2.7 Bezier eğrileri, B-spline eğrileri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2.7 Bezier eğrileri, B-spline eğrileri"

Transkript

1 .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan fonksonların saısal türev ve ntegrasonu çn kullanılır. Bu k tp eğr gerçek nterpolason splne ları değldr. Zra bu eğrler normal olarak bütün ver noktalarından geçmez. Bu bağlamda bu eğrler en-küçük kareler eğrlerle benzerlk gösterrler. Bununla brlkte Bezer eğrler ve B-splne eğrler ver noktalarının belrledğ polgon dahlnde kalma özellğne sahptrler. Arıca bu splne eğrler güzel br geometrk özellğe sahptrler k, noktalardan br değştrldğnde eğrnn sadece br kısmı değşerek erel br etk görülür. Osa kübk splne eğrlernde data setndek noktalardan sadece br değştğnde lk noktadan son noktaa kadark eğrlern tamamı etklenmektedr. Son olarak, kübk splne eğrlernde ver noktaları eğrlern geçtğ noktalar ken, Bezer ve B-splne eğrlernde lglenlen noktalar eğrnn şekln belrlemek çn kullanılan kontrol noktalarıdır. Kolalık açısından bu eğrlern kübk çeşdle lgleneceğz. Bu ncelemelerde f() fonksonu parametrk olarak fade edlecektr. arametrk bçm ve arasındak lşknn başka k denklemle F (u) ve F (u) şeklnde br u paramatresne bağlı olarak fades anlamına gelmektedr. Örneğn br dare çembernn denklem θ açısal parametres cnsnden r cos θ r sn θ şeklnde fade edleblr. Bu parametrk fadelerde u büüklüğünün değer le arasında değşecektr. Bezer eğrler Bu eğrler Renault frmasında çalışan Fransız mühends. Bezer tarafından otomobl kaporta üzelernn az saıda parametrele değştrlerek kontrol edleblen eğrlerle tanımlanablmes çn 9 da gelştrlmştr. Br ser kontrol noktasının (Bezer noktaları) (, ) (, ),,, n,..., olarak verldğn varsaalım. 4 5 Bu noktalar blgsaar ekranına mleç vasıtasıla erleştrleblr ve sürüklenerek erler değştrleblr. Noktaların soldan sağa sıralanma zorunluluğu oktur. Her br noktanın koordnatını şeklnde k elemanlı br vektör le gösterelm.bu koordnatlar parametrk bçmde de ( u ) ( u ) ( u ), u şeklnde fade edleblr. N nc dereceden br Bezer polnomu N nokta le belrlenr ve

2 Bölüm - Eğr udurma ve nterpolason ( u ) N şeklnde verlr. Burada n ( u ) N u n N!! ( N )! dr. (u) aslında br Bernsten polnomudur. Bernsten 9 de bu polnomların ağırlıklı br toplamının N çn [,] aralığında ünform olarak br sürekl fonksona akınsaacağını göstermştr. N çn, ve noktalarıla tanımlanan (u) kuadratk br fadedr. ( u) ( )( u) ( ) ( u ) u ( ) u NOT: N çn,, ve,, dr. Bu durumda Bezer eğrsnn parametrk denklemler şeklndedr. Bu bağıntılardan ( u ) ( u ) ( u) u u ( u) ( u) ( u) u u u çn ( ) ( ),, u çn ( ) ( ) olduğu görülmektedr. Buna göre u parametres le arasında değşrken lk nokta ( ) le üçüncü nokta ( ) arasında br eğr çzlmektedr. Üç noktanın br doğru üzernde olması hal harç knc nokta (aradak noktası) bu eğrnn üzernde er almaacaktır. Gerçekte knc dereceden br Bezer eğrsnn üzerndek noktaların koordnatları, bu eğr tanımlamak çn kullanılan üç noktanın koordnatlarının ağırlıklı br ortalamasıdır. Br başka bakış açısıla Bezer denklemlern, değşken u olan üç polnomun ağırlıklı toplamı olarak düşünmek mümkündür. Burada ağırlık faktörlern üç noktanın koordnatları belrlemektedr. N çn kübk Bezer polnomları ( u ) ( u ) ( u) u ( u ) u u ( u) ( u) ( u) u ( u ) u u şeklndedr. Yne ()() ve ()() olduğu görülmektedr ve (, ) ara noktaları eğr üzernde er almaacaktır. Şekl.7 dek örnek eğrlerde görüldüğü gb ara noktaların erlernn değştrlmes eğr değştrmektedr. Bu şekldek lk üç eğr (a-c) dört nokta kullanılarak elde edlmştr. Şekl.7d ve e de kübk Bezer eğrlernn nasıl dört noktadan ötee devam ettrlebleceğn göstermektedr. Bunun çn ed kontrol noktası alınmakta olup lk dört nokta le br eğr oluşturulurken dördüncü nokta ortak olmak üzere son dört nokta le knc br eğr elde edlmektedr. Şekl.7d dek eğrlerde noktasında br sürekszlk vardır. Şekl.7e de se bu M.A. Yükselen, HM54 Ugulamalı Saısal Yöntemler Ders Notları

