NONLİNEER ELEKTRONİK DEVRELERİN ANALİZİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "NONLİNEER ELEKTRONİK DEVRELERİN ANALİZİ"

Transkript

1 NONLİNEE ELEKTONİK DEELEİN ANALİZİ KUET SEİLEİ İLE ANALİZ Nonlineer bir devreyi frens bğl lineer bir devre ile frenstn bğmsz nonlineer bir devrenin st bğlnms şelinde österebilirse nonlineer nliz için uvvet serisi ylşm yeterlidir[] ŞEKİL- Kuvvet Serilerinin ullnlbileceği devre Wt fut Ut U t n n U t n - US -b Frens domeninde nliz ypm dh nlml sonuçlr vereceğinden iriştei işreti frl frensti işretlerin toplm olr düşünebiliriz S t jωqt jω t Sq e e q q - t S jω t jω S COSt e e -b Bu durumd Ut işreti şu hle elir; Ut Sqωq [ expjωqt exp jωqt ] q Çş işreti ise n U olur n N n Wt n U t t n n ω ω ω n Sq Sq Sqn q q nq q q qn [ expjω t exp jω t ][ expjω t exp jω t ] -b q q qn qn

2 OLTEA SEİLEİ İLE ANALİZ Şeil- dei ypy uyulymycğmz devrelerde uvvet serisi ylşm ullnlmz Devre şyet düşü düzeyde nonlineerli österiyors olterr serileri ullnlbilir[] Bu durumd Şeil- dei österilim Şeil- dei ibi olur ŞEKİL- Nonlineerliğin frens bğl olduğu durumd devre bloğu olterr serisi ylşm ullnlrs Wt şu biçimi lr; Wt ω ω ω n Sq Sq Sqn n q q nq q q qn [ expjω t exp jω t ][ expjω t exp jω t ][ expjω t exp jω t ] N q n q q Fredilebileceği ibi olterr-serilerindei te değişili n ω q ω q ω qn büyülüğü yerine n ω q ω q ω qn büyülüğünün elmesidir Bu değişili nonlineerliğin frens bğmllğn orty oyr Dolysyl uvvet serileri ylşmnn olterr serileri ylşmnn bir özel hli olduğu söylenilebilir q qn qn - NONLİNEELİK FONKSİYONLANN BULUNMAS Eğer nonlineer elemnlrn nonlineerlileri uvvet serileri ile ifde ediliyors şğdi sonuçlr elde edilir n derece nonlineerli fonsiyonu dh düşü derecedei nonlineerli fonsiyonlrn bğldr Dolysyl önce bulunur dh sonr ve bu işlem bu şeilde srs ile devm eder lineer devrenin eçiş fonsiyonudur Dolysyl nonlineer elemnlr yerine lineer bileşenleri brlr devre çözülürse elde edilir En enel hlde n fonsiyonunun elde edilebilmesinin en oly yolu irişte i j t j t e j n t e e 6 işretinin olduğu hlde devrenin çözümünü ypmtdr Dit edilirse e jωt büyülüğü reel değildir Sdece çözümü olylştrdğ için tercih edilmetedir Bu durumd devrede oluşc sdece e jωω ωnt ifdeli işretler özönüne lnr çünü bu işretlerin endi belirlediği çözüm diğerlerinden bğmszdrsüperpozisyon ilesi Bu n in çözümünde en enel hldir Sdece sözonusu işretler özönüne lndğndn iriştei yn bu çözüm srsnd sfr lnr Çş işreti olterr serileri ile nliz srsnd şöyle olur ω i ω ω i ω ω ω i ω ω ω ω i ω ω ω ω ω i 7

3 Devrenin irişindei işret şöyle seçilebilir i n fonsiyonlrnn bulunmsn bsitleştirir i e j ω t 8 Çş işreti olr nonlineer bir direncin üzerinde oluşn erilimi llm İi uçlu bir direncin nonlineerliği şöyle ifde edilebilir 9 Giriş işretinin n Kuvvetine bğl olr cşt nonlin Direncin üzerinde oluşn işretler derece; ω Giriştei herhni bir işretin etisi ile oluşn e j ω t ifdeli çş işreti ω e j ω t derece; ω ω i ω ω i 0-0-b - Çşt oluşn e j ω ωt ifdeli terimlerin toplm { ω ω ω ω } e j ω ωt -b derece; ω ω ω i ω ω ω i ω ω ω i - Çşt oluşn e j ω ωωt ifdeli terimlerin toplm [ ]6e j ω ω ωt -b derece; ω ω ω ω i [ ω ω ω ω ω ω ω ω ] i ω ω ω ω i ω ω ω ω i Çşt oluşn e j ω ωω ωt ifdeli terimlerin toplm - e jωωωωt -b derece; ω ω ω ω ω i [ ω ω ω ω ω ω ω ω ω ω ] i [ ω ω ω ω ω ω ω ω ω ω ] i ω ω ω ω ω i ω ω ω ω ω i -

4 Çşt oluşn e j ω ωω ωωt ifdeli terimlerin toplm -b Bu tblod üstü çizili terimler örülmetedir Bu terimler slnd içerdileri nonlineerli fonsiyonlrnn frenslr çsndn frl ombinezonlrdi çrpmlrnn toplmdrlr Örne olr ile ün çrpmn öz önüne llm ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω n ω ω ω n fonsiyonlrnn sonucu bulunuren prntez içindei frenslrn srlmsnn bir etisi yotur Önce derece için çözüm yplr böylece bulunur Dh sonr derece için çözüm yplr ve bulunur Bu şeilde işlem devm eder Görüldüğü ibi n derece m vey erilim bğntlr n derece nonlineerli fonsiyonu ile berber dh düşü derecedei fonsiyonlrdn oluşmtdr Bu durumd şöyle bir ylşm yplbilir; * n derece nonlineerli fonsiyonu sebebi ile oluşn terim ilili elemnn lineer bileşeni ile orty çmtdr Dolysyl bu terim sözonusu nonlineer elemnn lineer bileşeninin uçlr rsnd oluşn erilim vey m olr düşünülebilir * n dereceden dh düşü derecedei nonlineerli fonsiyonlr n derece nonlineerli fonsiyonu ile ort bir terim oluşturmmtdrlr Yurd belirtildiği ibi n in bulunbilmesi için dh düşü derecedei nonlineerli fonsiyonlrnn bilinmesi eremetedir Dolysyl bu büyülüler n i içermeyen terimler mvey erilim ynğ olr bul edilebilirler Böylece bir nonlineer elemn nonlineerli fonsiyonlrnn bulunms için lineer bileşen ile m ynğnn vey erilim ynğnn prelel seri bğl hli olr österebiliriz Burd Am erilim ynğnn ifdesinin her bir nonlineerli fonsiyonu için frl olcğn unutmm ereir Nonlineer ifdeleri dereceye dr Tblo- de verilmiştir j t 0e 0

5 Tblo- Nonlineer bir dirence ilişin nonlineer ynlr için ifdeler derece derece derece derece 0 ÖNEK- Şeil- Bsit bir nonlineer devre Bu devrede elemnn nonlineerliği olsun Bu devre için nonlineerli fonsiyonlrn bullm;

6 için çözüm: 6 i i i i e j ω t olr seçelim 7 m için e jωt li terim sdece bir tnedir diğer bütün terimler ω ve dh büyü değerlidir; e jt 8 e jt 9 e jt 0 i e j ω t jt e Sonucu elde edilir Bu çözüm nonlineer direnç yerine lineer bileşeni brlr d elde edilebilirdi için çözüm; i e j ω t e j ω t olr seçelim Sdece e j ω ω t li terimler lnr; e j t j t [ ] e 6 fonsiyonlr devreden örülebileceği ibi frenstn bğmszdr Frens bğl ibi österilmelerinin sebebi frens bğl durumd orty çc bğntlrn österilme istenmesidir Dolysyl e j t 7 j t [ ] e 8 ifdeleri elde edilir

7 j t [ ] 9 e Girişte e j ω ω t li işret olmdğ için ifdesi devreden elde edilir 0 0 [ ] j t e j t e 0 sonucu elde edilir Şyet fonsiyonlr frens bğl olsyd ifdesi elde edileceti Sonuçt frenstn bğmsz nonlineerli fonsiyonlr elde edilmetedir i nonlineerli trnsfer fonsiyonu bir uvvet serisi olmtdr Bu örne nonlineerli fonsiyonlrnn elde edilmesindei temel ylşm bsit bir şeilde österme için seçilmiştir Nonlineer m ynlr ylşm ile çözüm Şeil- Devrenin nonlineer m ynğ ylşm için örünüşü için 0 i i i

8 için 6 Nonlineerli fonsiyonlrnn bulunms smnd derece formüller için verilen ifdelerden elde edilir b ω ω 7 i Bu şeilde yerine n derece nonlineer yn oyulr çözüm sürdürülür Nonlineerli şelinde verilirse sözonusu yn lineer bileşene seri erilim ynğ olur - Nonlineer Am Kynlr Yöntemi ile Nonlineerli Fonsiyonlrnn Bulunms Nonlineer elemnlrn yerine lineer bileşenleri ile nonlineer m ynlrn prelel olr oybileceğimizi yurd belirtmişti Örne olr m tne nonlineer elemn bulunn bir devre düşünelim Bu durumd devre için şöyle bir mtrisel denlem sistemi urbiliriz mn n n mn n n S m mn n n mn n n y Y Y A Burd S iriş ynğn östermetedir n için nonlineer m ynlr vetörü sfr lnren n için ise S sfr lnr n değiştiçe nonlineer m ynlr vetörü değişir Bu değişim devreden devreye frll östermez ve ilili itplrd tblo hlinde bulunbilir Bu çlşmd d verilmiştir A mtrisinde ise n değiştiçe sdece ω yerine ω ω ω n onulr değişili yplr er n değeri için nonlineer elemnn uçlr rsndi erilim yurdi mtrisel denlem sistemi yrdmyl bulunur Bu erilim ilili elemnn n derece nonlineerli fonsiyonudur Eğer elemnn nonlineerliği f şelinde tnmlnmşs nonlineer m ynlr ullnlr Nonlineerli f şelinde tnmlnrs lineer bileşene seri nonlineer erilim ynlr ullnlr Bu durumd mtrisel denlem sisteminde bir değişili olmz sdece sonuç vetörüne nonlineer erilim ynğ ifdesi oyulur

9 Kynlr [] J Bussn L Ehrmn nd J Grhm Anlysis of nonliner systems with multiple inputs" Proc EEE ol 6 No 8 pp Auust 97 [] L O Chu nd C-Y N Freuency-domin nlysis of nonliner systems: enerl theory EE J Electronic Circuits nd Systems ol No pp 6-8 July 979 [] L O Chu nd C-Y N Freuency-domin nlysis of nonliner systems: formultion of trnsfer functions EE J Electronic Circuits nd Systems ol No6 pp 7-69 November 979 [] Stephen A Ms Nonliner Microwve Circuits Norwood: Artech ouse 988 [] Piet Wmbcq Willy Snsen Distortion Anlysis of nterted Circuits Boston: Kluwer Acdemic Publishers 998 [6] A Minsin ntermodultion Distortion Anlysis of MESFET Amplifiers Usin the olterr Series epresenttion EEE Trnsctions on Theory nd Techniques ol MTT-8 No Jnury 980 [7] C L Lw C S Aitchison Prediction of Wide-Bnd Power Performnce of MESFET Distributed Amplifiers Usin the olterr Series epresenttion EEE Trnsctions on Theory nd Techniques ol MTT- No December 986

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

Do ufl Üniversitesi Matematik Kulübü Fen Liseleri Yar flmas 2005 Soru ve Yan tlar

Do ufl Üniversitesi Matematik Kulübü Fen Liseleri Yar flmas 2005 Soru ve Yan tlar Mtemtik ünys, 005 Güz o ufl Ünirsitesi Mtemtik Kulübü en Liseleri Yr flms 005 Soru Yn tlr 1. 005 006 sy s n n 11 e bölümünden kln kçt r? Çözüm: 005 3(mod 11) oldu undn 005 006 3 006 = (3 5 ) 401 3 3 (mod

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI . SINIF NU ANAIMI. ÜNİE: BASİ HARMNİ HAREE EİNİ VE ES ÇÖZÜMERİ . Ünite. onu Etinli A nın Çözüleri.. f b. v x ~ R 05 s r v x R 0 v x 0 /s c. x ~ R Bsit Hroni Hreet r x R 0 x 0 /s A B. ( ) (+) A( 5) yty

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SYISL ÇÖZÜMLEME Syısl Çözümleme SYISL ÇÖZÜMLEME Hft SYISL ÇÖZÜMLEMEDE HT KVRMI Syısl Çözümleme GİRİŞ Syısl nliz, mtemtik problemlerinin bilgisyr yrdımı ile çözümlenme tekniğidir Genellikle nlitik olrk

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 4.

A A A A A TEMEL MATEMAT K TEST. + Bu bölümdeki cevaplar n z cevap ka d ndaki TEMEL MATEMAT K TEST  bölümüne iflaretleyiniz. 4. TEMEL MTEMT K TEST KKT! + u bölümde cevplyc n z soru sy s 40 t r + u bölümdeki cevplr n z cevp k d ndki "TEMEL MTEMT K TEST " bölümüne iflretleyiniz.. ( + )y + = 0 (b ) + 4y 6 = 0 denklem sisteminin çözüm

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a

basit cebirsel denkleminin geçerli olduğunu varsayalım. denklemine ait İAD. çıkış düğümüne olan ve kazancı a İşret Aış Drmlrı: İşret Aış Drmlrı (İAD), blo drmlrın bstleştrlmş hl olr örüleblr. Ft, İAD fzsel örünüş ve mtemtsel urllr bğlılı ısındn zım urllrı dh serbest oln blo drmlrındn frlıdır. Blo drmlrı, rmşı

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

Yalıtkan İnce Filmlerin Morlet Dalgacığı ile Optik Analizinin Yapılması. Prof.Dr. Serhat ÖZDER OCAK 2012

Yalıtkan İnce Filmlerin Morlet Dalgacığı ile Optik Analizinin Yapılması. Prof.Dr. Serhat ÖZDER OCAK 2012 Ylıtn İnce Filmlerin Morlet Dlgcığı ile Opti Anlizinin Ypılmsı Prof.Dr. Serht ÖZDER sozder@comu.edu.tr OCAK İçeri. Ylıtn film için geçirgenli sinylinin (T( elde edilmesi.. n=sbit T(=?, Fourier Dönüşümü.

Detaylı

TG 2 ÖABT İLKÖĞRETİM MATEMATİK

TG 2 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey ir ısmının

Detaylı

S_IN UZO_IDAL SIKLIK KEST_IR_IM_INDE ONS UZGE CLEMEN_IN CRAMER-RAO ALT SINIRLARINA ETK_IS_I

S_IN UZO_IDAL SIKLIK KEST_IR_IM_INDE ONS UZGE CLEMEN_IN CRAMER-RAO ALT SINIRLARINA ETK_IS_I S_I UZO_IDAL SIKLIK KEST_IR_IM_IDE OS UZGE CLEME_I CRAMER-RAO ALT SIIRLARIA ETK_IS_I Mustf A. Altnky, Bulent Snkur, Emin Anrm Elektrik-Elektronik Muhendisligi Bolumu, Bogzici Universitesi, 8085 Beek _

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

İkinci Türevi Preinveks Olan Fonksiyonlar İçin Hermite-Hadamard Tipli İntegral Eşitsizlikleri

İkinci Türevi Preinveks Olan Fonksiyonlar İçin Hermite-Hadamard Tipli İntegral Eşitsizlikleri İkinci Türevi Preinveks Oln Fonksiyonlr İçin Hermite-Hdmrd Tili İntegrl Eşitsizlikleri İmdt İŞCAN*, Selim NUMAN*, Kerim BEKAR* *Giresun Üniversitesi, Fen Edeiyt Fkültesi, Mtemtik Bölümü, Giresun, TÜRKİYE

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

DENEY 2: AM MODÜLASYON / DEMODÜLASYON

DENEY 2: AM MODÜLASYON / DEMODÜLASYON DENEY 2: AM MODÜLASYON / DEMODÜLASYON AMAÇ: Genlik odülyonu ve deodülyonun ilişkin teorik heplrın ypılı, odültör ve deodültör devrelerinin gerçeklenerek teel kvrlrın inelenei. MALZEMELER Oilokop, güç kyngı

