Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2"

Transkript

1 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne göre s ye eşt aynı (sabt) br değerdr Bu nedenle eşt varyansa sabt varyans da denr 1

2 Sabt Varyansta Hataların Dağılımı Tüketm y t Gelr x t

3 Sabt Varyans Durumu f(y t ) x 1 x x 3 x 4 Gelr x t 3

4 Farklı Varyans Kavramı Sabt varyans (homoscedastcty) varsayımına göre verl X açıklayıcı değşkenlerne bağlı olarak Y nn koşullu varyansı sabttr: =1,,,n de- Farklı varyans (heteroscedastcty) durumunda se ğştkçe nn koşullu varyansı da değşr: Y E(u ) s E(u ) s Farklı varyansa br örnek olarak tasarrufların varyansının gelrle brlkte artmasını vereblrz Yüksek gelrl alelern tasarrufları, düşük gelrl alelere oranla hem ortalama olarak daha çoktur hem de değşrlğ daha fazladır X 4

5 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman 5

6 Farklı Varyansta Hataların Dağılımı Tüketm y t Gelr x t

7 Farklı Varyans Durumu f(y t ) Zengn breyler Yoksul breyler x 1 x x 3 Gelr x t

8 Farklı Varyansın Nedenler s Hata term varyansının değşken olma nedenlernden bazıları şunlardır: 1 Hata öğrenme (error learnng) modellerne göre breyler bazı konuları öğrendkçe daha az hata yaparlar Buna göre de nn de zamanla küçülmes beklenr Örnek olarak, blgsayarda klavye kullanma süres arttıkça hem klavye hataları hem de bunların varyansları azalır 8

9 Farklı Varyansın Nedenler Gelr düzey arttıkça gelrn harcanableceğ seçenekler de genşler Böylece, gelr düzey le brlkte hem harcamaların hem de bunların varyanslarının artması beklenr 3 Zaman çersnde ver derleme teknklernn gelşmesne koşut olarak de düşeblr s 4 Farklı varyans dışadüşen (outler) gözlemlern br sonucu olarak da ortaya çıkablrböyle gözlemlern alınması ya da bırakılması, özellkle de örneklem küçükken sonuçları öneml ölçüde değştreblr

10 Farklı Varyansın Nedenler 5 Farklı varyansın br dğer neden de model belrleme (spesfkasyon) hatasıdır Özellkle de öneml br değşkenn modelden çıkartılması farklı varyansa yol açablr 6 Farklı varyans sorunu yatay kest verlernde zaman sers verlerne oranla daha fazla görüleblmektedr Bunun neden, zaman serlernde değşkenlern zaman çersnde yakın büyüklüklerde olma eğlmdr 10

11 Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde Kar dağıtım modellernde Sektör modellernde Ücret modellernde Deneme - Yanılma modellernde

12 En Küçük Kareler İle İlgl Özellkler 1 En Küçük Kareler Tahmncler doğrusal ve sapmasızdır Katsayı tahmncler etkn değldr 3 En Küçük kareler tahmnclernn standart hataları doğru değldr 4 Standart hata formuller doğru olmadığından güven aralıkları ve hpotez testler geçerl değldr

13 y t = b 1 + b x t + e t Farklı varyans durumunda: En küçük kareler varyans formulu geçerszdr: var(b ) = s S (x t - x ) Enküçük kareler varyans formulu aşağıdak gb düzeltlmeldr: var(b ) = S s t (x t - x ) [S (x t - x ) ]

14 Farklı Varyansın Belrlenmes Grafk Yöntemle Sıra Korelasyonu test le Goldfeld-Quandt test le Breusch Pagan test le Glejser Test le Whte test le Lagrange çarpanları test le Ramsey Reset test le Park test le 14

15 Grafk Yöntem

16 E Grafk Yöntem YIL

17 Grafk Yöntem

18 Sıra Korelasyonu Test 1Aşama H 0 : r = 0 H 1 : r 0 Aşama a =? sd=? 3Aşama t hes r s n 1- - r s? t tab =? Sd rs 1-6 n(n -1)? 4Aşama t hes > t tab H 0 hpotez reddedleblr 18

19 Sıra Korelasyonu Test Y X e X s e s d d Mutlak değerl olarak bulundukları yer tbaryle küçükten büyüğe sıra numarası verlr d=x-e Sd =11

20 Sıra Korelasyonu Test 1-6 Sd n(n -1) rs (10-1) 1 = 031 1Aşama H 0 : r = 0 H 1 : r 0 Aşama a = 005 sd= 8 3Aşama t hes (031) t tab = 306 = Aşama t hes < t tab H 0 hpotez reddedlemez 0

21 Goldfeld-Quandt Test Büyük örneklere uygulanan br F testdr Bu test s nn farklı varyansının bağımsız değşkenlerden br le poztf lşkl olduğunu varsayar s s X s X le poztf (aynı yönde) lşkldr ve s farklı varyansı X n kares le orantılıdır Yan X değerler arttıkça s değer de artmaktadır

22 Goldfeld-Quandt Test Y = b 1 + b X + b 3 X b k X k + u Y X s X 3 X k IAlt Örnek n 1 Çıkarılan Gözlemler Y I = b 11 + b 1 X + b 31 X b k1 X k + u Se 1 =? n(1/6) < c < n(1/3) IIAlt Örnek n Y II = b 1 + b X + b 3 X b k X k + u Se =?

23 Goldfeld-Quandt Test 1Aşama H 0 : Eşt Varyans H 1 : Farklı Varyans Aşama a =? 3Aşama 4Aşama f f Se Se Fhes 1 F hes > F tab (n - c - k) 1?? F tab =? X bağımsız değşkennn değerler küçükyen büyüğe doğru lgl Y bağımlı değşkennn değerler de taşınarak sıralanır Ortadan c kadar gözlem çıkarılır H 0 hpotez reddedleblr 3

24 Yıl Tasarruf Gelr

25 Tasarruf 1654 Gelr Gelr bağımsız değşkenne göre tasarrufu da sıralıyoruz

26 n 1 Tasarrfuf Gelr n Tasarrfuf Gelr Gelre göre sırandı Ortadan 31/4=8 veya 9 gözlem çıkarılacak İk alt grup oluşturuldu

27 S X 1 Se 1 (1894) (0015) S X (7098) (00) Se

28 f 1 =f =(n-c-k)/=9 sd de F tab =318 F test Se S e

29 Goldfeld-Quandt Test lnmaas = b 1 + b Yıl + b 3 Yıl Dependent Varable: lnmaas Included observatons: Varable Coeffcent Std Error t-statstc Prob C Yıl Yıl R-squared Mean dependent var Adjusted R-squared SD dependent var SE of regresson Akake nfo crteron Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

30 Goldfeld-Quandt Test 1alt örnek sonuçları: Dependent Varable: lnmaas Sample: 1 75 Included observatons: 75 Varable Coeffcent Std Errort-Statstc Prob C Yıl Yıl R-squared Mean dependent var Adjusted R-squared SD dependent var SE of regresson Akake nfo crteron Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

31 Goldfeld-Quandt Test Altörnek Sonuçları: Dependent Varable: lnmaas Sample: 148 Included observatons: 75 Varable Coeffcent Std Error t-statstc Prob C Yıl Yıl R-squared Mean dependent var Adjusted R-squared SD dependent var SE of regresson 0496 Akake nfo crteron Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

32 Goldfeld-Quandt Test 1Aşama Aşama H 0 : Eşt Varyans H 1 : Farklı Varyans a = 005 ( - 7-3) f f 143<F tab < Aşama Se Se Fhes 1? = Aşama F hes > F tab H 0 hpotez reddedleblr 3

33 Breusch Pagan Test Y = b 1 + b X + b 3 X b k X k +u (1) 1Aşama (1) Nolu denklem EKKY le tahmn edlp e 1 e e n örnek hata termler hesaplanır Bu e lerden hareketle e s hesaplanır n Aşama p e s 3Aşama p = a 1 + a Z + a 3 Z a m Z m +v () RBD =? 33

34 4Aşama Breusch Pagan Test p = a 1 + a Z + a 3 Z a m Z m +v () 1 (RBD) c - m 1 m: () nolu denklemdek parametre sayısı 5Aşama H 0 : a = a 3 = =a m = 0 (Eşt varyans) H 1 : En az br sıfırdan farklıdır (Farklı varyans) c c hes tab H 0 reddedlr 34