3 Bölüm - Eğr udurma ve nterpolason sürekszlk ortadan kalkmıştır. Bunun çn,, ve 4 noktalarının anı doğru üzernde er alması eterldr. (a) (b) (c) (d) 4 5 (e) 4 5 Şekl.7 Dört ve ed nokta le tanımlanmış Bezer eğrler Bezer kübklernn özellkler özetlenrse: - (), () - u da kübk fonksonların türevler d / du ( ), d / du ( ) olup eğrnn türev de d d şeklnde elde edleblr. Bu anı zamanda ve noktaları arasındak doğrunun eğmdr. Anı şeklde kübk eğrnn noktasındak eğmnn ve noktaları arasındak doğru parçasının eğmne eşt olduğu gösterleblr. Bu teğetler Şekl.7 de kesk çzglerle gösterlmştr. - Kübk Bezer eğrs 4 noktanın oluşturduğu çbüke bölgenn çersnde er almaktadır. Çoğu zaman Bezer eğrlernn matrs bçmnde gösterlmes ugun olur. Bezer kübğ çn bu gösterlm aşağıdak gbdr: T ( u ) [ u, u, u, ] u M p M.A. Yükselen, HM54 Ugulamalı Saısal Yöntemler Ders Notları

4 Bölüm - Eğr udurma ve nterpolason B-Splan eğrler B-splan eğrler de Bezer eğrler gb ver noktalarından geçmeen eğrlerdr. (Bu açıdan enküçük kareler eğrlerne benzerler). Herhang br derecede olablrler. Ancak burada kübk eğrlerle lglenlecektr. Kübk B-splan eğrler k nokta arasından geçrlen bast kübk eğrlere benzerdr. Ancak bu eğrler ver noktalarından geçmek zorunda değldr. N adet nokta (, ),,,,...,N şeklnde verlmş olsun. Herhang br - (,,,...,N) aralığındak kübk B-splan eğrs parametrk olarak ( u) B ( u ) (.9) bk k k şeklndedr. Buradak b k katsaıları dört noktanın etks çn ağırlık faktörler olup ( u ) u u u u b, b u, b, b u şeklnde tanımlanmaktadır. B erne sırasıla ve, erne de ve konularak eğr üzerndek noktaların koordnatları [ u ] ( u ) ( u ) ( u u 4) ( u u u ) [ u ] ( u) ( u) ( u u 4) ( u u u ) şeklnde elde edlecektr. Noktaların ağırlık faktörler u parametres le değşmekte olup u çn sırasıla /, /, /, ve u çn de,/, /, / dır. Şekl.8a-b de dört nokta le belrlenmş br B-splan eğrsnn noktalardan sadece brnn er değştrmes halndek durumu göstermektedr. noktası önce ukarı ve daha sonra sola doğru çeklnce, bekleneceğ gb eğr de bunu zleme eğlmnde olup noktasının ötesne geçmştr. Eğrnn başladığı ve bttğ bu k noktaa da çok akın olmadığı lg çekcdr. Bu aralıktak eğrnn tanımlanması çn,, ve gb dört nokta kullanılmıştır. (a) (b) Şekl.8 Br B-splne eğrn tanımlamak çn dört noktaa htaç vardır. Daha fazla saıdak noktadan B- splan eğrler geçrmek çn kübk splan ugulamalarındakne benzer br öntem kullanılablr. Bu durumda eğrnn sürekllğ çn koşullar alelade splanlardakne benzer şeklde brnc ve knc türevlernn sürekllğ koşullarıdır. Ağırlık faktörler çn ukarıda verlen bağıntılar bu koşullar sağlanacak şeklde çıkartılmıştır. Şekl.9 da Br B-splan eğrnn ardarda üç parçası görülmektedr. M.A. Yükselen, HM54 Ugulamalı Saısal Yöntemler Ders Notları

5 Bölüm - Eğr udurma ve nterpolason Şekl.9 B-splan eğrlernn özellkler şu şeklde özetleneblr:. B-splan eğrler kübk splanlarda olduğu gb parçalardan oluşur ve brleşme erlernde aşağıdak üç koşul sağlanır a) B () B () 4 b) B () B () B B c) () ( ). Her br B-splne eğrs tanımlandıkları dört noktanın oluşturduğu çbüke bölgenn çnde kalır. M.A. Yükselen, HM54 Ugulamalı Saısal Yöntemler Ders Notları

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde;

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde; MATRİS ÖNTEMER 1. GİRİŞ Matrs öntemler; gerçek sürekl apının erne, matrs bçmnde ade edleblen blnen atalet (elemslk) ve elastklk öellklerne sahp sonl büüklüktek apısal elemanlardan olşan matematksel br

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI BÖLÜM II D ÖRNEK 0 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 0 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI 0.1. BİNANIN GENEL ÖZELLİKLERİ...II.0/ 0.. TAŞIYICI

Detaylı

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1 KAPASİTANS VE ENDÜKTANS EBE-5, Ö.F.BAY KAPASİTANS VE ENDÜKTANS Bu bölümde enerj depolayan pasf elemanlardan Kapasörler e Endükörler anıılmakadır ÖĞRENME HEDEFLERİ KAPASİTÖRLER Elekrk alanında enerj depolarlar

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kaha 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Baazıt, Brsen Yaınev, 2007, İstanbul BÖLÜM 12 AÇIK KANALLARDA AKIM: ÜNİFORM OLMAYAN AKIMLAR 12.1 GİRİŞ - --- --.;! Baraj sonrak su üze öncek su üze.. Vnfom

Detaylı

ÇOK DEĞİŞKENLİ OLASILIK DAĞILIMLARI

ÇOK DEĞİŞKENLİ OLASILIK DAĞILIMLARI Bölüm 6 ÇOK DEĞİŞKENLİ OLASILIK DAĞILIMLARI Öncek bölümlerde tek-boutlu örnek uzalarla lgl rastgele değşkenler ve bu değşkenlern olasılık dağılımları ncelenmştr. Başka br anlatımla "br tek" rastgele değşkenle

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler 11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Bayazıt, Brsen Yayınev, 007, İstanbul se se da Brm kanal küçük gen kestl br kanalda, 1.14. KANAL EGIMI TANIMLARI Brm kanal genşlğnden geçen deb q se, bu q

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri

Elektrik Akımı, Potansiyel Fark ve Direnç Testlerinin Çözümleri Elektrk Akımı, Potansyel Fark ve Drenç Testlernn Çözümler 1 Test 1 n Çözümü. 1. Soruda verlen akım-potansyel farkı grafğnn eğmnn ters drenc verr. 8 X 5 8 8 Z Ohm kanunu bağıntısıyla verlr. Bu bağın- k

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Uygulamalı Yerblmler Sayı: (Mayıs-Hazran ) -9 PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Estmaton of Sedmentary Basement Depths By Usng Parabolc Densty Functon

Detaylı

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri

Elektrik Enerjisi ve Elektriksel Güç Testlerinin Çözümleri Elektrk Enerjs ve Elektrksel Güç Testlernn Çözümler Test 1 n Çözümü 1. Her brnn gerlm 1,5 volt olan 4 tane pl brbrne ser bağlı olduğundan devrenn toplam gerlm 6 volt olur. est S, uzunluğu / olan demr çubuğun

Detaylı

26 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir.

26 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir. 6 Manyetzma Test n Çözümler 4.. K L M. Mıknatıslarda aynı kutuplar brbrn teceğnden K ve M mıknatısları hızlanır. Cevap C dr. Mıknatıs kaç parçaya bölünürse bölünsün ortaya çıkan yen parçalar yne k kutupludur.

Detaylı

24 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir.

24 Manyetizma. Test 1 in Çözümleri. Mıknatıslarda aynı kutuplar birbirini iteceğinden K ve M mıknatısları hızlanır. Cevap D dir. 4 Manyetzma Test n Çözümler 4.. K L M. Mıknatıslarda aynı kutuplar brbrn teceğnden K ve M mıknatısları hızlanır. Cevap C dr. Mıknatıs kaç parçaya bölünürse bölünsün ortaya çıkan yen parçalar yne k kutupludur.

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Öğretm üyes: Doç. Dr. S. Özoğuz Tel: 85 36 9 e-posta: serdar@ehb.tu.edu.tr Ders saat: Pazartes,.-3. / D-4 İçndekler. Dere teors, toplu parametrel dereler, Krchhoff un gerlm e akım

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6

Detaylı

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BA OKUR TMMOB JEOFİZİK MÜHENDİSLERİ ODASI EĞİTİM YAYINLARI NO: 5 ISBN 978-9944-89-969-7 Mll Müdafaa Cad. N: /7 Kızılay/ANKARA Tel: 3 48 4

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) şeklinde tanımlanan Poisson denklemidir. 3-B modellemede ise (1.

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) şeklinde tanımlanan Poisson denklemidir. 3-B modellemede ise (1. JFM36 Elektrk Yöntemler ( Doğru Akım Ödrenç Yöntem) ( x, ). ( x, ) I( x, ) (7.) şeklnde tanımlanan Posson denklemdr. 3-B modellemede se (.) denklem ( x,, ). ( x,, ) I( x,, ) (7.3) şeklnde aılır. Denklem

Detaylı

MADEN DEĞERLENDİRME. Ders Notları

MADEN DEĞERLENDİRME. Ders Notları MADEN DEĞERLENDİRME Ders Notları Doç.Dr. Kaan ERARSLAN 008 ĐÇĐNDEKĐLER. GĐRĐŞ... 3. REZERV SINIFLARI VE HESAPLAMALARI... 4. Görünür rezervler...4.. Muhtemel Rezervler...6.3 Mümkün Rezervler...7.4 Belrl

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR wwwteknolojkarastrmalarcom ISSN:1304-4141 Makne eknolojler Elektronk Dergs 00 (4 1-14 EKNOLOJİK ARAŞIRMALAR Makale Klask Eş Eksenl (Merkezl İç İçe Borulu Isı Değştrcsnde Isı ransfer ve Basınç Kaybının

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

Polinom Filtresi ile Görüntü Stabilizasyonu

Polinom Filtresi ile Görüntü Stabilizasyonu Polno Fltres le Görüntü Stablzasonu Fata Özbek, Sarp Ertürk Kocael Ünverstes Elektronk ve ab. Müendslğ Bölüü İzt, Kocael fozbek@kou.edu.tr, serturk@kou.edu.tr Özetçe Bu bldrde vdeo görüntü dznnde steneen

Detaylı

YÜKSEK ÖĞRETİM KURULU DOKÜMANTASYON MERKEZİ TEZ VERİ FORMU. Tez No: Konu: Üniv. Kodu: Not: Bu bölüm merkeziniz tarafından doldurulacaktır.

YÜKSEK ÖĞRETİM KURULU DOKÜMANTASYON MERKEZİ TEZ VERİ FORMU. Tez No: Konu: Üniv. Kodu: Not: Bu bölüm merkeziniz tarafından doldurulacaktır. YÜKSEK ÖĞRETİM KURULU DOKÜMANTASYON MERKEZİ TEZ VERİ FORMU Tez No: Konu: Ünv. Kodu: Not: Bu bölüm merkeznz tarafından doldurulacaktır. Tezn yazarının Soyadı: OŞKUN Adı: Görkem Tezn Türkçe adı: KAUÇUK GÖVDELİ

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : 1 : 951-957

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI

BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI Emre Kouncu İstanbul Teknk Ünverstes Elektrk Mühendslğ ekouncu@kouncurobotc.com Osman Celan İstanbul Teknk Ünverstes Elektronk

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:305-63X Yapı Teknolojler Elektronk Dergs 008 () - TEKNOLOJĐK ARAŞTIRMALAR Makale Başlığın Boru Hattı Etrafındak Akıma Etks Ahmet Alper ÖNER Aksaray Ünverstes, Mühendslk

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur.

ELEKTRİK AKIMI. K-L noktaları arasındaki eşdeğer direnç, = = 3X olur. K-L noktaları arasındaki eşdeğer direnç, = = 4X olur. . BÖÜ EETİ II IŞTI ÇÖZÜE EETİ II. k sa devre X - noktaları arasındak eşdeğer drenç, - noktaları arasındak eşdeğer drenç, 4 - noktaları arasındak eşdeğer drenç, - noktaları arasındak üç drençte paralel

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Dr. Kasım Baynal Dr.Melih Metin Rüstem Ersoy Kocaeli Universitesi Müh. Fak.Endüstri Müh. Bölümü Veziroğlu Yerleşkesi, KOCAELİ

Dr. Kasım Baynal Dr.Melih Metin Rüstem Ersoy Kocaeli Universitesi Müh. Fak.Endüstri Müh. Bölümü Veziroğlu Yerleşkesi, KOCAELİ TAŞIT ÜZERİNDE KULLANILAN HAVA YÖNLENDİRİCİLERİNİN YAKIT TÜKETİMİ ÜZERİNDEKİ ETKİSİNİN ÇOKLU REGRESYON ANALİZİ VE DENEY TASARIMI YÖNTEMİ İLE İNCELENMESİ Dr. Kasım Banal Dr.Melh Metn Rüstem Erso Kocael

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim.

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim. Elektrk kımı Test Çözümler Test 'n Çözümler. 4 Ω voltmetre. olay çözüm çn şekl yenden çzp harflendrelm. 0 Ω Ω Ω 5 Ω Ω oltmetrenn ç drenc sonsuz büyük kabul edlr. u nedenle voltmetrenn bulunduğu koldan

Detaylı

MUKAVEMET FORMÜLLER, TABLOLAR VE ŞEKĐLLER.

MUKAVEMET FORMÜLLER, TABLOLAR VE ŞEKĐLLER. MUKAVMT FORMÜLLR, TABLOLAR V ŞKĐLLR. 008/09 D Statk Denge Denklemler: + F 0 + F 0 M 0 ksenel Gerlme P σ A σ Normal gerlme P Kuvvet A Kest Alanı Ortalama Kama Gerlmes V τ ort., τ Kama Gerlmes A V kesme

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON. Gökalp Kadri YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 2011 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BULANIK HEDONİK REGRESYON Gökalp Kadr YENTÜR İSTATİSTİK ANABİLİM DALI ANKARA 011 Her hakkı saklıdır ÖZET Yüksek Lsans Tez BULANIK HEDONİK

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

YAĞIŞ YAĞIŞIN MEYDANA GELMESİ

YAĞIŞ YAĞIŞIN MEYDANA GELMESİ YAĞIŞ Atmosferden katı ya da sıvı halde yeryüzüne düşen sulara yağış denlr. Sıvı haldek yağış yağmur şeklndedr, katı haldek yağış se kar, dolu, çğ, kırağı şekllernde olablr. Yağmur ve kar hdrolojk bakımdan

Detaylı

50HZDE ELEKTRİK ALANININ ORGANİZMA ÜZERİNDE ETKİSİ

50HZDE ELEKTRİK ALANININ ORGANİZMA ÜZERİNDE ETKİSİ 50HZDE ELEKTRİK ALANININ ORGANİZMA ÜZERİNDE ETKİSİ jr slny UDK: 538.3:621.3.029.42:574.6 ÖZET Yazıda elektrksel ve magnetk alanların etksnde kalmış kşlere lşkn brçok gözlem yer almaktadır. Bu alanların

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

KALĐTE ARTIŞLARI VE ENFLASYON: TÜRKĐYE ÖRNEĞĐ

KALĐTE ARTIŞLARI VE ENFLASYON: TÜRKĐYE ÖRNEĞĐ Central Bank Revew Vol. 11 (January 2011), pp.1-9 ISSN 1303-0701 prnt / 1305-8800 onlne 2011 Central Bank of the Republc of Turkey http://www.tcmb.gov.tr/research/revew/ KALĐTE ARTIŞLARI VE ENFLASYON:

Detaylı

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya MODELLEME VE SİSTEM TANILAMA

Otomatik Kontrol Ulusal Toplantısı, TOK2013, 26-28 Eylül 2013, Malatya MODELLEME VE SİSTEM TANILAMA Otomatk Kontrol Ulusal Toplantısı, TOK3, 6-8 Eylül 3, Malatya MODELLEME VE SİSTEM TANILAMA 69 Otomatk Kontrol Ulusal Toplantısı, TOK3, 6-8 Eylül 3, Malatya Otonom Bsklet Modellenmes ve Kontrolü Ömer Faruk

Detaylı

FOTOGRAMETRİK NOKTA AĞLARI İÇİN BASİT BİR OPTİMİZASYON METODU

FOTOGRAMETRİK NOKTA AĞLARI İÇİN BASİT BİR OPTİMİZASYON METODU Selçuk Ünverstes Jeode ve Fotogrametr Mühendslğ Öğretmnde 0. õl Sempoumu6-8 Ekm 00 Kona SUNULMUŞ İLDİRİ FOTOGRMETRİK NOKT ĞLRI İÇİN SİT İR OTİMİSON METODU Esra TUNÇ Jurgen FRIEDRICH Fev KRSLI Karaden Teknk

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI. Kalite Artışları ve Enflasyon: Türkiye Örneği

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI. Kalite Artışları ve Enflasyon: Türkiye Örneği Türkye Cumhuryet Merkez Bankası Sayı: 2010-17 / 20 Aralık 2010 EKONOMİ NOTLARI Kalte Artışları ve Enflasyon: Türkye Örneğ Yavuz Arslan Evren Certoğlu Abstract: In ths study, average qualty growth and upward

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

AĞIRLIKLI KALANLAR YÖNTEMİ VE BAZI UYGULAMALARI

AĞIRLIKLI KALANLAR YÖNTEMİ VE BAZI UYGULAMALARI AĞIRLIKLI KALALAR YÖTEMİ VE BAZI UYGULAMALARI Pamukkale Ünverstes Fen Blmler Ensttüsü Yüksek Lsans Tez Matematk Anablm Dalı Mukaddes ÖKTE Danışman: Doç. Dr. Uğur YÜCEL Temmuz DEİZLİ TEŞEKKÜR Bu çalışmanın

Detaylı

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Fak YNAM stanbul Teknk Ünverstes stanbul Teknk Ünverstes ÖZET Trafk kazaları, ülkemz gündemn sürekl olarak gal eden konularıdan brdr. Üzernde çok

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 2004/2 DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ M. Cüneyt FETVACI *, C. Erdem İMRAK İstanbul Teknk Ünverstes,

Detaylı

Konveks Sınıf Modelleri Kullanarak Dijital İmgelerdeki Nesne Görüntülerinin Konumlarının Bulunması. Proje No: 109E279

Konveks Sınıf Modelleri Kullanarak Dijital İmgelerdeki Nesne Görüntülerinin Konumlarının Bulunması. Proje No: 109E279 Konveks Sınıf Modeller Kullanarak Djtal İmgelerdek Nesne Görüntülernn Konumlarının Bulunması Proje No: 109E279 Doç. Dr. Hakan Çevkalp Hüseyn Gündüz Musa Aydın Güvenç Usanmaz Onur Akyüz ŞUBAT 2013 ESKİŞEHİR

Detaylı

Destek Vektör Makineleri ile Yaramaz Elektronik Postaların Filtrelenmesi Spam e-mail Filtering Using Support Vector Machine

Destek Vektör Makineleri ile Yaramaz Elektronik Postaların Filtrelenmesi Spam e-mail Filtering Using Support Vector Machine Destek Vektör Makneler le Yaramaz Elektronk Postaların Fltrelenmes Spam e-mal Flterng Usng Support Vector Machne E. U. Küçükslle ve N. Ateş Süleman Demrel Ünverstes, Isparta/urke, ecrkucukslle@sdu.edu.tr

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

Bir taşıt tasarımının gerçekleştirilmesi birçok etkene bağlı

Bir taşıt tasarımının gerçekleştirilmesi birçok etkene bağlı MAKALE TİCARİ TAŞIT AKSLARININ DAYANIM TESTLERİNDE KULLANILACAK YÜKLERİN MÜŞTERİ ÇEVRİMİNDEKİ TAŞIT ÖLÇÜMLERİNDEN ELDE EDİLMESİ Metn Toprak * Man Truck & Bus Ag - Dachauer Strasse 667 80995 München, Deutschland

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jurnal f Engneerng and Natural Scences Mühendslk ve Fen Blmler ergs Sgma -1 1 Ph Research Artcle / ktra Çalışması Araştırma Makales STATIC ANALYSIS OF SYMMETRICALLY LAMINATE RECTANGULAR COMPOSITE PLATES

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU MÜHENİSLİK MEKNİĞİ STTİK ES NOTLI Yrd. oç. r. Hüsen YIOĞLU İSTNUL 6 . Mekanğn tanımı 5. Temel lkeler ve görüşler 5 İçndekler GİİŞ 5 EKTÖLEİN E İŞLEMLEİNİN TNIMI 6. ektörün tanımı 6. ektörel şlemlern tanımı

Detaylı

TC NİĞDE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANA BİLİM DALI

TC NİĞDE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANA BİLİM DALI T NİĞDE ÜNİVERİTEİ FEN BİLİMLERİ ENTİTÜÜ FİZİK ANA BİLİM DALI KRİTAL ALAN VARLIĞINDA NANOARÇAIĞIN MANYETİK ÖZELLİKLERİNİN BÜYÜKLÜĞE BAĞLI OLARAK İNELENMEİ ZAFER DEMİR Mayıs 2013 T NİĞDE ÜNİVERİTEİ FEN

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta)

BİR BOYUTLU HAREKET FİZİK I. Bir Boyutlu Hareket? 12.10.2011. Hız ve Sürat. 1 boyut (doğru) 2 boyut (düzlem) 3 boyut (hacim) 0 boyut (nokta) .0.0 r oulu Hareke? İR OYUTLU HREKET FİZİK I bou (doğru bou (düzlem 3 bou (hacm 0 bou (noka u bölümde adece br doğru bounca harekee bakacağız (br boulu. Hareke ler olablr (pozf erdeğşrme ea ger olablr

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı