmn uzunluğu, sıcaklığı, ağırlığı veya reng gb çeştl fzksel özellklernn belrlenme şlemler ancak ölçme teknğ le mümkündür. Br ürünün stenlen özellklere sahp olup olmadığı

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı