BOOLE CEBRİ. BOOLE cebri. B={0,1} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } Birli işlem: tümleme { } AKSİYOMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BOOLE CEBRİ. BOOLE cebri. B={0,1} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } Birli işlem: tümleme { } AKSİYOMLAR"

Transkript

1 OOLE ERİ 54 YILINDA GEORGE OOLE, LOJİĞİ SİSTEMATİK OLARARAK ELE ALIP OOLE ERİNİ GELİŞTİRDİ. 93 DE.E. SHANNON ANAHTARLAMA ERİNİ GELİŞTİREREK OOLE ERİNİN ELEKTRİKLİ ANAHTARLAMA DEVRELERİNİN ÖZELLİKLERİNİ TEMSİL ETMEDE KULLANILAİLEEĞİNİ GÖSTERDİ. OOLE cebri ={,} kümesi üzerinde tanımlı İkili işlemler: VEYA, VE { +,. } irli işlem: tümleme { } AKSİYOMLAR. Kapalılık a+b Є a.b Є. Değişme a+b = b+a a.b = b.a 3. irleşme a+(b+c) = (a+b)+c a.(b.c) = (a.b).c 4. Etkisiz eleman a+=a a.=a 5. Dağılma a+(b.c) = (a+b). (a+c) a.(b+c)=(a.b) + (a.c). Tümleme a + a = a.a = ÖZELLİKLER VE TEOREMLER. Yutma a+=. Dönüşme (Involution) (a ) =a a.= 3. Sabit kuvvet (Idempotency) a+a+.=a a.a.=a TEOREM:.Y +.Y = Dağılma:.Y +.Y =.(Y + Y ) Tümleme:.(Y + Y ) =. () Etkisiz:.() = 4. Soğurma (Absorption) a+a.b=a a.(a+b)=a 5. Demorgan Teoremi (a + b + ) = a. b.. (a. b. ) = a + b.. İşlemler arası öncelik Lojik ifadelerin değerlendirilmesinde. Parantez. Tümleme 3. VE 4. VEYA TEOREM: +.Y = Etkisiz +.Y =. +.Y Dağılma. +.Y =.(+Y) Yutma.(+Y) =.() Etkisiz.() = sırası işlem öncelik sırasını belirtmektedir.

2 Teoremler Lojik ifadelerinin sadeleştirilmesinde kullanılır. Sadeleştirmeden amaç fonksiyonu en basit biçimde ifade etmektir. Z = a.b.c + a.b.c + a.b.c + a.b.c = a.b.c + a.b.c + a.b.c + a.b.c + a.b.c = a.b.c + a.b.c + a.b.c + a.b.c + a.b.c = (a+a ).b.c + a.b.c + a.b.c + a.b.c = ().b.c + a.b.c + a.b.c + a.b.c = b.c + a.b.c + a.b.c + a.b.c + a.b.c = b.c + a.b.c + a.b.c +a.b.c + a.b.c = b.c + a.(b +b).c + a.b.c + a.b.c = b.c + a.().c + a.b.c + a.b.c = b.c + a.c + a.b.(c+c ) = b.c + a.c + a.b Soru: Elde edilen sonucu Lojik kapılar ile gerçekleyiniz (Kapı giriş sayısı dikkate alınmadan) Soru: Elde edilen sonucu iki girişli kapılar ile gerçekleyiniz. Soru: Elde edilen Sonucu iki girişli NAND kapıları ile gerçekleyiniz Z = bc + ac + ab = c(b+a) + ab = c.(b.a ) + ab = ((c.(b.a ) ). (ab) ) Soru: Elde edilen sonucu iki girişli NOR kapıları ile gerçekleyiniz. Z = bc + ac + ab = c(b+a) + ab = (c + (b+a) ) + (a +b ) = ( ( (c + (b+a) ) + (a +b ) ) ) Lojik fonksiyonlar n kümesi (n elemanlı ikili kodlar kümesi) üzerinde tanımlanır ve üçe ayrılır. YALIN FONKSİYON: Çok girişli bir çıkışlı fonksiyon GENEL FONKSİYON: Çok girişli çok çıkışlı fonksiyon a b c y f y a b c y y f y y

3 TÜMÜYLE TANIMLANMAMIŞ FONKSİYONLAR: azı giriş kombinasyonları için fonksiyonun alacağı değerler tanımlanmamış olabilir (fonksiyonun alacağı değerler belirsizdir). ÖRNEK: D sayıları arttıran fonksiyon: a b c d Q3 Q Q Q a b c d f Q Q Q Q3 u giriş değerleri için devrenin çıkışlarının alacağı değerler belirsizdir. elirsiz değerler için kullanılmıştır. YALIN FONKSİYONLAR: n GİRİŞLİ İR SAYISAL DEVRENİN n ADET YALIN FONKSİYONU VARDIR. ÖRNEK: GİRİŞLİ İR SAYISAL DEVRENİN ADET YALIN LOJİK FONKSİYON VARDIR. Y f Y F F F F3 F4 F5 F F7 F F9 F F F F3 F4 F5 3

4 KANONİK VE STANDART İÇİMLER (çarpım, monom) (toplam, monal) MİNTERİMLER MATERİMLER Y Z TERİM SEMOL TERİM SEMOL Y Z m + y + z M = m Y Z m + y + z M = m Y Z m + y + z M = m Y Z m 3 + y + z M 3 = m 3 Y Z m 4 +y + z M 4 = m 4 Y Z m 5 +y + z M 5 = m 5 Y Z m +y + z M = m Y Z m 7 +y + z M 7 = m 7 İR OOLE FONKSİYONU VERİLEN İR DOĞRULUK TALOSUNDAN, FONKSİYONUN OLDUĞU MİNTERMLERİNE (çarpım, monom) VEYA (OR) İŞLEMİ UYGULANARAK İFADE EDİLİR (. tip kanonik açılım). F(,y,z)=. F(,y,z) +.F(,y,z) =.y. F(,,z) +.y. F(,,z) +.y. F(,,z) +.y. F(,,z) =.y.z.f(,,) +.y.z.f(,,) +.y.z.f(,,) +.y.z.f(,,) +.y.z.f(,,) +.y.z.f(,,) +.y.z.f(,,) +.y.z.f(,,) F= y z + y z + yz = m + m4 + m7 F= yz + y z + yz + yz = m3 + m5 + m + m7 Aynı fonksiyonların farklı ifadesi F = Sm (, 4, 7) F=Σ (, 4, 7) F = Sm (3, 5,, 7) F=Σ (3, 5,, 7) Y Z F fonksiyonu F fonksiyonu 4

5 F= y z + y z + yz = m + m4 + m7 F = m + m + m3 + m5 + m (F ) = (m + m + m3 + m5 + m) F = (m + m + m3 + m5 + m) = (m. m. m3. m5. m ) = (M. M. M3. M5. M) = (+y+z).(+y +z).(+y +z ).( +y+z ).( +y +z) F(,y,z) = π (,, 3, 5, ) İR OOLE FONKSİYONU MAKSİMUM TERİMLERİNE (toplam, monal) VE (AND) İŞLEMİ UYGULANARAK İFADE EDİLİR (. tip kanonik açılım). SORU: ( + Y) ( + Z) =? = +.Z + Y. + Y.Z = ( +.Z) + ( + Y.) + Y.Z =. ( + Z) +. ( + Y) + Y.Z = (. ) + (. ) + Y.Z = + + Y.Z = + Y.Z F= (Y Z +Y Z + YZ + YZ) + ( + ) YZ = Y Z +Y Z+YZ +YZ+ YZ = m4 + m5 + m + m7 + m3 = Sm(4, 5,, 7, 3) = π (,, ) SORU: ( + Y) ( + Y ) =? =. +.Y + Y. + Y.Y = +.Y + Y. + =. ( + Y )+ Y. =. + Y. = + Y. =. ( + Y) = SORU:.Y +.Z + Y.Z =? =.Y +.Z + Y.Z.(+ ) =.Y +.Z + Y.Z. +Y.Z. =.Y.( + Z) +.Z. ( + Y) =.Y +.Z F (,Y,Z)= Sm =? = π =? SORU: +.Y =? = +.Y +.Y = + Y.( + ) = + Y F (,Y)= Sm =? = π =? 5

6 SORU: F(,Y,Z)= Y Z + YZ + YZ + YZ + YZ F(,Y,Z)= Y Z + YZ + YZ + YZ + YZ (m) (m) (m3) (m) (m7) F(,Y,Z)= YZ ( + ) + YZ ( + ) + Z (Y + Y ) (m,m) (m3,m7) (m,m) F(,Y,Z)= YZ + YZ + Z = Y(Z + Z) + Z = Y + Z z y SORU: F(,Y,Z)= Y + Z FONKSİYONUNU GİRİŞLİ NAND KAPILARINI KULLANARAK GERÇEKLEYİNİZ F(,Y,Z)= ((Y + Z ) ) = (Y. ( Z ) ) Z Y SORU: F(,Y,Z)= Y + Z + Z FONKSİYONU İKİ GİRİŞLİ NAND KAPILARI KULLANARAK GERÇEKLEYİNİZ. F(,Y,Z) =.(Y+Z) + Z =.(Y.Z ) + Z = ((.(Y.Z ) + Z ) ) = ((.(Y.Z ) ). ( Z ) ) Y Z Z

7 SORU: F(,Y,Z)= Y + Z + Z FONKSİYONU İKİ GİRİŞLİ NOR KAPILARI KULLANARAK GERÇEKLEYİNİZ. F(,Y,Z) =.(Y+Z) + Z = ( +(Y+Z) ) + (+Z) Y Z Z SORU: F(A,,,D,E)= A + ( + ).( +.E ) FONKSİYONU İKİ GİRİŞLİ NAND KAPILARI KULLANARAK GERÇEKLEYİNİZ. Y (.Y) Y + Y A E VERİLEN FONKSİYONUN VE, VEYA KAPILARI İLE GERÇEKLENMESİ A D E VE DEĞİL GRAFİK SEMOLU İLE VE KAPILARI DEĞİL VEYA GRAFİK SEMOLU İLE VEYA KAPILARI VE DEĞİL KAPILARINA DÖNÜŞTÜRÜLÜR A D E FONKSİYON VE DEĞİL KAPILARI GRAFİK SEMOLU KULLANILARAK İFADE EDİLİR 7

8 SORU: F(A,,,D,E)= A + ( + ).( +.E ) FONKSİYONU İKİ GİRİŞLİ NOR KAPILARI KULLANARAK GERÇEKLEYİNİZ. Y (+ Y) Y.Y A E VERİLEN FONKSİYONUN VE, VEYA KAPILARI İLE GERÇEKLENMESİ VEYA DEĞİL GRAFİK SEMOLU İLE VEYA KAPILARI DEĞİL VE GRAFİK SEMOLU İLE VE KAPILARI VEYA DEĞİL KAPILARINA DÖNÜŞTÜRÜLÜR FONKSİYON VEYA DEĞİL KAPILARI GRAFİK SEMOLU KULLANILARAK İFADE EDİLİR LOJİK FONKSİYONLARIN MİNİMUMLAŞTIRILMASI (ASİTLEŞTİRİLMESİ) ir lojik fonksiyon bir çok şekilde ifade edilebilir. Yalınlaştırmada amaç bazı maliyet kriterlerine göre lojik fonksiyonun cebirsel ifadelerinden en uygun olanını seçmektir. Maliyet kriteri uygulamaya göre değişir. Örneğin ifadenin az sayıda çarpımlar (monom) içermesi, terimlerin az sayıda değişken içermesi, devrenin aynı tip lojik kapılardan oluşması gibi. ASAL ÇARPIM (TEMEL İÇEREN) Prime implicant : irinci kanonik açılımda yer alan bazı çarpımlar birleştirilerek daha az değişken içeren, birden fazla terime karşılık düşen yeni çarpımlar (terimler) elde edilebilir. u terimler (asal çarpan) minimum fonksiyon içerisinde yer almaya aday terimlerdir. ir fonksiyonun birinci kanonik açılımını oluşturan çarpımlar bu fonksiyon tarafından örtülürler (içerilirler).

9 LOJİK FONKSİYONLARIN MİNİMUMLAŞTIRILMASI (ASİTLEŞTİRİLMESİ) KARNAUGH DİYAGRAMI DEĞİŞKENLİ FONKSİYONLAR A () 3 A () A ) A () F(A,)=A+A = F(A,)=A+A +A = + A F(A,)=A +A 3 DEĞİŞKENLİ FONKSİYONLAR A A 7 A 5 A 4 A A 3 A A F(A,,)=A + F(A,,)= + A + A F(A,,) = A + + = (A ) 9

10 4 DEĞİŞKENLİ FONKSİYONLAR A A 4 A A AD 3 AD 5 A D A D 9 A D 5 A D 7 A D 3 A D A 4 A A A D D F(A,,,D) = D + D D F(A,,,D) = + + D F(A,,,D) = + + D SORU: F (A,,,D)= Σ (,,, 5,, 9, ) FONKSİYONUNU a. Çarpımların toplamı b. Toplamların çarpımı şeklinde basitleştiriniz. c. Fonksiyonu girişli NAND kapıları ile gerçekleyiniz. d. İki girişli nor kapıları ile gerçekleyiniz. D D F(A,,,D) = + + A D F = D + A + = (+)(A + )( +D)

11 UYGUN ASAL ÇARPIMLARIN SEÇİLMESİ: SORU: F(A,,,D)= Σ (,4,,,9,,,3,5) VERİLEN FONKSİYONUN TÜM ASAL ÇARPIMLAR KÜMESİNİ ULUNUZ. ASAL ÇARPANLARIN MALİYET HESAINDA HER DEĞİŞKEN, DEĞİLLER OLARAK ALINAAKTIR. D ASAL ÇARPANLAR KÜMESİ maliyet sembol A. 5 A..D A A.. 5 A azı fonksiyonda bazı noktalar sadece bir asal çarpım tarafından örtülür. u noktalara başlıca noktalar denir. u noktaları örten asal çarpımlara da gerekli asal çarpım denir. D ASAL ÇARPANLAR KÜMESİ maliyet sembol A. 5 A..D A A.. 5 A.... 7

12 Fonksiyonun doğru noktaları maliyet A S A L 5 Ç A R P I M L A R SEÇENEKLER TALOSUNUN İNDİRGENMESİ. aşlıca noktalar belirlenir. u tabloda 9 ve 5 başlıca noktalardır. u nedenle ve çarpımları işaretlenir maliyet

13 SEÇENEKLER TALOSUNUN İNDİRGENMESİ. Tabloda 3 ün numaralı terimini 4 örtmekte, 7 nin 4 numaralı terimini örtmektedir. u nedenle 4 3 ü örter,, 7 örter. Maliyetlerde işin içerisine katılarak 3 ve 7 satırları tablodan kaldırılır. 4 maliyet 3 4 maliyet SEÇENEKLER TALOSUNUN İNDİRGENMESİ. Tabloda 4 ve numaralı terimler başlıca noktalardır. u nedenle ve 4 terimlerini almak gerekir. u iki asal çarpım seçildiğinde tüm noktalar örtülmüş olur maliyet D Sonuç=

14 ETKİSİZ (DON T ARE) DURUMLAR EĞER İR FONKSİYON TÜM TERİMLERİ GİRİŞ OLARAK KAUL EDİYOR ŞARTI İLE MİNİMUMLAŞTIRMA İŞLEMİ GERÇEKLEŞTİRİLMİŞTİR. PRATİKTE AZI GİRİŞ KOMİNASYONLARI FONKSİYONUN ELİRLİ OLMADIĞI DURUMLAR VARDIR (önemsiz durumlar). UNLAR MÜMKÜN OLMAYAN GİRİŞLERDİR (Ya ilgili devrede fiziksel olarak oluşmazlar yada tasarımcı tarafından yasaklanmışlardır). ETKİSİZ KOMİNASYONLARI d(a,,,d)= Σ (,, 5) Şeklinde olan f(a,,,d)=σ (, 3, 7,, 5) D D D F= D + A D F= D + A F= D + A D F (a, b, c, d) = Σ (,4,,9,3,5) + Σ (,, ) verilen fonksiyonu en düşük maliyetle tasarlayınız (maliyet hesabında her değişken birim, her tümleme işlemi birim olarak kabul edilecektir. ASAL ÇARPANLAR KÜMESİ maliyet sembol A. 5.. A.. 3 A..D 4 A A.. 7 D 4

15 Fonksiyonun doğru noktaları maliyet A S A L Ç A R P I M L A R Tablo oluşturulurken ne olursa olsun durumu LOJİK olarak seçilir ve bu noktaların örtülmesine gerek olmadığından seçenekler tablosunda yer almazlar SEÇENEKLER TALOSUNUN İNDİRGENMESİ. aşlıca noktalar belirlenir. u tabloda 9 ve 5 başlıca noktalardır. u nedenle ve 4 çarpımları işaretlenir. u durumda 7 satırı da örtülmüş olacaktır maliyet

16 SEÇENEKLER TALOSUNUN İNDİRGENMESİ. Tabloda ve 3 aynı terimleri örtmektedir ve maliyetleri eşittir. u nedenle bunların arasından herhangi birisi seçilebilir. Aynı şekilde 5 ve içinde durum aynıdır. 4 maliyet 3 5 F=.4. ( + 3). (5 + ) =.4. ( ) = ) F= = A + AD + + A F= +4++ = A + AD + + F= = A + AD + A + A F= = A + AD + A + TÜM TASARIMLARIN MALİYETİ EŞİTTİR (7) F(,Y,Z)= YZ + Y Z + YZ + YZ ZAMANLAMA HATALARI Y Z Z Z Z.Z.Z +Y.Z Y Z Y Y.Z F(,Y,Z) = Z + YZ YZ= Z Z YZ Z Z +YZ

17 KARNAUGH DİYAGRAMLARI SEVYELİ TOPLAMLAR ŞEKLİNDE YAZILAN FONKSİYONLARDAKİ STATİK ZAMANLAMA HATALARINI TESİT ETMEDE KULLANILAİLİR. Y Z Z Z Y Y Z F(,Y,Z) = Z + YZ + Y D D F=ac + a b + bc d F=ac + a b + bc d + b c + abd + a c d 7

18 TEK VE ÇİFT FONKSİYONLAR TANIMLAR: TEK FONKSİYON: İÇERİSİNDE TEK SAYIDA OLAN n- ADET MINTERMDEN OLUŞAN FONKSİYON TEK FONKSİYON OLARAK İSİMLENDİRİLİR. F(A,)=A +A = A + F(A,,) = A + + = (A + A ) + (A + A ) = (A + A ) + (A + A ) = A + A + A + A TEK VE ÇİFT FONKSİYONLAR ÇİFT FONKSİYON: İÇERİSİNDE ÇİFT SAYIDA OLAN n- ADET MINTERMDEN OLUŞAN FONKSİYON ÇİFT FONKSİYON OLARAK İSİMLENDİRİLİR. F(A,)=(A +A ) = (A + ) F(A,,) = (A + + )

19 3 İTLİK VERİ İÇİN PARITY İTİ ÜRETEİ A P (tek) P (çift) F(A,,) = (A + + ) F(A,,) = (A + + ) QUINE-McLUSKY METODU METODUN TEMEL DÜŞÜNESİ ab + a b = a (b + b ) = a İLİŞKİSİNİN SİSTEMLİ İR ŞEKİLDE UYGULAMAKTIR. ÖRNEK: F(a,b,c) = a b c + a bc + a bc + ab c + abc + abc = Sm (,,,,, ). İçerisinde bulunan lerin sayısına göre guruplama işlemi İçerisinde hiç bulunmayan terimler İçerisinde adet bulunan terimler İçerisinde adet bulunan terimler İçerisinde 3 adet bulunan terimler () (4) () (3) () (7). ab + a b ilişkisinin uygulanması (,) (,4) (,3) (,) (4,) (3,7) (,7) 9

20 3. ab + a b ilişkisinin uygulanması (,,4,) (,4,,) (,3,,7) (,,3,7) 4. İki defa oluşan kombine edilen terimlerden birisi iptal edilir. (,,4,) (,3,,7) SONUÇ=b+c 5. Kombine edilemeyen terimler ile Sonucun oluşturulması. Kombine edilemeyen terimler arasında luzumsuz terimler bulunabilir. Örnek: f(a,b,c,d) = a b c d + a bc d + a bc d + ab c d + abc d + abcd + abcd = Sm (,,,,,, FONKSİYONU ASİTLEŞTİRİNİZ () (4) (5) (9) (3) (4) (5) (,5) (,9) (4,5) (5,3) (9,3) (3,5) (4,5) (,5,9,3) (,9,5,3) (4,5) (3,5) (4,5) SONUÇ=c d + a bc + abd + abc 7. Kombine edilemeyen terimler tablosu hazırlanır (4,5) a bc (3,5) abd (4,5) abc (,5,9,3) c d SONUÇ=c d + a bc + abc MALİYET FAKTÖRÜ FONKSİYONUN ELDE EDİLİŞİNDE KULLANILAAK ELEMAN SAYISINI ELİRTİR. KAPILARA UYGULANAAK OLAN GİRİŞ SAYISIDIR. c d, a bc 3, abc 3, c d + a bc + abc OLDUĞUNDAN FONKSİYONUN MALİYET FAKTÖRÜ= =

21 ÖRNEK: F(a,b,c)=a b c + a bc + a bc + ab c + ab c + abc fonksiyonu basitleştiriniz Kombine edilemeyen terimler (,3) a c (,3) a b (4,5) ab (,5) b c (,5) bc (4,) ac A (,3) a c (,5) b c (,3) a b D (,) bc E (4,5) ab F (4,) ac u tablodan yola çıkılarak maliyet faktörü en küçük olan minimumlaştırılmış ifadeyi bulmak için PETRIK METODU uygulanır. u metod da kombine edilemeyen terimlere isimler atanır (A,,, ). u değişkenlerin tablodaki durumları göz önüne alınarak bir P fonksiyonu tanımlanır A (,3) a c (,5) b c (,3) a b D (,) bc E (4,5) ab F (4,) ac P= (A + ).( + D).(A + ).(E + F).( + E).(D + F) (A+) (A+) = A + A + A + = A + (E+F) (E+) = = E + F (D+) (D+F) = = D + F P= (A +)(E+F)(D+F) = (AE+AF+E+F)(D+F) = AED + AFD + ED + FD + AEF + AF + EF + F U FONKSİYONUN HER İR TERİMİ FONKSİYONUN MİNİMUMLAŞTIRILMASI İÇİN ALINMASI GEREKEN TERİMLERİ GÖSTERMEKTEDİR. MALİYET FAKTÖRÜ EN DÜŞÜK OLAN TERİMLER AED VE F DİR. F(a,b,c) = a c + ab + bc F(a,b,c) = b c + a b + ac

22 A (,3) a c (,5) b c (,3) a b D (,) bc E (4,5) ab F (4,) ac F(a,b,c) = a c + ab + bc A (,3) a c (,5) b c (,3) a b D (,) bc E (4,5) ab F (4,) ac F(a,b,c) = b c + a b + ac SORULARINIZ

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) F(A, B, C)= Σm(1,3,5,6,7) : 1. kanonik açılım = A'B'C + A'BC + AB'C + ABC' + ABC A B C F F= AB+C Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi)

Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) Lojik Fonksiyonların Yalınlaştırılması (İndirgenmesi) ir lojik fonksiyonun birçok cebirsel ifadesi vardır. (kz. kanonik açılımlar ve yalınlaştırılmış ifadeleri) Yalınlaştırmada amaç, belli bir maliyet

Detaylı

Boole Cebri. (Boolean Algebra)

Boole Cebri. (Boolean Algebra) Boole Cebri (Boolean Algebra) 3 temel işlem bulunmaktadır: Boole Cebri İşlemleri İşlem: VE (AND) VEYA (OR) TÜMLEME (NOT) İfadesi: xy, x y x + y x Doğruluk tablosu: x y xy 0 0 0 x y x+y 0 0 0 x x 0 1 0

Detaylı

Boole Cebri. Muhammet Baykara

Boole Cebri. Muhammet Baykara Boole Cebri Boolean Cebri, Mantıksal Bağlaçlar, Lojik Kapılar ve Çalışma Mantıkları, Doğruluk Tabloları, Boole Cebri Teoremleri, Lojik İfadelerin Sadeleştirilmeleri Muhammet Baykara mbaykara@firat.edu.tr

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-5 14.03.2016 Karnaugh Haritaları Çarpımlar toplamı yada toplamlar çarpımı formundaki lojikifadelerin sadeleştirilmesine

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

BİL 201 Geçit düzeyinde yalınlaştırma (Gate-Level Minimization) Hacettepe Üniversitesi Bilgisayar Müh. Bölümü

BİL 201 Geçit düzeyinde yalınlaştırma (Gate-Level Minimization) Hacettepe Üniversitesi Bilgisayar Müh. Bölümü BİL 2 Geçit düzeyinde yalınlaştırma (Gate-Level Minimization) Hacettepe Üniversitesi Bilgisayar Müh. Bölümü Boole Cebiri ve Temel Geçitler Boole cebiri (Boolean algebra ) Boole işlevleri (Boolean functions)

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-3 29.02.2016 Boolean Algebra George Boole (1815-1864) 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-4 07.03.2016 Standart Formlar (CanonicalForms) Lojik ifadeler, çarpımlar toplamı ya da toplamlar çarpımı formunda ifade

Detaylı

Boole Cebiri ve Temel Geçitler

Boole Cebiri ve Temel Geçitler oole ebiri ve Temel Geçitler İL 2 Geçit düzeyinde yalınlaştırma (Gate-Level Minimization) Hacettepe Üniversitesi ilgisayar Müh. ölümü oole cebiri (oolean algebra ) oole işlevleri (oolean functions) Temel

Detaylı

MİNTERİM VE MAXİTERİM

MİNTERİM VE MAXİTERİM MİNTERİM VE MAXİTERİM İkili bir değişken Boolean ifadesi olarak değişkenin kendisi (A) veya değişkenin değili ( A ) şeklinde gösterilebilir. VE kapısına uygulanan A ve B değişkenlerinin iki şekilde Boolean

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 6. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar KARNO HARITALARI İki ve Üç değişkenli Karno Haritaları Dört değişkenli Karno Haritaları Beş değişkenli

Detaylı

Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification)

Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification) BSE 207 Mantık Devreleri Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi (Boolean Algebra and Logic Simplification) Sakarya Üniversitesi Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini

Detaylı

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH.

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH. SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 Ders Konusu 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak üzere ortaya konulmuş bir matematiksel sistemdir. İkilik Sayı Sistemi Çoğu

Detaylı

SAYISAL DEVRELER. Analog - Sayısal (Dijital) İşaretler:

SAYISAL DEVRELER. Analog - Sayısal (Dijital) İşaretler: SYISL DEVRELER Yrd.Doç.Dr. Feza UZLU İstanbul Teknik Üniversitesi ilgisayar Mühendisliği ölümü www.buzluca.info/sayisal. nalog - Sayısal (Dijital) İşaretler: Gerçek dünyada karşılaştığımız bir çok fiziksel

Detaylı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Üniversitesi Ege MYO Mekatronik Programı SYISL ELEKTRONİK Ege Üniversitesi Ege MYO Mekatronik Programı ÖLÜM 4 OOLEN RİTMETİĞİ VE DEMORGN TEOREMLERİ OOLEN TOPLM oolean toplama VEY işlemine eşittir. Toplamanın kuralı: 0+0=0 0+= +0= += oolean aritmetiğinde

Detaylı

Elektrik Elektronik Mühendisliği Bölümü Lojik Devre Laboratuarı DENEY-2 TEMEL KAPI DEVRELERİ KULLANILARAK LOJİK FONKSİYONLARIN GERÇEKLEŞTİRİLMESİ

Elektrik Elektronik Mühendisliği Bölümü Lojik Devre Laboratuarı DENEY-2 TEMEL KAPI DEVRELERİ KULLANILARAK LOJİK FONKSİYONLARIN GERÇEKLEŞTİRİLMESİ 2.1 Ön Çalışma Deney çalışmasında yapılacak uygulamaların benzetimlerini yaparak, sonuçlarını ön çalışma raporu olarak hazırlayınız. 2.2 Deneyin Amacı Tümleşik devre olarak üretilmiş kapı devreleri kullanarak;

Detaylı

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2

ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 ELK2016 SAYISAL TASARIM DERSİ LABORATUVARI DENEY NO: 2 DENEYİN ADI: LOJİK FONKSİYONLARIN SADECE TEK TİP KAPILARLA (SADECE NAND (VEDEĞİL), SADECE NOR (VEYADEĞİL)) GERÇEKLENMESİ VE ARİTMETİK İŞLEM DEVRELERİ

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

DOĞRULUK TABLOLARI (TRUTH TABLE)

DOĞRULUK TABLOLARI (TRUTH TABLE) LOJİK KAPILAR DOĞRULUK TABLOLARI (TRUTH TABLE) Doğruluk tabloları sayısal devrelerin tasarımında ve analizinde kullanılan en basit ve faydalı yöntemdir. Doğruluk tablosu giriş değişkenlerini alabileceği

Detaylı

Deney 2: Lojik Devre Analizi

Deney 2: Lojik Devre Analizi eney : Lojik evre nalizi Genel ilgiler: u deneyde, SSI (Small Scale Integration: Küçük Ölçekte Tümleştirme, - kapı) devreler kullanılarak, lojik kapıların, oole fonksiyonlarının, oole ebri aksiyom ve teoremlerinin

Detaylı

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ

LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ LOJİK İFADENİN VE-DEĞİL VEYA VEYA-DEĞİL LOJİK DİYAGRAMLARINA DÖNÜŞTÜRÜLMESİ Sayısal tasarımcılar tasarladıkları devrelerde çoğu zaman VE-Değil yada VEYA-Değil kapılarını, VE yada VEYA kapılarından daha

Detaylı

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir.

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir. BOOLEAN MATEMATİĞİ İngiliz matematikçi George Bole tarafından 1854 yılında geliştirilen BOOLEAN matematiği sayısal devrelerin tasarımında ve analizinde kullanılması 1938 yılında Claude Shanon tarafından

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-6 28.03.2016 Lojik Kapılar (Gates) Lojik devrelerin en temel elemanı, lojik kapılardır. Kapılar, lojik değişkenlerin değerlerini

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa H.B. UÇAR 1 2. HAFTA Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Entegre Yapıları Lojik Kapılar Lojik

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 3. HAFTA Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Karnaugh Haritaları Karnaugh

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 5. HAFTA BİLEŞİK MANTIK DEVRELERİ (COMBINATIONAL LOGIC) Veri Seçiciler (Multiplexer)

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 8. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar MULTIPLEXERS (VERİ SEÇİCİLER), ÜÇ DURUMLU BUFFERS, DECODERS (KOD ÇÖZÜCÜLER) BELLEK ELEMANLARI 2 8.2.

Detaylı

Deney 1: Lojik Kapıların Lojik Gerilim Seviyeleri

Deney 1: Lojik Kapıların Lojik Gerilim Seviyeleri eney : Lojik Kapıların Lojik Gerilim Seviyeleri eneyin macı: Lojik kapıların giriş ve çıkış lojik gerilim seviyelerinin ölçülmesi Genel ilgiler: ir giriş ve bir çıkışlı en basit lojik kapı olan EĞİL (NOT)

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi BÖLÜM 4 (Boolean lgebra and Logic Simplification) maçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Başlıklar Booleron Kurallarını

Detaylı

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü * Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q

Detaylı

Minterm'e Karşı Maxterm Çözümü

Minterm'e Karşı Maxterm Çözümü Minterm'e Karşı Maxterm Çözümü Şimdiye kadar mantık sadeleştirme problemlerine Çarpımlar-ın-Toplamı (SOP) çözümlerini bulduk. Her bir SOP çözümü için aynı zamanda Toplamlar-ın-Çarpımı (POS) çözümü de vardır,

Detaylı

BSM 101 Bilgisayar Mühendisliğine Giriş

BSM 101 Bilgisayar Mühendisliğine Giriş BSM 101 Bilgisayar Mühendisliğine Giriş Bool Cebri Hazırlayan: Ben kimim? www.sakarya.edu.tr/~fdikbiyik Lisans: İstanbul Üniversitesi Yüksek Lisans ve Doktora: University of California, Davis, ABD Öğretim:

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 5. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. Birleşik Mantık Tanımı X{x, x, x, x n,}}

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

4. HAFTA Boole Cebiri Uygulamaları Standart Formlar. Prof. Mehmet Akbaba

4. HAFTA Boole Cebiri Uygulamaları Standart Formlar. Prof. Mehmet Akbaba 4. HAFTA Boole Cebiri Uygulamaları Standart Formlar Prof. Dr. Mehmet Akbaba 1 4.1 STANDART FORMLAR: SOP VE POS FORMALRININ BİRİBİRİLERİNE DÖNÜŞTÜRÜLMESİ POS( product-of-sums) formunda verilmiş bir ifade,

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 7. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar ÇOK DÜZEYLĠ (BASAMAKLI) MANTIK DEVRELERĠ, NAND VE NOR KAPILARI Dört basamaklı (Düzeyli) Mantık Devresi

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

BÖLÜM - 5 KARNOUGH HARITALARI

BÖLÜM - 5 KARNOUGH HARITALARI ÖLÜM - 5 KRNOUGH HRITLRI KRNOUGH HRITLRI oolean fonksiyonlarını teoremler,kurallar ve özdeşlikler yardımı ile indirgeyebileceğimizi bir önceki bölümde gördük. ncak yapılan bu sadeleştirme işleminde birbirini

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

T.C. İstanbul Medeniyet Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

T.C. İstanbul Medeniyet Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü T.C. İstanbul Medeniyet Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü MANTIK DEVRELERİ TASARIMI LABORATUVARI DENEY FÖYLERİ 2018 Deney 1: MANTIK KAPILARI VE

Detaylı

8.SINIF CEBirsel ifadeler

8.SINIF CEBirsel ifadeler KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1

1. BÖLÜM. Sayılarda Temel Kavramlar. Bölme - Bölünebilme - Faktöriyel EBOB - EKOK. Kontrol Noktası 1 1. BÖLÜM Sayılarda Temel Kavramlar Bölme - Bölünebilme - Faktöriyel EBOB - EKOK Kontrol Noktası 1 Isınma Hareketleri 1 Uygun eşleştirmeleri yapınız. I. {0, 1, 2,..., 9} II. {1, 2, 3,...} III. {0, 1, 2,

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 13 Mayıs Matematik Sorularının Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / 1 Mayıs 01 Matematik Sorularının Çözümleri 1. 9! 8! 7! 9! + 8! + 7! 7!.(9.8 8 1) 7!.(9.8+ 8+ 1) 6 81 9 7. 4, π, π π,14

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri

Detaylı

ÜNİTE 1: TEMEL KAVRAMLAR

ÜNİTE 1: TEMEL KAVRAMLAR MATEMATİK ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar ADF 0 RAKAM Sayı oluşturmak için kullanılan sembollere... denir. 0 luk sayma düzenindeki rakamlar 0,,,... 8 ve 9 olup 0 tanedir. örnek a, b, c sıfırdan

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

BÖLÜM 2 SAYI SİSTEMLERİ

BÖLÜM 2 SAYI SİSTEMLERİ İÇİNDEKİLER BÖLÜM 1 GİRİŞ 1.1. Lojik devre içeriği... (1) 1.1.1. Kodlama, Kod tabloları... (2) 1.1.2. Kombinezonsal Devre / Ardışıl Devre... (4) 1.1.3. Kanonik Model / Algiritmik Model... (4) 1.1.4. Tasarım

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

DENEY 4-1 Kodlayıcı Devreler

DENEY 4-1 Kodlayıcı Devreler DENEY 4-1 Kodlayıcı Devreler DENEYİN AMACI 1. Kodlayıcı devrelerin çalışma prensibini anlamak. GENEL BİLGİLER Kodlayıcı, bir ya da daha fazla girişi alıp, belirli bir çıkış kodu üreten kombinasyonel bir

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

BLM 221 MANTIK DEVRELERİ

BLM 221 MANTIK DEVRELERİ 4. HAFTA BLM 221 MANTIK DEVRELERİ Prof Dr Mehmet AKBABA mehmetakbaba@karabuk.edu.tr Temel Kavramlar Boole Cebiri Uygulamaları Standart Formlar Standart Formlar: Sop ve Pos Formlarının Birbirlerine Dönüştürülmesi

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

12-A. Sayılar - 1 TEST

12-A. Sayılar - 1 TEST -A TEST Sayılar -. Birbirinden farklı beş pozitif tam sayının toplamı 0 dur. Bu sayılardan sadece ikisi den büyüktür. Bu sayılardan üç tanesi çift sayıdır. Buna göre bu sayılardan en büyüğü en çok kaç

Detaylı

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir.

Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. 1 B)ÇARPANLARA AYIRMA VE ÖZDEŞLİKLER: Çok terimli bir ifadeyi iki ya da daha çok ifadenin çarpımı şeklinde yazmaya çarpanlara ayırma denir. Çarpanlara Ayırma Yöntemleri: 1)Ortak Çarpan Parantezine Alma:

Detaylı

Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme özelliği (commutative law) Ters (inverse) Dağılım özelliği (distributive law)

Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme özelliği (commutative law) Ters (inverse) Dağılım özelliği (distributive law) Temel Tnımlr BİL 201 Boole Ceiri ve Temel Geçitler (Boolen Alger & Logic Gtes) Bilgisyr Mühendisligi Bölümü Hcettepe Üniversitesi Kplılık (closure) Birleşme özelliği (ssocitive lw) Yer değiştirme özelliği

Detaylı

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması

Mantık fonksiyonlarından devre çizimi 6 Çizilmiş bir devrenin mantık fonksiyonunun bulunması DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır.

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır. . A = {,,,4,5,6 } kümesinin boş olmayan bütün alt kümelerindeki en küçük elemanların aritmetik ortalaması kaçtır? 6 7 8 9 40 A) B) C) D) E) 9 0 0 ÖZEL EGE LİSESİ. MATEMATİK YARIŞMASI. (abc) üç basamaklı,

Detaylı

Bölüm 3 Toplama ve Çıkarma Devreleri

Bölüm 3 Toplama ve Çıkarma Devreleri Bölüm 3 Toplama ve Çıkarma Devreleri DENEY 3- Yarım ve Tam Toplayıcı Devreler DENEYİN AMACI. Aritmetik birimdeki yarım ve tam toplayıcıların karakteristiklerini anlamak. 2. Temel kapılar ve IC kullanarak

Detaylı

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir.

6. Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir. 5. KOMBİNEZONSAL LOJİK DEVRE TASARIMI 5.1. Kombinezonsal Devre Tasarımı 1. Problem sözle tanıtılır, 2. Giriş ve çıkış değişkenlerinin sayısı belirlenir ve adlandırılır, 3. Probleme ilişkin doğruluk tablosu

Detaylı

ARDIŞIL DEVRELER SENKRON ARDIŞIL DEVRELER

ARDIŞIL DEVRELER SENKRON ARDIŞIL DEVRELER ARDIŞIL DEVRELER TANIM: ÇIKIŞLARIN BELİRLİ BİR ANDAKİ DEĞERİ, GİRİŞLERİN YANLIZA O ANKİ DEĞERİNE BAĞLI OLAN DEVRELER KOMBİNASYONEL DEVRELER OLARAK İSİMLENDİRİLİR. ÇIKIŞLARIN BELİRLİ BİR ANDAKİ DEĞERİ,

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü

BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz Dönemi 2. Ara Sınav Adı Soyadı Öğrenci Numarası Bölümü TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü Elektrik Elektronik Mühendisliği Bölümü BİL 264 Mantıksal Devre Tasarımı ELE 263 Sayısal Sistem Tasarımı 2014 2015 Öğretim Yılı Yaz

Detaylı

ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı

ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı T.C. Maltepe Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 204 Mantık Devreleri Laboratuvarı Deney Kitapçığı Dersin Sorumlusu Yrd. Doç. Dr. Zehra Çekmen

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOULU

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOULU ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOULU BMT109 SAYISAL ELEKTRONİK Öğr.Gör.Uğur YEDEKÇİOğLU Boolean İfadesinden Sayısal Devrelerin Çizilmesi Örnek : D = B+AC ifadesini lojik kapıları kullanarak çiziniz.

Detaylı

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi

DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEY 3a- Yarım Toplayıcı ve Tam Toplayıcı Devresi DENEYİN AMACI 1. Aritmetik birimdeki yarım ve tam toplayıcıların karakteristiklerini anlamak. GENEL BİLGİLER Toplama devreleri, Yarım Toplayıcı (YT) ve

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz. 1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.

Detaylı

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1

Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar. Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler ve Temel Mantıksal (Lojik) Yapılar Bilgisayar Mühendisliğine Giriş 1 Yarı İletkenler Bilgisayar Mühendisliğine Giriş 2 Elektrik iletkenliği bakımından, iletken ile yalıtkan arasında kalan

Detaylı

BÖLÜNEBĐLME KURALLARI

BÖLÜNEBĐLME KURALLARI YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS - 2 2-2 1 1-1 1 kalanı bulmak için sağdan ve + ile başlamak gerekir BÖLÜNEBĐLME KURALLARI 2 Đle Bölünebilme: tüm çift sayılar, yani birler

Detaylı

KONU: ÇARPANLARA AYIRMA TARİH: YER:LAB.4 _PC5

KONU: ÇARPANLARA AYIRMA TARİH: YER:LAB.4 _PC5 KONU: ÇARPANLARA AYIRMA TARİH:29.11.2011 YER:LAB.4 _PC5 İçindekiler KONU HAKKINDA GENEL BİLGİ :...3 A.ORTAK ÇARPAN PARANTEZİNE ALMA :...3 B.GRUPLANDIRARAK ÇARPANLARA AYIRMA:...3 C.İKİ KARE FARKI OLAN İFADELERİN

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı