Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI"

Transkript

1 C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU Cumhuryet Ünverstes, İİBF, İşletme Bölümü Özet Bu çalışmada uygunluk test olarak K-Kare ve Kolmogorov-Smrnov testler üzernde durulmuştur. Smulasyon le elde edlen br ana kütleden alınan örnek üzernde hem K-Kare hem de Kolmogrov-Smrnov uygunluk testler yapılmıştır. Her k testten elde edlen P değerler arasında öneml br fark olmadığı, t test le araştırılmıştır. Anahtar Kelmeler: K-Kare, Kolmogorov-Smrnov Test, Smülasyon Abstract The Comparaton of Goodness-of-ft Tests of Ch-Square and Kolmogorov Smrnov wth Data Obtaned by Smulaton In ths study, tests of Ch-Square and Kolmogorov-Smrnov have been gven. Ether Ch-Square or Kolmogorov-Smrnov tests s appled on example. Ths examples are taken from an populaton whch s produced wth smulaton. To fnd whether there s mportant dfference between P values from these two tests t test carred out. Keywords: Ch-Sguare, Tests of Kolmogorov-Smrnov, Smulaton GİRİŞ Modern statstğn temel konusu olan tahmn teors; anakütle parametrelernn tahmn ve hpotezlern test edlmes le lglenmektedr. Hpotez testler, parametrk ve nonparametrk testler olmak üzere, k grupta toplanablr. Gerekl varsayımların geçerl olmadığı durumlarda, parametrk teknkler büyük ölçüde güvenlrlklern kaybederler. Bu gb durumlarda, nonprametrk teknkler devreye grer. Blndğ gb anakütle parametreler tesadüf seçmle alınacak örnek statstkler le tahmn edlr. Örnekleme dağılımı blndğ zaman, herhang br tahmnn gerçek parametreye olan yakınlığı belrl br htmalle belrtleblr. Böylece tahmn değer le gerçek parametre arasındak farklılık htmal le ölçülmüş olur. Tahmnde ana amaç, gerçek parametre le tahmn edlen parametre arasındak farkı asgar sevyede tutablmek ve bu hatanın mutlak bazı sebeplerden m, yoksa tesadüf sebeplerden m meydana geldğn belrlemektr. Bu sebeplerden dolayı karara varablmemz çn hpotez testler kullanılır.

2 7 BİRCAN, KARAGÖZ ve KASAPOĞLU Bu çalışmada, temel amaç; parametrk ve nonparametrk testlere brer örnek olarak, K-Kare ve Kolmogorov-Smrnov teknkler karşılaştırılacaktır. Yan tesadüf sayı anakütlesnden alınan çok sayıdak şans örnekler üzerne K-Kare uygunluk test le Kolmogorov-Smrnov tek örnek test ayrı ayrı uygulanarak, örneklerdek özellğn anakütle özellğn yansıtıp yansıtmadığını her k test le belrlemektr. Ayrıca test statstklerne bakılarak önem sevyeler test edlp hang test çn önem sevyesnn daha büyük olduğunu araştırmak ve böylece testler hakkında br karşılaştırma yapablmektr. 1. PARAMETRİK VE NONPARAMETRİK TESTLERİN AVANTAJ VE DEZAVANTAJLARI Brbrne alternatf olan hpotez testlernden hangsnn kullanılmasının daha uygun olacağına çeştl krterlere göre karar verlr. Bu krterler (Işık,46) testn kuvvet, testn dayandığı statstk modeln araştırma verlerne uygulanablrlğ ve kuvvet yetknlğdr. Br nonparametrk testn açık br avantajı, anakütle hakkında hçbr şey blnmedğ zaman güvenle kullanılablr olmasıdır. Meselâ, örnek hacm öyle küçük olur k, statstklern örnekleme dağılımı normal dağılıma yaklaşmaz. Bu durumda nonparametrk br teknğe htyaç duyulur. Nonparametrk testn dğer öneml br avantajı se, nomnal ve ordnal verlerle yapılablr olmasıdır. Halbuk parametrk testler daha yüksek sevyedek verlere htyaç duyar. Ayrıca, nonparametrk testler parametrk testlere nsbeten daha kolay ve pratktr. Nonparametrk testlern dezavantajları da vardır. Meselâ, aynı şartlar altındak parametrk testlerden daha az güçlüdür. Yan, II. Tp br hata htmal nonparametrk testte daha büyüktür. Buna laveten, çoğunlukla, gözlenen değerler arasındak farkın büyüklüğündense sadece yönü le lglenr. Yan, gözlenen değern bell br değerden büyük veya küçük olup olmadığına bakar, ne kadar büyük veya küçük olduğu le pek lglenmez. Bu sebeple nonparametrk testn etknlğ parametrk teste göre daha azdır. Ancak örnek hacm arttırılmak suretyle nonparametrk br testn gücü ve etknlğ parametrk test sevyesne çıkarılablr. (Kartal 1,143).. K-Kare VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİ.1. Kİ-KARE DAĞILIMI K Kare dağılımı lk olarak lü yıllarda Pearson tarafından ortaya atılmıştır(aytaç 1: 317). K-Kare dağılımı oldukça yaygın olarak ve br çok maksatla kullanılan br dağılımdır. Çoğu araştırmada çeştl kategorlere gren deneklern, nesnelern veya cevapların sayısı le lglenlr. Meselâ, br grup nsan bell br anketn sorularına verdkler cevaplara göre sınıflandırılablrler. Araştırmacı bell br tp cevabın dğerlerne kıyasla daha sık ortaya çıkıp çıkmayacağını belrlemek steyeblr. Bu

3 C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 71 gb durumlarda ve özellkle de sayımla belrlenen kaltatf özellklerle lgl testlerde daha zyade K-Kare test kullanılır. K-Kare dağılımı; uygunluk, bağımsızlık, varyans, homojenlk ve bağımlı grupların testnde oldukça sık kullanılır (Kartal 1: 3-13). K Kare; artmetk ortalaması sıfır ve varyansı br olan normal bölünmel br anakütleden herbr dğernden bağımsız olarak seçlen n brml br örnekleme at değerlern karelernn toplamı demektr (Aytaç 1: ). Yan, Z, = 1,..., n olmak üzere, n tane bağımsız standart normal dağılım çn Z toplamı le, n serbestlk derecel K-Kare dağılımı elde edlr. Yan, 1, Z,..., Zn χ n n = 1 Z olur ( Hasgür : 77; Ross1:41; Dagpunar1: 1-1; Bratley-Fox- Schrage 17: ; Sobol 14; 1-; Leems ). K Kare; k veya daha fazla ver set arasında öneml farkın olup olmadığını belrlemede araştırmacının kullanableceğ br statstk analz yöntemdr (Tokol 16,7). Bu yöntemde gözlenen değerler le beklenen değerler kıyaslanır... Kİ-KARE UYGUNLUK TESTİ Uygunluk test bell br hpoteze uygunluk ve htmal dağılımlarına uygunluk test olarak k kısımda ncelenmektedr. Bu çalışmada belrl br hpoteze uygunluk test üzernde durulacaktır Belrl br hpoteze uygunluk testnde; gözlenen frekansların ( o ), bell br hpoteze göre elde edlen beklenen frekanslara (e ) uygun olup olmadığı araştırılır. N brmlk ver, r kategorden oluşmak üzere, bu testn safhaları aşağıdak gb olur. 1-Hpotezler: H : o = e, = 1,,..., r, ( o1 = e1, o = e,..., o r = e r ) (Gözlenen frekanslar beklenen frekanslara uygundur) H 1 : o e (Gözlenen frekanslar beklenen frekanslara uygun değldr. Fark önemldr) -Test İstatstğ: Test statstğ aşağıdak eştlk yardımıyla hesaplanır.

4 7 BİRCAN, KARAGÖZ ve KASAPOĞLU r (o e ) χ = = 1 e Görüldüğü gb o lern e lere yaklaşması durumunda χ statstğ sıfıra yaklaşacaktır. 3-Karar Model ve Karar K-Kare uygunluk test sağ kuyruk testdr. Çünkü, o e farklarının kareler alınarak χ test statstğ hesaplanır. Fark büyüdükçe, farkların kareler poztf yönde sonsuza doğru büyür. Böylece red bölges dama dağılımın sağ kuyruğunda olur. Buna göre karar model aşağıda gösterlmştr. H Kabul (Uygun) H Red (Uygun Değl) K.D Krtk değer (K.D), α önem sevyes ve s.d = r - ı - m serbestlk derecesne göre hazırlanmış χ krtk değerler tablosundan belrlenr. Burada m tahmn edlen parametre sayısıdır. Örnek olarak; normal dağılım çn tahmn edlen parametreler µ ve σ olduğundan m = alınır (Akyol Gürbüz : 4). Bu sebeple, krtk değer, K.D. = χ α ; r -1-m olarak sembolze edlr. 4. Karar Verme: Test statstğnde hesaplanan χ değer le krtk χ α ; r-1- m değer, karar modelne göre mukayese edlerek karar verlr. Buna göre, χ < χ α ; r-1-m se, H hpotez kabul edlerek gözlenen değerlerle beklenen değerlern brbrne ( o lern e lere ) uygun olduğuna, görülen farklılığın önemsz olduğuna α önem sevyesnde karar verlr. α

5 C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 73 χ > χ α ; r-1-m se, H hpotez reddedlerek gözlenen değerlerle beklenen değerlern brbrne ( o lern e lere ) uygun olmadığına α önem sevyesnde karar verlr. Testten daha güvenlr sonuç almak çn şu k durum dkkate alınmalıdır (Kartal 1,6). 1) İk kategor varsa her br beklenen frekans veya daha büyük olmalıdır. ) Kategor sayısı kden fazla se (r > ) herbr beklenen frekans beş veya daha büyük olmalıdır. K Kare test yaparken, çok sık yapılan yanlış kullanma hatalarından brs küçük beklenen frekanslarla çalışılmasıdır. Küçük br beklenen frekansın χ ye katkısı büyük olacaktır. e küçüldükçe χ büyüyecektr. Bu durum H hpoteznn reddedlmes htmaln arttırır. 3. KOLMOGOROV-SİMİRNOV TESTİ χ uygunluk testlernn alternatf olan Kolmogorov-Smrnov test, Kolmogorov tarafından 133 yılında önerlmştr. Kolmogorov, tek örnek çn uyum ylğ testn önermştr. 13 yılında se br Rus matematkçs olan Smrnov tarafından k bağımsız örnek çn uyum ylğ test gelştrlmştr. Kolmogorov ve Smrnov test benzerlk nedenyle, uygulamada, Kolmogorov Smrnov uyum ylğ testler olarak blnrler. χ testnn uygulanablmes çn beklenen frekansların 5 den büyük olması stenr. Kolmogorov-Smrnov test böyle br şarta dayanmadığı çn kolayca uygulanablmektedr. K-Kare testnde beklenen frekansların 5 ten büyük olması çn ya örneklern büyük hacml olması gerekr (bu masraflı br ştr), yada sınıflar brleştrlmek suretyle beklenen frekansların 5 den büyük olması sağlanır. Bu durumda se blg kaybı söz konusudur. Oysa Kolmogorov-Smrnov testnde beklenen frekanslar çn br alt lmt söz konusu değldr (Kartal 1: 3-13) KOLMOGOROV-SİMİRNOV TEK ÖRNEK TESTİ Bu çalışmada Kolmogorov-Smrnov tek örnek test kullanılacaktır. Tek örnek çn Kolmogorov-Smrnov test k kümülatf dağılım fonksyonunun ncelenmes temelne dayanır (Gamgam 1, 16). Bunlardan brncs sıfır hpoteznde belrtlen kümülatf dağılım fonksyonudur. İkncs örnekten elde edlen gözlenen kümülatf dağılım fonksyonudur. Kolmogorov-Smrnov tek örnek testnde hpotezler şöyle kurulur. 1. Hpotezler

6 74 BİRCAN, KARAGÖZ ve KASAPOĞLU H : o = e (Gözlenen frekanslar beklenen frekanslara uygundur) H 1 : o e (Gözlenen frekanslar beklenen frekanslara uygun değldr. Fark önemldr).. Test İstatstğ:Test statstğ D le gösterlr. D; gözlenen ve beklenen değerlern kümülatf nsb frekansları arasındak mutlak farkın en büyüğüdür (Kartal 1, 14). D = max F - F e F = Gözlenen kümülatf nsb frekans F = Beklenen kümülatf nsb frekans 3-Karar Model ve Karar KD = Dα; n D > K. D se gözlenen frekanslar beklenen frekanslara uygun olmadığına α önem sevyesnde karar verlr. H hpotez kabul edlrse gözlenen frekansların beklenen frekanslara uygun olduğuna karar verlr. 3.. ANAKÜTLE, ÖRNEKLER VE TEST EDİLECEK ÖZELLİĞİN SEÇİMİ Smülasyon le üç basamaklı adet sayı türetlmş ve bu sayılar anakütle olarak kullanılmıştır. Örnek büyüklüğü, z n = α / d σ formülü kullanılarak, %5 güven ve %5 lk hata payı çn yaklaşık brm olarak belrlenmş (Yıldız ve dğerler, 14) ve tesadüf seçmle anakütleden adet örnek alınmıştır. Teste konu olacak özellk olarak çft sayıların dağılma oranları alınmıştır. Buna göre sonu,, 4, 6, le bten sayılar test çn kullanılmış ve böylece brmlk anakütledek 47 adet çft sayı testlerde kullanacağımız anakütley oluşturmuştur. Aynı şeklde herbr örnektek çft sayılar da gerçek örnekler oluşturmuştur. Bu nedenle herbr örneğn büyüklüğü değl de, htva ettğ çft sayıların sayısı kadar olmuştur. Testlerde kullanılacak olan kategorler se,, 4, 6, le gösterlecek olan 5 kategordr.

7 C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 75 Örneklerdek Dağılımın Anakütle Dağılımına Uygunluğunun Test Anakütle de sonu,, 4, 6, le bten sayıların oranları kategorler tbaryle dağılma oranlarını oluşturmaktadır. Buna göre anakütle dağılımı Tablo 1 de gösterlmştr. Tablo 1 Anakütle Dağılımı Kategor f Nsb frekans Yüzde (%) Toplam Nsb frekans sütunundak değerler dağılma oranlarını göstermektedr. Örneklerdek dağılma oranlarının bu oranlara uygunluk gösterp göstermedğ hem K-Kare hem de Kolmogorov-Smrnov test le araştırılacaktır. Verlern analz SPSS paket programı kullanılarak yapılmıştır. K-Kare Uygunluk Test Uygulaması örneğn her br çn,,4,6, kategorlerne at gözlem değerler Tablo de oluşturulmuştur. Tablo. Örneğe At Gözlem Değerler Kademe Toplam K-Kare dağılışa göre bu gözlenen değerlere karşılık gelen beklenen değerler, Tablo 1 de verlen ana kütle oranlarına göre Tablo de verlmştr.

8 76 BİRCAN, KARAGÖZ ve KASAPOĞLU Tablo 3. Örneğe At Beklenen Değerler Kademe Toplam Kademe Toplam χ = r = 1 (o e) e formülü kullanılarak, χ hesap değerler elde edlr. Test statstğnde hesaplanan χ değer le krtk χ α ; r-1-m değer, karar modelne göre mukayese edlerek karar verlr. 1. örnek çn χ hesap değer aşağıdak şeklde bulunur. (.3) χ =.3 (13.4) = 1.73 bu değer 4 SD l χ dağılışında P=.65 htmalne eşttr. Bu değer.5 htmal sevyesnden büyük olduğundan H o hpotez kabul edlr. Yan gözlenen değerler le beklenen değerler arasında statstk olarak br fark yoktur. Dğer örnekler çnde benzer şlemler yapılarak χ hesap değerler ve htmal değerler Tablo 5 de verlmştr. Kolmogorov-Smrnov Tek Örnek Test Uygulaması 1. örneğe at verler çn Kolmogorov-Smrnov tek örnek test uygulaması Tablo 4 de verlmştr.

9 C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 77 Tablo 4. Örneğe At Kolmogorov-Smrnov Tek Örnek Test Kategor o Nsp o F e Nsp e F e F -F e /57= /57= /57= /57= /57= /57= /57= /57= /57= /57=. 1.. Toplam İstatstk D=Max F -F e =.6 P=.577 Test statstğ D=.6 krtk değer P=.577 değernden küçük olduğundan beklenen değerler le gözlenen değerler arasında br fark yoktur. Dğer örneklere at D test statstkler ve htmal değerler Tablo 5 de verlmştr UYGULAMA SONUÇLARININ KARŞILAŞTIRILMASI Örnek çn yapılan testlerde hem K-Kare hem de Kolmogorov-Smrnov test çn P>.5 bulunmuştur. Bu sonuçlar toplu olarak Tablo 5 de sunulmuştur. Tablo 5 Örnek İçn K-Kare ve Kolmogorov-Smrnov Test Sonuçları K-Kare(χ ) Kolmogorov-Smrnov Örnek No Test statstğ P Test statstğ P

10 7 BİRCAN, KARAGÖZ ve KASAPOĞLU Bu sonuçlara göre örnekler, anakütledek dağılma oranlarını yansıtmaktadır. Ancak K-Kare test le Kolmogorov-Smrnov test çn P değerler arasında farklılıklar görülmektedr. Bu farkların öneml olup olmadığını belrlenmes gerekr. Eğer fark öneml çıkarsa, testlern güçler arasında da farklılık oluğu söyleneblr. Bunu belrlemek amacıyla bu örneğe at P değerlerne eşlenk çft örnek test uygulanacaktır. Bu durumda testn safhaları şöyle olur. 1-Hpotezler H : µ D = (K-Kare uygunluk test P değerler le Kolmogorov-Smrnov tek örnek test P değerler arasında fark yoktur, fark önemszdr.) H 1 : µ D ( P değerler farklıdır, fark önemldr.) -Test İstatstğ, t = S D D n.3 =.4367 = D ve S D nn belrlenmesnde kullanılacak D ve D değerler Tablo 6 da verlmştr. D=Pχ -P K-S şeklndedr. D D = n.764 = =.3 S D = D n 1 ( D) n( n 1) = ( 1) = Safha: Karar Model ve Karar α=,5 ve s.d=-1=1 olup çft yönlü test çn krtk değer (K.D)= ±,3 dr. Karar: Çıkan t değer H ın kabul bölgesne düştüğünden H kabul edlr. Yan P değerler arasındak farkın öneml olmadığına karar verlr. K-Kare uygunluk test ve Kolmogorov-Smrnov test P değerler arasında br farklılık olmadığı %5 önem sevyesnde söyleneblr. Bu durumda testlern güçler arasında da öneml br farklılık olmadığı anlaşılmaktadır.

11 C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 7 Tablo 6 P değerler, Aralarındak Fark ve Farkların Kareler Örnek No K-Kare(χ )(P) Kolmg-Sm.(P) Fark (D) D 1., Toplam SONUÇ Gözlenen ve beklenen frekansların aralarında öneml br farklılık olup olmadığının testnde, yan uygunluk testnde çok yaygın olarak kullanılan K-Kare test gözlenen frekansların 5 den küçük olması durumunda güvenlr sonuç vermemektedr. Ancak K-Kare uygunluk testne br alternatf olan Kolmogorov- Smrnov tek örnek test çn böyle br sınırlama söz konusu değldr. Fakat sınırlamaların kalkması durumunda testn gücünün azalması, başka br fade le güvenlrlğnn azalması söz konusu olur. Bu bakımdan herhang br sınırlaması olmayan ve daha bast şlemler gerektren Kolmogorov-Smrnov test eğer K- Kare testnden güç bakımından öneml derecede farklı değlse, uygunluk testlernde terch sebeb olablrler. İşte bu amaçla bu çalışmada, her k test de açıklandıktan sonra smulasyon le elde edlen br anakütleden rastgele alınan örnek çn hem K-Kare test le hem de Kolmogorov-Smrnov test le uygunluk testler yapılmıştır. Bu testler sonucunda P değerler arasında öneml br farklılık olup olmadığı, eşlenk çft örnekler durumuna göre t test le araştırılmıştır. t test sonucunda α=,5 önem sevyesnde öneml br farklılık olmadığı sonucuna varılmıştır. Sonuç olarak, K-Kare uygunluk test le Kolmogorov-Smrnov tek örnek testlernn aralarında öneml br farklılık olmadığı, küçük örnekler çn K-Kare

12 BİRCAN, KARAGÖZ ve KASAPOĞLU uygunluk test yerne kullanımı daha kolay ve ön şarta bağlı olmayan Kolmogorov- Smrnov testnn kullanılableceğ söyleneblr. Kaynakça Akyol, Mehmet ve Fkret Gürbüz (), Üç Yönlü Tablolarda χ İstatstğnn Kullanılması, İstatstk Araştırma Dergs DİE Yayınları, Nsan, Clt:1, No:1, 3-7 Aytaç, Mustafa (1), Matematksel İstatstk, Uludağ Ünverstes Basımev, Bursa. Bratley, Paul, Bennett L. Fox and Lnus E. Schrage (17), A Gude to Smulasyon, Sprnger. Dagpunar, John (1), Prncples of Random Varate Generaton, Clerendon Press, Oxford. Gamgam, Hamza (1), Parametrk Olmayan İstatstksel Teknkler, Ankara: Gaz Ünverstes Yayını. Hasgür, İbrahm (), Matematksel İstatstk, Seçkn Yayınları, Ankara. Işık, M. Can (), Parametrk ve Parametrk Olmayan Testlern Karşılaştırılması ve Uygulama, YL Tez, Marmara Ünverstes Sosyal Blmler Ensttüsü. Kartal, Mahmut (1), Hpotez Testler, Şafak Yayınev, Erzurum. Leems, Lawrance M. (16), Relatonshps Among Common Unvarate Dstrbutons, The Amercan Statstcan, Vol. 4, No., Ross, Sheldon M. (1), Introducton to Probablty Models, Academc Press, Inc., New York. Sobol, I. M. (175), The Monte Carlo Method (Çevren ve Uyarlayan: V.I. Ksn), Mır Publshers, Moskow. Tokol, Tuncer., Pazarlama Araştırması, Bursa: Uludağ Ünverstes Yıldız, N., Akbulut, Ö., Brcan, H. (), Uygulamalı İstatstk, 3. Baskı, Şafak Yayınları, Erzurum.

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN SAÜ Fen Edebyat Dergs (2010-I) F.GÖKPINAR v.d. DENGELİ TAMAMLANMAMIŞ BLOK TASARIMINDA, DUYUSAL ANALİZ İÇİN DÜZELTİLMİŞ DURBİN SIRA SAYILARI TESTİ Fkr GÖKPINAR*, Hülya BAYRAK, Dlşad YILDIZ ve Esra YİĞİT

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*)

İyi Tarım Uygulamaları Ve Tüketici Davranışları (Logit Regresyon Analizi)(*) Gazosmanpaşa Ünverstes Zraat Fakültes Dergs Journal of Agrcultural Faculty of Gazosmanpasa Unversty http://zraatderg.gop.edu.tr/ Araştırma Makales/Research Artcle JAFAG ISSN: 1300-2910 E-ISSN: 2147-8848

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME

TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME Ġstanbul Ünverstes Ġktsat Fakültes Malye AraĢtırma Merkez Konferansları 46. Ser / Yıl 2004 Prof. Dr. Salh Turhan'a Armağan TÜKETĠCĠLERĠN FĠYAT BĠLĠNCĠ ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLERE ĠLĠġKĠN BĠR ĠNCELEME

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

ÜNĠVERSĠTE ÖĞRENCĠLERĠNĠN KREDĠ KARTI SAHĠBĠ OLMALARI ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLER: GAZĠOSMANPAġA VE ĠNÖNÜ ÜNĠVERSĠTE LERĠNDEN AMPĠRĠK BULGULAR

ÜNĠVERSĠTE ÖĞRENCĠLERĠNĠN KREDĠ KARTI SAHĠBĠ OLMALARI ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLER: GAZĠOSMANPAġA VE ĠNÖNÜ ÜNĠVERSĠTE LERĠNDEN AMPĠRĠK BULGULAR ÜNĠVERSĠTE ÖĞRENCĠLERĠNĠN KREDĠ KARTI SAHĠBĠ OLMALARI ÜZERĠNDE ETKĠLĠ OLAN FAKTÖRLER: GAZĠOSMANPAġA VE ĠNÖNÜ ÜNĠVERSĠTE LERĠNDEN AMPĠRĠK BULGULAR RüĢtü YAYAR * Süleyman Serdar KARACA ** Ahmet TURKUT ***

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case

SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estimating of Crime Database with Logistic Regression Analysis: Bursa Case SUÇ VERİ TABANININ LOJİSTİK REGRESYON ANALİZİ İLE TAHMİNİ: BURSA ÖRNEĞİ Estmatng of Crme Database wth Logstc Regresson Analyss: Bursa Case Mehmet NARGELEÇEKENLER * B Özet u çalışmada, Bursa Emnyet Müdürlüğünden

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ

BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ BANKACILIKTA ETKİNLİK VE SERMAYE YAPISININ BANKALARIN ETKİNLİĞİNE ETKİSİ Yrd. Doç. Dr. Murat ATAN - Araş. Gör. Gaye KARPAT ÇATALBAŞ 2 ÖZET Bu çalışma, Türk bankacılık sstem çnde faalyet gösteren tcar bankaların

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI ISSN:1306-3111 e-journal of New Worl Scences Acaemy 2008, Volume: 3, Number: 4 Artcle Number: A0108 NATURAL AND APPLIED SCIENCES MATHEMATICS APPLIED MATHEMATICS Receve: March 2008 Accepte: September 2008

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Admnstraton Clt/Vol:39, Sayı/No:2,, 310-334 ISSN: 1303-1732 www.fdergs.org Stokastk envanter model kullanılarak

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ

ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ T.C. KARA HARP OKULU SAVUNMA BİLİMLERİ ENSTİTÜSÜ HAREKÂT ARAŞTIRMASI ANA BİLİM DALI ÇOK DURUMLU AĞIRLIKLANDIRILMIŞ BİLEŞENLİ SİSTEMLERİN DİNAMİK GÜVENİLİRLİK ANALİZİ DOKTORA TEZİ Hazırlayan Al Rıza BOZBULUT

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

REGRESYON ANALİZİ BÖLÜM 5-6

REGRESYON ANALİZİ BÖLÜM 5-6 REGRESYON ANALİZİ BÖLÜM 5-6 Yayın Tarh: 03-11-2007 Revzyon No:0 1 5. E.K.K. REGRESYONUNDA KARŞILAŞILAN PROBLEMLER VE BAZI KONU BAŞLIKLARI 2 1 EN KÜÇÜK KARELERDE KARŞILAŞILAN PROBLEMLER EKK da karşılaşılan

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

Ankara da Ölçülen Yıllık Maksimum YağıĢların Bölgesel Frekans Analizi*

Ankara da Ölçülen Yıllık Maksimum YağıĢların Bölgesel Frekans Analizi* GOÜ, Zraat Fakültes Dergs, 20, 28(), 6-7 Ankara da Ölçülen Yıllık Maksmum YağıĢların Bölgesel Frekans Analz* Alper Serdar ALI Fazlı ÖZTÜK Ankara Ünverstes Zraat Fakültes Tarımsal Yapılar ve Sulama Bölümü,

Detaylı

THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM

THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Osmangaz Ünverstes Müh.Mm.Fak.Dergs C.XVII, S., 004 Eng.&Arch.Fac.Osmangaz Unversty, Vol.XVII, No :, 004 THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Recep BAKIŞ,

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

ATATÜRK ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANA BİLİM DALI. Serhat BURMAOĞLU

ATATÜRK ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANA BİLİM DALI. Serhat BURMAOĞLU ATATÜRK ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANA BİLİM DALI Serhat BURMAOĞLU BİRLEŞMİŞ MİLLETLER KALKINMA PROGRAMI BEŞERİ KALKINMA ENDEKSİ VERİLERİNİ KULLANARAK DİSKRİMİNANT ANALİZİ, LOJİSTİK

Detaylı

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri Süleyman Demrel Ünverstes, Fen Blmler Ensttüsü, 9-3,(5)- Mut Orman İşletmesnde Karaçam, Sedr ve Kızılçam Ağaç Türler İçn Dp Çap Göğüs Çapı İlşkler R.ÖZÇELİK 1 Süleyman Demrel Ünverstes Orman Fakültes Orman

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR HEDEFLER İÇİNDEKİLER TEMEL KAVRAMLAR İstatstğn Tanımı Anakütle ve Örnek Kavramları Tam Sayım ve Örnekleme Anakütle ve Örnek Hacm Parametre ve İstatstk Kavramları İSTATİSTİĞE GİRİŞ Doç.Dr.Suph Özçomak Bu

Detaylı

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ Eskşehr Osmangaz Ünverstes Sosyal Blmler Dergs Clt: 6 Sayı: 2 Aralık 2005 BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ İrfan ERTUĞRUL Pamukkale Ünverstes İİBF, Denzl ÖZET Günümüzde

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK

ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK ASİMETRİK VE SİMETRİK MARJİNAL DAGILIMLARDA ÇOK DEGİşKENLİ NORMALLİK A. Mete Çlngrtürk aclng@marmara.edu.tr Marmara Ünverstes Dlek Altaş d] eka] tas@marmara.edu.tr Marmara Ünverstes ÖZET Pek çok sosyal

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Uygulamalı Yerblmler Sayı: (Mayıs-Hazran ) -9 PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Estmaton of Sedmentary Basement Depths By Usng Parabolc Densty Functon

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ Burak KARAHAN Burak PEKEL Neşet BEDİR Cavt CAN Kırıkkale -2014-

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Savaş OKUR PARAMETRİK VE PARAMETRİK OLMAYAN BASİT DOĞRUSAL REGRESYON ANALİZ YÖNTEMLERİNİN KARŞILAŞTIRMALI OLARAK İNCELENMESİ ZOOTEKNİ ANABİLİM

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

Çok ölçütlü karar verme yaklaşımlarına dayalı tedarikçi seçimi: elektronik sektöründe bir uygulama

Çok ölçütlü karar verme yaklaşımlarına dayalı tedarikçi seçimi: elektronik sektöründe bir uygulama 346 Çok ölçütlü karar verme yaklaşımlarına dayalı tedarkç seçm: elektronk sektöründe br uygulama Murat ARIKAN 1, Berat GÖKBEK 1 1 Endüstr Mühendslğ Bölümü, Mühendslk Fakültes, Gaz Ünverstes, Maltepe-Ankara

Detaylı

FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Sevil ŞENTÜRK

FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Sevil ŞENTÜRK FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM Sevl ŞENTÜRK Anadolu Ünverstes, Fen Fakültes, İstatstk Bölümü,26470, ESKİŞEHİR, e-mal:sdelgoz@anadolu.edu.tr

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

PROJELERDE -DAĞILIMININ ÜÇ DURUMUNA GÖRE PROJE TAMAMLANMA ZAMANININ BULUNMASINDA İSTATİSTİKSEL BİR ANALİZ

PROJELERDE -DAĞILIMININ ÜÇ DURUMUNA GÖRE PROJE TAMAMLANMA ZAMANININ BULUNMASINDA İSTATİSTİKSEL BİR ANALİZ C.Gencer ve O.Türkbey, Gaz Ünverstes. Fen Blmler Dergs, (00), 77-90 PROJELERDE -DAĞILIMININ ÜÇ DURUMUNA GÖRE PROJE TAMAMLANMA ZAMANININ BULUNMASINDA İSTATİSTİKSEL BİR ANALİZ Cevrye GENCER Orhan TÜRKBEY

Detaylı

En Küçük Etkili Doz Düzeyini Belirleme Yöntemlerinin Karşılaştırmaları

En Küçük Etkili Doz Düzeyini Belirleme Yöntemlerinin Karşılaştırmaları S Ü Fen Fa Fen Derg Sayı 36 () 83-94, KONYA En Küçü Etl Doz Düzeyn Belrleme Yöntemlernn Karşılaştırmaları Murat HÜSREVOĞLU, Hamza GAMGAM * Gaz Ünverstes, Fen Edebyat Faültes, İstatst Bölümü, Tenoullar,

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES Konut Sahplğnn Belrleycler: Hanehalkı Resler Üzerne Br Uygulama Halm TATLI 1 Özet İnsanların barınma htyacını sağlayan konut, temel htyaçlar arasında yer almaktadır. Konut sahb olmayan ve krada oturan

Detaylı

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi

Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi Fnansal Rskten Korunma Muhasebesnde Etknlğn Ölçülmes Dr. Fahreddn OKUDAN * Fath Ünverstes, İİBF. Özet Bu makalenn amacı, etknlk test yöntemlernn ncelenmesdr. TMS 39, rskten korunma muhasebes uygulanablmes

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:7 Saı/No: 1 : 97-101 (006) ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE ÖĞRENCİLERİN YAZ OKULU HAKKINDAKİ

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Fak YNAM stanbul Teknk Ünverstes stanbul Teknk Ünverstes ÖZET Trafk kazaları, ülkemz gündemn sürekl olarak gal eden konularıdan brdr. Üzernde çok

Detaylı