35 Breusch Pagan Test Yıllar GSMH IT et Yıllar GSMH IT et IT: İthalat IT GSMH e

36 Breusch Pagan Test 1Aşama Aşama e s n 0 p e s p p

37 Breusch Pagan Test 3Aşama p GSMH e 8691 R 0050 RBD = 459 4Aşama 1 (RBD) 95 c m 1 c - 1, Aşama H 0 : a = a 3 = =a m = 0 (Eşt varyans) H 1 : En az br sıfırdan farklıdır (Farklı varyans) c c H 0 reddedlemez hes tab 37

38 Glejser Farklı Varyans Test 1Aşama: Y le X (veya X ler) arasındak lşk tahmn edlerek, lgl örnek hata termler e ler bulunur Aşama: s le lşkl olduğu düşünülen bağımsız değşken çn aşağıdak modeller denenmektedr e a ax v e a a X v e a ax v 1 e a a v X 1 e a a v X e a a X v 38

39 Glejser Farklı Varyans Test 3Aşama: Korelasyon katsayısı ve a ların standat hata değerlerne göre en uyun model seçlp H 0 : a = 0 H 1 : a 0 test edlr 4Aşama: H 0 kabul edlrse eşt varyans gerçeklemştr sonucuna varılır 39

40 Glejser Farklı Varyans Test 1Aşama: Yıllar GSMH IT et Yıllar GSMH IT et IT: İthalat IT GSMH e

41 Glejser Farklı Varyans Test Aşama: e GSMH t (05795) (1315) prob (05694) (0058) 3Aşama: H 0 : a = 0 H 1 : a 0 4Aşama: prob = 0058 > 005 H 0 reddedlemez Eşt varyans gerçekleşmştr 41

42 Whte Test Y = b 1 + b X + b 3 X 3 + u Whte Test çn yardımcı regresyon: u = a 1 + a X + a 3 X 3 + a 4 X + a 5 X 3 + a 6 X X 3 + v R y =? Whte Test Aşamaları: 1Aşama H 0 : a = a 3 = a 4 = a 5 = a 6 =0 H 1 : a lern en az br tanes anlamlıdır Aşama a =? sd= k-1 c tab=? 3Aşama W= nr y =? 4Aşama W > c tab H 0 hpotez reddedleblr 4

43 Whte Test lnmaaş = yıl yıl Whte Test çn yardımcı regresyon: e = Yıl Yıl Yıl Yıl 4 R y = Aşama H 0 : a = a 3 = a 4 = a 5 =0 ; H 1 : a lern en az br tanes anlamlıdır Aşama a = 005 sd=5-1=4 c tab= Aşama W= nr y = (00901)= 000 4Aşama W > c tab H 0 hpotez reddedleblr 43

44 Lagrange Çarpanları(LM) Test Y = b 1 + b X + b 3 X 3 + u LM test çn yardımcı regresyon: e a * b Ŷ v LM Test Aşamaları: 1Aşama H 0 : b = 0 H 1 : b0 Aşama a =? sd= 1 * R y =? c tab=? 3Aşama LM= nr y =? 4Aşama LM > c tab H 0 hpotez reddedleblr 44

45 Lagrange Çarpanları(LM) Test lnmaaş = yıl yıl LM Test çn yardımcı regresyon: e = (lnmaas-tah) R y = Aşama H 0 : b = 0 H 1 : b0 Aşama a = 005 sd=1 c tab= Aşama LM= nr y = (00537)= Aşama LM > c tab H 0 hpotez reddedleblr 45

46 Ramsey Reset Test Y = b 1 + b X + b 3 X 3 + +b k X k + u 1Aşama: Ramsey Reset test çn yardımcı regresyon: e a a Y v 1 ˆ Aşama: H 0 : a = 0 (Eşt Varyans) H 1 : a 0 (Farklı Varyans) Hpotezler a hata payı le t tablosundan bulunacak değer le karşılaştırılır 3Aşama: t hes > t tab H 0 reddedlr 46

47 Ramsey Reset Test 1Aşama: IT GSMH e Yˆ t (117) (0514) prob (074) (0613) Aşama: H 0 : a = 0 (Eşt Varyans) H 1 : a 0 (Farklı Varyans) 47

48 Ramsey Reset Test 3Aşama: t tab = t n-k,a = t 0-, 005 = 101 4Aşama: t hesap = 0514 < t tab = 101 H o reddedlemez 48

49 Park Test s s Xe ( ) b v ln s lns b ln X v s blnmedğnden bunun yerne hata kareler toplamı e kullanılır ( ) ln e lns blnx v lns a ( ) ln e a blnx v 49

50 Park Test 1Aşama: ( ) ln e a blnx v Aşama: H 0 : b = 0 (Eşt Varyans) H 0 : b 0 (Farklı Varyans) 3Aşama: t hes > t tab H 0 reddedlr 50

51 Park Test 1Aşama: ( ) ln e ln X t (-867) (869) prob (0010) (00107) Aşama: H 0 : b = 0 (Eşt Varyans) H 0 : b 0 (Farklı Varyans) 3Aşama: t tab = t 18, 001 = 878???????? t hes < t tab H 0 reddedlemez 51

52 UYGULAMA: 3 alenn yıllık gıda harcamaları (Y) ve aylık ortalama gelrler (X) aşağıda verlmştr Ale Sayısı Y X u Ale Sayısı Y X u

53 UYGULAMA: Y = b 0 + b 1 X + model çn sabt varyans varsayımının geçerl olup olmadığını Grafk Yöntemle Sıra Korelasyonu test le Goldfeld-Quandt test le Breusch Pagan test le Glejser Test le Whte test le Lagrange çarpanları test le Ramsey Reset test le Park test le 53

54 Grafk Yöntem 54

55 Sıra Korelasyonu Test 1Aşama H 0 : r = 0 H 1 : r 0 Aşama a = 005 sd=? 3Aşama t hes r s n 1- - r s? t tab =? Sd rs 1-6 n(n -1)? 4Aşama t hes > t tab H 0 hpotez reddedleblr 55

56 Sıra Korelasyonu Test 1-6 Sd n(n -1) r s (3-1) 1Aşama H 0 : r = 0 H 1 : r 0 Aşama a = 005 sd= 30 t tab = 04 t hes (03347) = Aşama t hes < t tab H 0 hpotez reddedlemez 56

57 Goldfeld-Quandt Test c = 3 / 5 = 64 6 gözlem atılacak (14-19 gözlemler) 13 gözlemden oluşan k grup çn modeller 1-13 gözlemler çn Y = X e gözlemler çn Y = X e

58 1Aşama Goldfeld-Quandt Test H 0 : Eşt Varyans H 1 : Farklı Varyans Aşama a = 005 3Aşama Se F e 3601 hes S 1 (3-6 -*) f1 f 11 F tab =8 4Aşama F hes > F tab H 0 hpotez reddedleblr 58

59 Breusch Pagan Test Y X e Aşama e s n Aşama p e s 59

60 Breusch Pagan Test 3Aşama p X e 4666 R 0196 RBD = 131 4Aşama 1 (RBD) 656 c m 1 c - 1, Aşama H 0 : a = a 3 = =a m = 0 (Eşt varyans) H 1 : En az br sıfırdan farklıdır (Farklı varyans) c c H 0 reddedleblr hes tab 60

61 Glejser Farklı Varyans Test 1Aşama: e X t (0565) (599) Aşama: H 0 : a = 0 H 1 : a 0 3Aşama: a = 005 n k = 3 =30 t tab = 04 4Aşama: t hes > t tab H 0 reddedleblr Eşt varyans gerçekleşmemştr 61

62 Y X Whte Test Whte Test çn yardımcı regresyon: e = X 00058X R y = 096 1Aşama H 0 : a = a 3 = 0 ; H 1 : a lern en az br tanes anlamlıdır Aşama a = 005 sd=3-1= c tab=599 3Aşama W= nr y = 3(096) = Aşama W > c tab H 0 hpotez reddedleblr 6

63 Lagrange Çarpanları(LM) Test Y X LM Test çn yardımcı regresyon: e Y R y = 001 1Aşama H 0 : b = 0 H 1 : b0 Aşama a = 005 sd=-1=1 c tab= Aşama LM= nr y = 3(001) = 643 4Aşama LM > c tab H 0 hpotez reddedleblr 63

64 Ramsey Reset Test 1Aşama: Y X e Yˆ t (051) (753) prob (0605) (0009) Aşama: H 0 : a = 0 (Eşt Varyans) H 1 : a 0 (Farklı Varyans) 3Aşama: t hes > t tab H 0 reddedlr 64

65 Ramsey Reset Test 3Aşama: t tab = t n-k,a = t 3-, 005 =04 4Aşama: t hesap = 753 > t tab = 04 H 0 reddedleblr 65

66 Park Test 1Aşama: ( ) ln e ln X t (-1765) (13113) prob (0088) (01997) Aşama: H 0 : b = 0 (Eşt Varyans) H 0 : b 0 (Farklı Varyans) 3Aşama: t tab = t 3-=30, 005 = 04 t hes < t tab H 0 reddedlemez 66

67 FARKLI VARYANSI ORTADAN KALDIRMA s YOLLARI Farklı varyans durumunda EKKY tahmncler etknlk özellklern kaybettklernden güvenlr değldrler Bu sebeple farklı varyans ortadan kaldırılmadan EKKY uygulanmamalıdır Y lern (veya u lern) farklı varyansları s nn blnp blnmemesne göre farklı varyansı kaldıran k yol vardır: nn BİLİNMESİ HALİ s nn BİLİNMEMESİ HALİ

68 nn BİLİNMESİ HALİ s Y = b 1 + b X + u s 1 u X b 1 b Y s s s s ( ) u E 1 u E s s 1 1 s s * * * * * 1 Y b b X u Genelleştrlmş EKKY(GEKKY)

69 Genelleştrlmş EKKY(GEKKY) Sabt term yoktur İk tane bağımsız değşken vardır Y s b 1 1 s b X s u s

70 Genelleştrlmş EKKY(GEKKY) * * * * * 1 Y b b X e e * e s ( * * ) 1 e Y - b - b X mn * * * * * ( ) ( ) ( ) ( ) e s Y s - b1 1 s - b X s ( ) w 1s ( * * ) 1 w e w Y - b - b X

71 Genelleştrlmş EKKY(GEKKY) w e b 0 * 1 w e b 0 * ( * * 1 )( ) w e b w Y - b - b X -1 * 1 ( * * 1 )( ) w e b w Y - b - b X -X * * * 1 w Y b w b w X * * * * 1 - b Y b X * * 1 w X Y b w X b w X b ( w )( wxy ) - ( wx )( wy ) ( w )( wx ) - ( wx ) * Y * w Y w X * w X w

72 EKKY ve GEKKY Arasındak Fark EKKY e Y - b - b X ( ) 1 mn GEKKY ( * * ) we w Y - b1 - bx w 1s mn

73 s nn BİLİNMEMESİ HALİ 1HAL: LOGARİTMİK DÖNÜŞÜMLER Y b1 bx u lny lnb1 b lnx v HAL: E( u ) Y b1 bx u s s X Y X b 1 X b X 1 X u X ( ) ( ) ( ) ( ) ( ) 1 b 1 X b v ( ) 1 1 E v E u X 1 X E u s X s X

74 s nn BİLİNMEMESİ HALİ 3 HAL: E( u ) s s X Y b1 bx u ( ) ( ) Y X b 1 X b X 1 X u X 1 ( ) b 1 X b X v 1 ( ) ( ) ( ) ( ) s E v E u X 1 X E u 1 X X s

75 s nn BİLİNMEMESİ HALİ E u s s a a X 4 HAL: ( ) ( ) ( ) E u s 0 1 s f (X) ( ) ( ) ( ) f X a a X a a X Y b1 bx u ( ) 0 1 a a X bölünür

76 s nn BİLİNMEMESİ HALİ E u s s E Y 5 HAL: ( ) ( ) Y b1 bx u ( ) ( ) ( ) ( ) ( ) Y E Y b E Y b X E Y u E Y 1 b 1 E( Y ) b X E( Y ) v 1

77 UYGULAMA: 3 alenn yıllık gıda harcamaları (Y) ve aylık ortalama gelrler (X) aşağıda verlmştr Ale Sayısı Y X u Ale Sayısı Y X u

78 1HAL: LOGARİTMİK DÖNÜŞÜMLER ( ) ln Y ln X t (15691) (81077) prob (0171) (00000) ( ) R ln e ln Y R Aşama H 0 : b = 0 H 1 : b 0 Aşama a = 005 sd=-1=1 c tab= Aşama LM= nr y = 3(00178) = Aşama LM < c tab H 0 hpotez reddedlemez

79 HAL: E( u ) s s X ( ) Y X X 0365 t (5151) (8109) prob (0000) (0000) e Y R R Aşama H 0 : b = 0 H 1 : b 0 Aşama a = 005 sd=-1=1 c tab= Aşama LM= nr y = 3(00509) = Aşama LM < c tab H 0 hpotez reddedlemez

80 3 HAL: E( u ) s s X ( ) Y X X X t (-4686) (15337) prob (0001) (0000) R e Y 1Aşama H 0 : b = 0 H 1 : b 0 R 0365 Aşama a = 005 sd=-1=1 c tab= Aşama LM= nr y = 3(0365) = Aşama LM > c tab H 0 hpotez reddedleblr

81 E u s s E Y 5 HAL: ( ) ( ) 1 1 Y E( Y) E Y X E Y ( ) ( ) ( ) t (5630) (74167) prob (00000) (00000) R 0044 e Y R Aşama H 0 : b = 0 H 1 : b 0 Aşama a = 005 sd=-1=1 c tab= Aşama LM= nr y = 3(0090) = 098 4Aşama LM < c tab H 0 hpotez reddedlemez

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yılları arasında Y gayri safi milli hasıla, M Para Arazı (M) ve r faiz oranı verileri aşağıda verilmiştir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatası taşıyıp taşımadığını Ramsey

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s )

Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s ) Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s.285-293) Y=β 1 + β 2 X 2 + β 3 X 3 + u (SR) Y=β 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 + β 5 X 5 + u 1.Aşama (SM) H 0 : β

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU.HAL: Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi = b+ b2di + b3xi + ui E(Y Di =,X i) = b + b3xi E(Y Di

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Korelasyon analizi. Korelasyon analizinin niteliği. Sınava hazırlanma süresi ile sınavdan alınan başarı arasında ilişki var mıdır?

Korelasyon analizi. Korelasyon analizinin niteliği. Sınava hazırlanma süresi ile sınavdan alınan başarı arasında ilişki var mıdır? Korelasyon analz Korelasyon analz Sınava hazırlanma süres le sınavdan alınan başarı arasında lşk var mıdır? q N sayıda öğrencnn sınava hazırlanma süreler le sınavdan aldıkları puanlar tespt edlr. Reklam

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar.

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

Kukla Değişken Nedir?

Kukla Değişken Nedir? Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri

Detaylı

EKONOMETRİ I E-VİEWS UYGULAMALI VE ÇÖZÜMLÜ SORULAR

EKONOMETRİ I E-VİEWS UYGULAMALI VE ÇÖZÜMLÜ SORULAR EKONOMETRİ I E-VİEWS UYGULAMALI VE ÇÖZÜMLÜ SORULAR HATİCE ÖZKOÇ HANİFİ VAN ÖZKOÇ VAN 1 1980-2002 dönemine ait tavuk eti talebini incelemek amacıyla aşağıdaki değişkenler elde edilmiştir. Y: Kişi başına

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yllar arasnda Y gayri safi milli hasla, M Para Araz (M) ve r faiz oran verileri a#a$da verilmi#tir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatas ta#yp ta#mad$n Ramsey RESET testi

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR:

T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR: T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR: 2120703360 KÜBRA İNAN 2120703321 EDA ZEYNEP KAYA EDİRNE

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

Bölüm 4. Tahmin Sorunu. 4.1 Sıradan En Küçük Kareler Yöntemi. Sıradan En Küçük Kareler Yöntemi

Bölüm 4. Tahmin Sorunu. 4.1 Sıradan En Küçük Kareler Yöntemi. Sıradan En Küçük Kareler Yöntemi Bölüm 4 İk Değşkenl Bağlanım Model - Tahmn Sorunu 4.1 Sıradan En Küçük Kareler Yöntem Sıradan En Küçük Kareler Yöntem Bağlanım çözümlemesnde amaç, örneklem bağlanım şlev (ÖBİ) temel alınarak anakütle bağlanım

Detaylı

Tahmin Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

Tahmin Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model Tahmn Sorunu Yrd. Doç. Dr. A. Talha YALTA Ekonometr 1 Ders Notları Sürüm 2,0 (Ekm 2011) Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Farklıserpilimsellik

Farklıserpilimsellik Farklıserpilimsellik Hata Varyansı Sabit Değilse Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Savaş OKUR PARAMETRİK VE PARAMETRİK OLMAYAN BASİT DOĞRUSAL REGRESYON ANALİZ YÖNTEMLERİNİN KARŞILAŞTIRMALI OLARAK İNCELENMESİ ZOOTEKNİ ANABİLİM

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ

TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ *Prof. Dr. Münevver TURANLI, Arş. Gör. Elif GÜNEREN 1.Giriş Turizm sektörü; bir yandan ülkeler için önemli bir gelir kaynağı olması, diğer yandan uluslararası

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ

KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM TALEP SİSTEMİ YAKLAŞIMIYLA ANALİZİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2007/2, Sayı: 6 Journal of Suleyman Demrel Unversty Insttue of Socal Scences Year: 2007/2, Number: 6 KIRMIZI, TAVUK VE BEYAZ ET TALEBİNİN TAM

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ

TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ TÜRKİYE DE YOKSULLUK PROFİLİ VE GELİR GRUPLARINA GÖRE GIDA TALEBİ Yrd. Doç. Dr. Seda ŞENGÜL Çukurova Ünverstes İktsad Ve İdar Blmler Fakültes Ekonometr Bölümü Mart 2004 ANKARA YAYIN NO: 119 ISBN: 975-407-151-9

Detaylı

Türkiye de Süt Ürünleri Tüketim Harcamalarına Etki Eden Faktörlerin Analizi: Çoklu Heckman Örneklem Seçicilik Sistem Yaklaşımı

Türkiye de Süt Ürünleri Tüketim Harcamalarına Etki Eden Faktörlerin Analizi: Çoklu Heckman Örneklem Seçicilik Sistem Yaklaşımı Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression

OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression OLS Klasik Varsayımlar Çoklu Regresyon Multiple Regression. Lineer regresyon modeli. E(e i )=, ortalama hata sıfırdır. E(X i e i )=, bağımsız değişkenlerle hatalar arasında korelasyon mevcut değildir 4.

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

PANEL VERİ MODELLERİNİN TAHMİNİNDE PARAMETRE HETEROJENLİĞİNİN ÖNEMİ: GELENEKSEL PHILLIPS EĞRİSİ ÜZERİNE BİR UYGULAMA

PANEL VERİ MODELLERİNİN TAHMİNİNDE PARAMETRE HETEROJENLİĞİNİN ÖNEMİ: GELENEKSEL PHILLIPS EĞRİSİ ÜZERİNE BİR UYGULAMA PAEL VERİ MODELLERİİ TAHMİİDE PARAMETRE HETEROJELİĞİİ ÖEMİ: GELEEKSEL PHILLIPS EĞRİSİ ÜZERİE BİR UYGULAMA Selim TÜZÜTÜRK (*) Özet: Panel veri modellerinin tahmininde, örneklem ile ilgili dikkat edilmesi

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

REGRESYON ANALİZİ BÖLÜM 5-6

REGRESYON ANALİZİ BÖLÜM 5-6 REGRESYON ANALİZİ BÖLÜM 5-6 Yayın Tarh: 03-11-2007 Revzyon No:0 1 5. E.K.K. REGRESYONUNDA KARŞILAŞILAN PROBLEMLER VE BAZI KONU BAŞLIKLARI 2 1 EN KÜÇÜK KARELERDE KARŞILAŞILAN PROBLEMLER EKK da karşılaşılan

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

X = 11433, Y = 45237,

X = 11433, Y = 45237, A.Ü. SBF, IV Malye EKONOMETRİ I ARA SINAVI 4..006 Süre 90 dakkadır..,. ve 3. sorular 0 ar, 4. ve 5. sorular 30 ar pua, ödev 0 pua değerdedr. Tüm formüller ve şlemlerz açıkça gösterz. ) Y = Xβ + u doğrusal

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER

ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER Akdenz İ.İ.B.F. Dergs (21) 2011, 17-45 ANTALYA DA OBEZİTE YAYGINLIĞI VE DÜZEYİNİ ETKİLEYEN SOSYO-EKONOMİK DEĞİŞKENLER PREVALENCE AND SOCIOECONOMICS DETERMINANTS OF ADULTS OBESITY IN ANTALYA Arş. Gör. F.

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Özet YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Atıf EVREN *1 Elf TUNA ** Yarı parametrk panel ver modeller parametrk ve parametrk olmayan modeller br araya getren; br kısmı

Detaylı