Detaylı

Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrın toplmı: 1 + 2 + 3 +...+ n =.(+) Ardışık çift syılrın toplmı : 2 + 4 + 6 +... + 2n = n.(n+1) Ardışık tek syılrın toplmı: 1 + 3 + 5 +... + (2n 1) = n.n=n 2

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN00 BİLGİSAYAR PROGRAMLAMA YİNELEME (RECURSION) Sunu Plnı Yinelemenin nlmı Yinelemeli fonksiyon tnımınd temel ve genel durum Bsit değişken tipleriyle yinelemeli fonksiyon oluşturm Dizi prmetreleriyle

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir.

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir. 9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR Aşağıdai teorem Homomorfizma teoremi olara da bilinir. Teoremi 9.. (.İzomorfizma Teoremi) f : G H bir grup homomorfizması olsun. Şu halde ( ) dir. Özel olara,

Detaylı

1. ÜNİTE 1. SAYILAR. Not:1.3

1. ÜNİTE 1. SAYILAR. Not:1.3 ) Rlr,,,,,,,,, ) S Sılrı (N + ) ÜNİTE SAYILAR tnısızdır ( ol üzere, sısının sıfır ölerse sonuç tnısız olur) tnısız,,, ) Doğl Sılr (N),,,, ) T Sılr (Z), ni Z Z Z,,,,,,, Z Z Teli-Çiftli: Sonu,,,, ile iten

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

INSA 473 Çelik Tasarım Esasları. Kirişler

INSA 473 Çelik Tasarım Esasları. Kirişler INSA 473 Çelik Tsrım Esslrı Kirişler Eğilmeye Çlışn Elemnlr Ylnızc eğilme momenti etkisinde oln elemnlr, eğilmeye çlışn elemnlr, kiriş dı verilmektedir. Çelik ypılrd kullnıln kirişler; 1) Dolu gövdeli

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

Matrisler Elementer Satır İşlemleri Gauss Eliminasyon

Matrisler Elementer Satır İşlemleri Gauss Eliminasyon Mtrisler Elementer Stır İşlemleri Guss Eliminson Mtrisler ve Stır İşlemleri Bir mtris dikdörtgen sılr tblosudur. Alt indisler girdilerin erini belirler. stır mn stır A m m m n n n mn Mtrisler boutlrı ile

Detaylı

Bir a C temel dizisini (tüm diziler -dizileridir) [a] gerçel

Bir a C temel dizisini (tüm diziler -dizileridir) [a] gerçel 14. Gerçel Sy lrd Dört fllem Bir temel dizisini (tüm diziler -dizileridir) [] gerçel sy s n götüren ƒ : fonksiyonunu ele ll m: ƒ() = []. Bu fonksiyon elette örtendir. flte resmi:......... ƒ ƒ() = [] =

Detaylı

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir?

1.BÖLÜM SORU. (x+3) (4x 2 13) = 3(x+3) denklemini sa layan x de- erlerinin çarp m kaçt r? x+3 kümesi afla dakilerden hangisidir? 1.BÖLÜM MATEMAT K Derginin u s s nd kinci Dereceden Denklemler, Eflitsizlikler ve Prol konusund çözümlü sorulr er lmktd r. Bu konud, ÖSS de ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik ollr,

Detaylı

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim

JOVO STEFANOVSKİ NAUM CELAKOSKİ. Sekizyıllık İlköğretim JOVO STEFNOVSKİ NUM CELKOSKİ Sekizyıllık İlköğretim Syın Öğrenci! u kitp, ders proğrmınd öngörülen ders mlzemesini öğrenmek için yrdımcı olcktır. Vektörler, öteleme ve dönme hkkınd yeni ilginç bilgiler

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

DALGIÇ POMPA MİLLERİNİN MODAL ANALİZİ

DALGIÇ POMPA MİLLERİNİN MODAL ANALİZİ DALGIÇ OMA MİLLİNİN MODAL ANALİZİ Hnn Gül ÇALIKLI ALAKO-CAI SANAİ ve TİCAT A.Ş. ASTAKT ezonns, lgõç poplr titreşi ynlõ problelere yol çn bşlõ etenleren biriir. Thri frens eğerinin, sistein oğl frens eğerine

Detaylı

3 fazlı sistemler genellikle "akım ve gerilim açısından" dengeli sistemlerdir.

3 fazlı sistemler genellikle akım ve gerilim açısından dengeli sistemlerdir. 4 İMİLİ BİLŞNL 98 yılınd Fortescue, "n-bğlı fzörden eydn gelen dengesiz bir sistein, dengeli fzörlerden eydn gelen n det siste içinde yeniden çözülebilir" olduğunu gösteriştir. Bunlr sistein orijinl fzörlerinin

Detaylı

1 a) TEVENİN (THEVENIN) TEOREMİNİN DENEYSEL OLARAK DOĞRULANMASI. Amaç: Tevenin teoremini doğrulamak ve yük direnci üzerinden akan akımı bulmak.

1 a) TEVENİN (THEVENIN) TEOREMİNİN DENEYSEL OLARAK DOĞRULANMASI. Amaç: Tevenin teoremini doğrulamak ve yük direnci üzerinden akan akımı bulmak. 1 ) TEVENİN (THEVENIN) TEOREMİNİN DENEYSEL OLARAK DOĞRULANMASI Amç: Tevenin teoremini doğrulmk ve yük direnci üzerinden kn kımı ulmk. Gerekli Ekipmnlr: DA Güç Kynğı, Ampermetre, Voltmetre, Dirençler, Dizilim

Detaylı

) ile algoritma başlatılır.

) ile algoritma başlatılır. GRADYANT YÖNTEMLER Bütün ısıtsız optimizasyon problemlerinde olduğu gibi, bir başlangıç notasından başlayara ardışı bir şeilde en iyi çözüme ulaşılır. Kısıtsız problemlerin çözümü aşağıdai algoritma izlenere

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

Üslü ifadeler Föyü KAZANIMLAR

Üslü ifadeler Föyü KAZANIMLAR Üslü ifdeler Föyü KAZANIMLAR T syılrın, t syı kuvvetlerini hesplr. Üslü ifdelerle ilgili teel kurllrı nlr, birbirine denk ifdeler oluşturur. Syılrın ondlık gösterilerini un t syı kuvvetlerini kullnrk çözüler.

Detaylı

KAYNAKLI BAĞLANTILAR (Örnekler)

KAYNAKLI BAĞLANTILAR (Örnekler) KAYNAKLI AĞLANTILAR (Örneler) ÖRNEK 1: 50 N lu bir ü, şeilde görüldüğü gibi, 00 li çeli nl nlnış bğlntı prçsı rcılığı ile trıltdır. Kn üzerinde oluşn siu gerilei esplınız. [ ] A 0.707 5 190 180 irincil

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş İ Ğ İ Ş ç İ İ Ö ş ş Ş ş ç Ş ş ş ç ç ş ş ş Ö ş ç ş ç ç ş ş ş ş ş ç ş ş ş ş ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş ş ş ç ş İİ İ İİ ç ş ş ç İ Ğİ İ İ Ş İ İ ş

Detaylı

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol

Yerel Topluluklar ve Yönetimler Arasında Sınır-Ötesi Đşbirliği Avrupa Çerçeve Sözleşmesine Ek Protokol Yerel Topluluklr ve Yönetimler Arsınd Sınır-Ötesi Đşirliği Avrup Çerçeve Sözleşmesine Ek Protokol Strsourg 9 Xl 1995 Avrup Antlşmlrı Serisi/159 Yerel Topluluklr vey Yönetimler rsınd Sınır-ötesi Đşirliği

Detaylı

POLİNOMLARIN ÇARPANLARA AYRILMASI

POLİNOMLARIN ÇARPANLARA AYRILMASI POLİNOMLARIN ÇARPANLARA AYRILMASI Tnım: P ( ) polinomu Q ( ) polinomun bölündüğünde bölüm B ( ), Kln ( ) 0 durumd, P ( ) = Q( ). B( ) yzılır. K = olsun. Bu Q ( ) ve B ( ) polinomlrın P ( ) polinomunun

Detaylı

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A.

Cevap D. 6. x = 3, y = 7, z = 9 olduğundan x + y < y ve. Cevap C. 7. x ile y aralarında asal olduğundan x 2 ile y sayıları da. Cevap A. eneme - / Mt MTEMTİK ENEMESİ. c - m. c - m -.., bulunur. y. 7, + 7 y + + 00 y + + + y + +, y lınr ı.. ^ - h. ^ + h. ^ + h ^ - h. ^ + h - & & bulunur.. ΩΩΩΩΔφφφ ΩΩφφ ΩΩΔφ 0 evp. ise ^ h ^h 7 ise ^ 7h b

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

Limit. Kapak Konusu: Gerçel Say lar V: Süreklilik ve Limit

Limit. Kapak Konusu: Gerçel Say lar V: Süreklilik ve Limit Kpk Konusu: Gerçel S lr V: Süreklilik Limit Limit v = ƒ() Bir bflk örne e bkl m. < c < b olsun. ƒ: [, b] \ {c}, grfi i fl dki gibi oln bir fonksion olsun. Fonksion c nokts nd tn mlnmm fl. Os fonksion c

Detaylı

Ş

Ş Ü Ş Ç ç Ö ş Ş Ü ç Ç Ğ Ş ş ç Ü ç ş ş Ç ş ş Ş ç Ç ç Ö Ğ ş Ü Ü ç ş ç ş Ğ Ş Ö ç Ö Ü Ü Ğ ç Ğ Ş şş Ğ ş ç ç ş ş ş Ö ş Ş ş Ü Ü ÜÜ Ö ş ÜŞ ş ç ş Ö Ğ Ğ ç ş Ü Ş Ğ ş ş ş ş ş Ğ ş ş ç ş ş Ü ş Ğ ş «ş Ü ş ş ş ş ş ş ç ç

Detaylı

Çözüm Kitapçığı Deneme-5

Çözüm Kitapçığı Deneme-5 KMU PERSONEL SEÇME SINVI ÖĞRETMENLİK LN İLGİSİ TESTİ İLKÖĞRETİM MTEMTİK ÖĞRETMENLİĞİ 7-9 ŞUT 7 Çözüm Kitpçığı Deneme- u testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey ir ısmının Merezimizin

Detaylı

Basınç Elemanları Elastik ve inelastik burkulma Etkili Boy. Bölüm 4. Yrd. Doç. Dr. Muharrem Aktaş 2009-Bahar

Basınç Elemanları Elastik ve inelastik burkulma Etkili Boy. Bölüm 4. Yrd. Doç. Dr. Muharrem Aktaş 2009-Bahar Bsınç Elemnlrı Elstik ve inelstik burkulm Etkili Boy Bölüm 4 Yrd. Doç. Dr. Muhrrem Aktş 009-Bhr Yısl çelik elemnlrının, eğilme momenti olmksızın sdece eksenel bsınç kuvveti ltınd olduğu durumlr vrdır.

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor.

1.BÖLÜM SORU SORU. Reel say larda her a ve b için a 2 b 2 = (a+b) 2 2ab biçiminde bir ifllemi tan mlan yor. .BÖLÜM MATEMAT K Derginin u sy s n fllem ve Moüler Aritmetik konusun çözümlü sorulr yer lmkt r. Bu konu, ÖSS e ç kn sorulr n çözümü için gerekli temel ilgileri ve prtik yollr, sorulr m z n çözümü içine

Detaylı

TYT / MATEMATİK Deneme - 6

TYT / MATEMATİK Deneme - 6 . Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h

Detaylı

MAK 1005 Bilgisayar Programlamaya Giriş. Diziler. Prof. Dr. Necmettin Kaya

MAK 1005 Bilgisayar Programlamaya Giriş. Diziler. Prof. Dr. Necmettin Kaya MAK 1005 Bilgisyr Progrmlmy Giriş Diziler Prof. Dr. Necmettin Ky DİZİ: Bir değişken içinde birden fzl ynı tip veriyi sklmk için kullnıln veri tipidir. Dizi elemnlrı indis numrsı (sır no) ile çğrılıp işlenirler.

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

A, A, A ) vektör bileşenleri

A, A, A ) vektör bileşenleri Elektromnetik Teori hr 006-007 Dönemi VEKTÖR VE SKLER KVRMI Mühendislik, fiik ve geometri ugulmlrınd iki türlü büüklük kullnılır: skler ve vektör. Skler, sdece büüklüğü oln niceliklerdir. elli bir ölçeği

Detaylı

ÖRNEK 8.8: Aşağıdaki şekilde bir su deposunun altında bağlanmış olan boru hattı temsil edilmiştir. Sistem 180F'de

ÖRNEK 8.8: Aşağıdaki şekilde bir su deposunun altında bağlanmış olan boru hattı temsil edilmiştir. Sistem 180F'de ÖRNEK 8.8: Aşğıdki şekilde ir su deposunun ltınd ğlnmış oln oru httı temsil edilmiştir. Sistem 80F'de su içermektedir. Boru httındn 00 l/dk kım sğlmk için tnktki su seviyesi ne olmlıdır? Suyun yoğunluğu

Detaylı

ç ç ç ğ ğ ğ ğ ç ç ğ ğ ç ğ ğ ğ ğ ğ ç ğ ç ç ç ğ ç ğ Ğ ç ğ ç ç Ğ Ğ ğ ğ ğ Ç Ü Ü ç Ç Ü Ğ Ü ğ ğ ç Ç ğ ç ğ ğ ç ç ç ç ğ ğ ç ç ğ ç ç ç ğ ğ ç ç ğ ç ğ ç Ö ç ğ ğ ğ ç ç Ö ç ğ ğ ğ ğ ğ ğ ğ ğ ç ğ ç ç ç ç ğ ç ğ Ğ çç ç

Detaylı

ş ş ğ ş ş ğ ğ ğ ş çç ş ç ğ ğ ş ş ğ ğ ş ç Ü ğ ğ ç ğ ş ç ğ ş ş ş ğ ğ ç ğ ç ş ç ş ğ ğ ş ç ç ç ç ç ğ ğ ş Ö ğ ğ ç ğ ğ ş ş ş ğ ç ş ğ ş ş ğ Ğ Ö ğ ç Ç ç Ö ğ Ş ş ğ Ğ Ç Ç Ş Ş Ğ Ü ğ Ş Ç ç ç ç ğ ğ ç Ğ ğ ç ğ ş ğ Ö

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ TG ÖABT İLKÖĞETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir ısmının İhtiyç

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy NWSA-Engineering Sciences Sttus : Originl Stud ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: Jnur 2015 E-Journl of New World Sciences Acdem Mustf Hlûk Srçoğlu Dumlupınr

Detaylı

Fizik 101: Ders 8 Ajanda

Fizik 101: Ders 8 Ajanda Fizik 0: Ders 8 Ajnd Sürtüne Engelleyici kuvvetler Son(uç) hız Çok prçcıklı sistelerin diniği Atwood kinesi Eğik düzlede iki kütleli genel durulr İlginç probleler Sürtüne (özetle): Sürtüne iki yüzey rsınd

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür.

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür. OLİNOMLAR o,,,... n, n birer reel syı, n bir doğl syı ve belirsiz bir elemn olmk üzere, o.. n n... n. n. biçimindeki ifdelere e göre düzenlenmiş reel ktsyılı ve bir belirsizli polinom denir. in bir polinomu,,r,t,k

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16

ege yayıncılık Oran Orant Özellikleri TEST : 91 a + 3b a b = 5 2 0,44 0,5 = 0,22 oldu una göre, a + b en az kaçt r? A) 3 B) 11 C) 14 D) 15 E) 16 Orn Ornt Özellikleri TEST : 91 1. 0,44 0,5 = 0,22 5. + 3 = 5 2 2. 3. 4. oldu un göre, kçt r? A) 0,2 B) 0,25 C) 0,5 D) 0,6 E) 0,75 y = 3 4 + y oldu un göre, y orn kçt r? A) 7 B) 1 C) 1 D) 7 E) 10 oldu un

Detaylı

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz.

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz. ELEKTRİK-ELEKTRONİK DERSİ VİZE SORU ÖRNEKLERİ Şekiller üzerindeki renkli işretlemeler soruy değil çözüme ittir: Mviler ilk şmd sgri bğımsız denklem çözmek için ypıln tnımlrı, Kırmızılr sonrki şmd güç dengesi

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı