Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi"

Transkript

1 Jorl o Eieeri d trl Scieces Mühedisli ve Fe Bilimleri Derisi Sim Vol/Cilt 6 Isse/Sı 3 Arştırm Mlesi / eserch Article O A BODAY VALE POBLEM WITH MATIX COEFFICIET WHICH HAS SPECTAL PAAMETE I BODAY CODITIO Ftm AYDI AKGÜ * Mehmet BAYAMOĞL Yıldız Tei Üiversitesi Kim-Metlji Fültesi Mtemti Mühedisliği Bölümü Eseler-İSTABL Geliş/eceived: 38 Kl/Accepted: 88 ABSTACT I this pper ollowi odr vle prolem is cosidered Here λ < < λ is sel-djoit mtri ctios is positive mtri re costts stis some coditios d λ is spectrl prmeterthe spectrm o cosidered odr vle prolem is ivestited d the epsio ormls ccordi to eievles re otied Kewords: Sel-djoit opertor spectrl prmeter eievle eiectio SII KOŞLDA SPEKTAL PAAMETE BLA MATİS KATSAYILI SII DEĞE POBLEMİ ÜZEİE ÖZET B çlışmd şğıdi sıır değer prolemi ele lımıştır Brd λ < < λ otl edie eş mtrisler poziti mtris zı oşllrı sğl sit sılr λ spetrl prmetredir Ele lı sıır değer prolemii spetrm icelemiş özosiolr öre çılım ormülleri elde edilmiştir Ahtr Sözcüler: Kedie-eş opertör spetrl prmetre özdeğer özosio * Sorml Yzr/Correspodi Athor: tel:

2 76 GİİŞ Fizite sıır oşld spetrl prmetre l diersiel delemler içi sıır değer prolemie sı sı rstlır[3] Poisso ir mei prolemii sıır oşld spetrl prmetre l λ λ < < şelide sıır değer prolemii icelemesie idiremiştir B çlışmd üümüze dr sıır oşld spetrl prmetre l irço sıır değer prolemi icelemiştir B çlışmlr öre olr sırsıl [][7] [8][9][][8][][] çlışmlrı österileilir Ktsılrı otl mtrisler olm üzere öz öüe lı çlışm e oşllrl [7] çlışmsıı devmıdır B çlışmd l < < λ olm üzere λ 3 sıır değer prolemii spetrm ve özosiolr öre çılım ormülleri iceleecetirbrd q q q q r r r r elemlrı reel değerli süreli osio ol edie-eş otl mtrisler poziti mtris ve ise < ve oşllrıı sğl reel sılrdır λ omples prmetredir [ ] L elemlrı [ ] de tımlı omples değerli osio ol ileşeli vetör osiodr i süreliliği sitli içi l O Bodr Vle Prolem with Mtri Coeiciet

3 F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3 edilmiştir Geelde i elemlrıı ölçüleilirliği ve d < eterlidir [ ] L ile her ileşei ölçüleilir omples değerli ve d < oşl sğl österilmetedir B ümede ii vetörü toplmı olmsı vetörlerii ümesii z z z z ile ir vetörü slerle çrpımı şelide tımlırs L [ ] c c c c ümesi lieer z olştrr Eğer ii vetörü iç çrpımı şelide tımlırs L [ ] zı olştrr z z d zı şğıdi orm öre tm iç-çrpım zı i Hilert d Tıml iç-çrpım ve orml olştrl Hilert zı d L [ ] ie de tımlı osiolr içi L [ ] österilecetir semolüle ilie Hilert zıdır Öcelile idesile olştrl msiml ve miiml opertörleri tımlrı verilecetir D çı rlığıı her plı lt rlığıd edisi türevii her ileşei mtl süreli ol vetör osiolrıı ümesi ols Kolc örülür i l D e it her erde oğ ol ir lieer miolddr vetör osio içi tımlıdır D L [ ] de her elemlrııvetör osiolrıı ümesi [ ] ve l L [ ] D L ie 77

4 O Bodr Vle Prolem with Mtri Coeiciet D ile österilsi Tım ümesi D ol L opertörü D L l ve ie şelide tımlsı L : L [ ] L [ ] opertörüe L [ ] de l ile olştrl msiml opertör deir [] Açıtır i L ir lieer opertördür rlığıd sol destee ship ve D e it osiolrı ümesi D ile österilsi D L [ ] de heme her erde oğdr[]tım ümesi D ol L opertörü her D içi şğıdi şeilde tımlsı L l Kolc örülür i L ir simetri opertördür L ı pışı L ile österilirse L de l ile olştrl miiml plı opertördür L opertörü [ ] D L içi * L L vrdır ve L ı tım ümesi ş şeildedir: { D L : } D L oldğ ve [ ] L ı deet idisii oldğ ilimetedir[] L de T opertörü şğıdi şeilde tımlilir: D T { L [ ] ve [ ] de mtl süreli l L [ ] } ve D T içi T l Böle tımlmış T L [ ] L [ ] : ols opertörü edie eş opertördür[] Tıml T opertörü dh sor llılctır 3 prolemide örüldüğü ii λ özdeğeri omples spetrl prmetre 3 oşld lmtdır B öre lieer opertörler teorisii ötemleri doğrd lmmtdır Ft -3 prolemi dh eiş zd öz öüe lıırs prolem olğ sıır değer prolemie idireeilir -3 POBLEMİİ ÖZDEĞE VE ÖZFOKSİYOLAI -3 prolemii özosio deildiğide ; [ ] rlığıd irici türevi ve osio mtl süreli delemii ve -3 oşllrıı sğl özdeş olr sıır olm osio lşılır ve rd λ sısı d osio rşılı ele özdeğerdir λ λ -3 prolemii omples özdeğerleri omples ise sırsıl özdeğerlere rşılı ele özosiolr omples ols 78

5 F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3 < < λ λ 3 < < λ λ i her ii ı sğd ile 4 ü ise her ii ı sold ile sler çrpılırs C zı lmıd λ λ elde edilir B ii ide ir iride çırılıp eşitliği her ii ıı iterli lıırs edie eş mtris oldğd; λ d λ 7 olr oşld dolı ve dır dolısıl 7 de λ λ d 3 sıır oşld; ie lr Brd 8 i her ii ı ile çrpılırs ; olr Bölece; lr 8 9 lr 8 ve 9 d l ideler 7 de llılırs 79

6 O Bodr Vle Prolem with Mtri Coeiciet λ d λ λ λ λ lr Brd λ d λ d λ elde edilir delemii tsılrı elemlrı reel değerli süreli osio ol mtrisler oldğd osiod λ özdeğerie rşılı ele özvetör olctır B öre 9d erie olrs olr Brd λ λ d poziti mtris oldğd im λ lr Dolısıl λ özdeğeri reeldir Bölece λ ei özdeğer oldğd -3 sıır değer prolemii özdeğerlerii reel sılrd olştğ soc vrılır Yie ele lı prolemi tsılrı ve özdeğerleri reel oldğd dolı özosiolrı d reel değerli lıilir B öre d sor -3 prolemi özosiolrıı değerli oldlrı vrsılctır 3-3 POBLEMİ YG Bİ HİLBET ZAYIDA Bİ KEDİE-EŞ OPEATÖE İDİGEYEEK SPEKTAL ÖZELLİKLEİİ İCELEMESİ Öce [ ] rlığıd şğıdi şeilde ir µ ölçümü tımlır; [ {} d m µ m m rd otl mtrisdir 3 m 8

7 F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3 µ ü tımıd örüldüğü ii m [ eşittir L [ ] µ ile [ ] oşl sğl her [ ] Brd iç çrpım ümesii ölçümü m i Leesqe ölçümüe de tımlı µ ölçüleilir ve içi dµ < C değerli osiolr ümesi österilsi d r ij j i d i j şelide tımlmıştır B şeilde tıml iç çrpım µ ölçümüe öre tımlmış iççrpım olr dldırılctır B üme de vetörleri toplmı ve sı ile çrpımı işlemlerie öre ir lieer zdır L [ ] µ rılilir ir Hilert zı olştrr[] rı: µ ölçümüü tımıd örüldüğü ii v C ie L [ ] µ zı zı ile çışır L [ ] C Brd L [ ] dh öce tıml ve ileşeli osiolrd olş z C ise otl omples vetör zıdır Bir ş deişle L [ ] µ vetörü { } Sğ trti [ öre tımlıdır [ ] µ şelide zılilir rlığıı heme her otsıd Leesqe ölçümüe L zı H hri ile österilsi-3 sıır değer prolemii olğ opertör deleme idireme içi şğıdi şeilde ir tımlilir; D A { H ve ve D A ie } çı rlığıd mtl süreli ve A opertörü 8

8 8 [ {} l A 3 ols A opertörüü tımıd örüldüğü ii -3 sıır değer prolemii özdeğer ve özvetörleri A ı özdeğer ve özvetörleridir Bölece -3 prolemii icelemesi H H A : opertörüü spetrl özellilerii icelemesie idiremiş olr B edele -3 prolemi erie A opertörü iceleecetir A simetri ltt sıırlı üstte sıırsız ve esslıessetil edie eş opertördür A Simetri Opertördür; A Brd; q q q q ve d A d d d d ve edie eş mtris O Bodr Vle Prolem with Mtri Coeiciet

9 83 d d d d sıır oşl de; d d lr9 d [ ] [ ] d d A d A µ lr Bölece A opertörüü simetri opertör oldğ österilmiştir DA içi A γ olc şeilde sit γ sısıı vrlığı österileilir l diersiel idesii tsılrı ve sıır oşldi sılr reel oldğd dolı H H A : opertörü reeldir[6]b ore L i ltt sıırlı oldğ österme içi opertörü L D e it ol ileşeleri reel değerli osiolr ol vetörleri içi österilmesi eterlidir A opertörü ltt sıırlıdır; A ie F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3

10 84 A d [ ] d d oşld ; d d olr < oldğd dolı rıdi idede [ ] H L d d d γ γ lr Brd m γ Bölece A γ lmş dolısıl A opertörüü ltt γ sısı ile sıırlı oldğ österilmiştir A D A λi her erde oğdr; A λ ı lt sıırı γ d üçü ir reel sı ols B drmd A D A λi ı pışıı H A D I A λ oldğ österileilir v v v v olm üzere H v sit ttlmş herhi ir elem ols A D ei elem ie O Bodr Vle Prolem with Mtri Coeiciet

11 F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3 T λ v λ A λ I v T λ d λ v v L λt d λ eşitliğii sğldığıı vrsılırs ei DT v λ ie 33 de 34 oşl sğldığıd T L d 33 λ 35 dır L λ D T L [ ] dırb 33 te öz öüe lıırs oldğd 35 e öre v λ λ osio vrdır Bd dolı 34 de v dır D A ei elem oldğd olc şeilde A λ I D A H oldğ örülür lr Brd λ < γ ie A λ I simetri opertörüü sıırlı H d her erde oğ ümede tımlı oldğ dite lıırs ilie ellich Teoremie [5] öre A λ I opertörüü pışı edie eş opertördür B ise A ı pışıı edie eş oldğ ıtlr Yi A esslı essetil edie eş opertördür 4 ÖZFOKSİYOLAA GÖE AÇILIM Öce A ı edie eş opertör oldğ österilmelidir B içi [4] çlışmsıd oldğ ii şğıdi şeilde A opertörüü tımlctır { D T } ie D A her D A A l içi 85

12 O Bodr Vle Prolem with Mtri Coeiciet ve [ ] oşl sğl elemlrıı olştrdğ lt z ile özdeşleştirileilir ve öre L zı H ı [ ] { H ; } L oldğ vrsılctır l diersiel idesi ve olştrl [ ] L [ ] T : L oşllrıl opertörü edie eş opertördür[4]t opertörüü spetrm sdece şğıdi orm ship özdeğerlerde olştğ ilimetedir österir λ λ λ lim λ B ise T i esslıessetil spetrm i σ e T i oş üme oldğ A ve T opertörleri A opertörüü sol otl eişlemeleridir Yi D A ve D T ümeleri D A modülüe öre sol otldrlr Bş ir deişle M M sol otl lt zlr olm üzere D A ve D T sırsıl D A D A M D A M D T M φ oş üme D T D A M şelide österileilir B drmd şğıdi ilie teorem ide edileilir TEOEM Kplı opertörü her sol otl eişletilmesi de plı opertördür İde edile teoreme öre A plı opertördür A ı pışıı edie eş oldğ österilmişti Bölece A esslıessetil edie-eştir Wel Teoremie [6] öre plı opertörü ess spetrm ile opertörü her sol otl eişletilmesii ess spetrm çışır B öre T σ A σ T e dir σ e φ oldğd σ e A φ olr Ess spetrm oş üme ol her edie eş opertörü spetrm s rıtır[5]b öre ltt sıırlı A opertörüü spetrm ığılm otsı sdece rtı sosz ol özdeğerlerde irettir B özdeğerleri şğıdi şeilde zılilir µ µ µ lim µ e 86

13 F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3 B ı zmd A ı üstte sıırsız oldğ österir µ i i i özdeğerlerie rşılı ele ileşeli ortorml özvetörleri i i 4 ile österilir Bilie teoreme öre [5][] 4 vetörler sistemi H zıı ir zıdır Bl iz şğıdi teoremi isptlmış olrz i Teorem : H ei ir vetör ols B ttirde 4 eşitliği doğrdr Brd d ormülleri ile tımlır 3 eşitliğidei seri lmd ısr lim 87 e µ ölçümüe öre ortdrti dµ Bilielere dr [][7][7] Teorem i özel hli ide edileilir Teorem : [ ] L herhi ir vetör ise ı [ e ısıtlmsı ols B ttirde 43 i 44 i

14 O Bodr Vle Prolem with Mtri Coeiciet eşitlileri sğlır43 dei tsılrı; d ormülleri ile tımlır43 serisi e L [ ] i i İspt: Teoremi isptlm içi lmıd ıstır E olr 45 < {} ve d d < µ ie dµ serisii e ısmsı i: lim llılctır Brd lim dµ dµ dµ {} µ ölçümüe öre ortdrti dµ lim dµ olr lıırs lim elde edilir Bölece d olr B drmd 46 eşitliğide d d d dµ 46 88

15 89 lim d d ve d lmş olr Bölece 43 österilmiştir 46 d lıırs 46 eşitliği şğıdi iidir lim d 47 Brd ve i i i 44 eşitliği ve i 45 eşitliği lr Brd : otl irim vetördür Özel olr irim vetörüü şelide lıırs drmd 44 eşitliği ve 45 eşitliği j j şelide zılilir F Adı Aü M Brmoğl Sim Vol/Cilt 6 Isse/Sı 3

16 O Bodr Vle Prolem with Mtri Coeiciet KAYAKLA [] Poisso SD Memoire sr l Miere d eprimer hes Foctios pr des Series de tites Periodiqes estr I se de cette Trsormtio ds L esoltio de Dieres Prolems Jorl de I Ecole Poltechiqe Ch 88 pp [] Friedm B Priciples d Techiqes o Applied Mthemtics Joh Wile & Sos Lodo 956 [3] Tchoov A d Smrsii I I Eqtios o Mthemticl Phsicsew Yor956 [4] Glzm IM Direct Methods o littive Spctrm Alsis o Silr Dieretil Opertors Isrel Prorm or Scietiic Trsltios Jerslem 965 [5] Hellwi G Dieretil Opertors o Mthemticl Phsics Lodo 967 [6] imr MALier Dieretil Opertors Geore GHrrp&CompLTD Lodo 968 [7] Wlter Jelr Eievle Prolems with Eievle Prmeter i the Bodr Coditio MthZ33 Pe: [8] ssovsii EM Opertor Tretmet o Bodr Vle Prolems with Spectrl Prmeters Eteri vi Polomils i the Bodr Coditios Fctiol Alsis Applictios [9] Flto CT Two-Poit Bodr Vle Prolems with Eieprmeter Cotied i the Bodr Coditios Proc Soc Edir A [] Flto CT Silr Eievle Prolems with Eievle-prmeter Cotied i the Bodr Coditios Proc Soc Edir A [] Kto TPertrtio Theor or Lier Opertors Sprier Verl Berli ew-yor 98 [] Weidm J 98 Lier Opertors i Hilert Spces Grdte Tets i Mthemtics Vol68 Sprier Verl ew Yor [3] Shliov AA Bodr Vle Prolems or Ordir Dieretil Eqtios with Prmeter i the Bodr Coditios J Soviet Mth [4] Weidm J 987 Spectrl Theor o Ordir Dieretil Opertor Sprier Verl Lodo [5] Ahiezer IGlzm IM Theor o Lier Opertors i Hilert Spce Dover Plictios IC ew Yor 987 [6] Birm MS d Solo MZ Spectrl Theor o Sel Adjoit Opertors Dedidel Plished co Drdrecht 987 [7] Hochstd H Iterl Eqtios Joh Wile & Sos ew Yor 989 [8] Bidi PA Browe PJ Seddihi K Strm-Lioville Prolems with Eieprmeter Depedet Bodr Coditios Proc Edirh Mth Soc [9] ssovsii EM 996 The Mtri Strm-Lioville Prolem with Spectrl Prmeter i the Bodr Coditios Aleric d Opertor Aspectors Trs Moscow Mth Soc [] Amr JB Forth Order Spectrl Prolem with Eievle i the Bodr Coditios Fctiol Alsis d its Applictios 4 [] Bidi PA Browe PJ d Wtso BA Eqivlece o Iverse Strm-Lioville Prolems with Bodr Coditios tioll Depedet o the Eieprmeter J Mth Alsis Applic [] Bidi PA Browe PJ d Wtso BA Strm-Lioville Prolems with edcile Bodr Coditios Proceedis o the Edir Mthemticl Societ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 113-124

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 4-2 Yıl: 2011 113-124 EÜFBED - Fe Bilimleri Estitüsü Dergisi Cilt-Sa: 4- Yl: 3-4 STURM LİOUVİLLE FARK OERATÖRÜNÜN SEKTRAL ÖZELLİKLERİ SECTRAL ROERTIES OF THE STURM LIOUVILLE DIFFERENCE OERATOR Ateki ERYILMAZ * e Bileder AŞAOĞLU

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1 S Ü Fe Ed Fa Fe Derg Sayı 7 (6-8, KONYA Bir Sııf Jacobi Matrisi İçi Özdeğer Problemi Oza ÖZKAN Selçu Üiversitesi, Fe-Edebiyat Faültesi, Matemati Bölümü 479 Kampüs, Koya simetri Jacobi matrislerii özdeğerleri

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

TOPLAM SEMBOLÜ TÜMEVARIM n=n(n+1) n-1= n

TOPLAM SEMBOLÜ TÜMEVARIM n=n(n+1) n-1= n TÜMEVARIM Mtemtite ulldığımız pe ço ispt yötemi vrdır.bu yötemlerde biride tümevrım yötemidir. P() bir çı öerme öermeyi doğru yp e üçü doğl syı, P() öermesii doğrulu ümesi N olsu B.P() olduğu gösterilir.yi

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

ş Ğ» ş Ğ ş Ü ğ Ö ğ ğ ğ ç ğ ş ğ ç ç ğ ğ ş ç ğ ş ğ ç ğ ş Ö Ö ç ö ş ç ş ö ş ğ ğ ğ ş ö ç ş ç ğ ğ ğ ç ş ç ö ş ş ç ğ Ö ğ ç ş ş ç ş ö ç ş ç ş ş ö ğ ş ş ö ö ş ö ş ç ş ğ ç ş ç ş ğ ç ç ö ş ö ö ş ö ğ ç ç ö ş ğ ö

Detaylı

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri

Aralığın İç Noktasında Süreksizliğe Sahip Dirac Operatörünün Spektral Özellikleri C.Ü. Fe-Edebiyat Faültesi Fe Bilimleri Dergisi 5Cilt 6 Sayı Aralığı İç Notasıda Süresizliğe Sahip Dirac Operatörüü Spetral Özellileri R. Kh. AMİROV ve Y. GÜLDÜ Cumhuriyet Üiversitesi Fe Edebiyat Faültesi

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

Hafta 10: z -Dönüşümü

Hafta 10: z -Dönüşümü Hft : -Döüşümü Ele Alıc A Kolr -döüşümü -döüşümüü yıslı bölgesi Ters -döüşümü -döüşümüü öellileri -döüşümü llr LTI sistemleri lii -Döüşümü İmpls yıtı h ol bir LTI sistemi, girişie ol yıtıı y =H oldğ görmüştü.

Detaylı

İNTEGRAL KONU ANLATIMI ÖRNEKLER

İNTEGRAL KONU ANLATIMI ÖRNEKLER İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid

Detaylı

Ara Değer Hesabı (İnterpolasyon)

Ara Değer Hesabı (İnterpolasyon) Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler

Detaylı

Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzyıı bir bşk W ektör uzyı döüştüre foksiyolr şu şekilde gösterilir: : V W Burd kullıl termioloji foksiyolrl yıdır. Öreği, V ektör uzyı foksiyouu

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ EN KÜÇÜK KARELER YAKLAŞIMI MATEMATİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ EN KÜÇÜK KARELER YAKLAŞIMI MATEMATİK ANABİLİM DALI ÇUUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜSE LİSANS TEZİ ORAY OR EN ÜÇÜ ARELER YALAŞIMI MATEMATİ ANABİLİM DALI ADANA 6 ÖZ YÜSE LİSANS TEZİ EN ÜÇÜ ARELER YALAŞIMI ORAY OR ÇUUROVA ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

Sınır Koşullarının Spektral Parametreyi İçerdiği İmpulsive Sturm-Liouville Sınır-Değer Problemi İçin Düz ve Ters Problemler

Sınır Koşullarının Spektral Parametreyi İçerdiği İmpulsive Sturm-Liouville Sınır-Değer Problemi İçin Düz ve Ters Problemler CÜ Fe-Edebiyat Faültesi Fe Bilimleri Dergisi (6)Cilt 7 Sayı Sıır Koşullarıı Spetral Parametreyi İçerdiği İmpulsive Sturm-Liouville Sıır-Değer Problemi İçi Düz ve Ters Problemler R Kh Amirov, B Kesi, A

Detaylı

Bölüm 7.2: Matrisler. Transpoz. Konjuge. Adjoint

Bölüm 7.2: Matrisler. Transpoz. Konjuge. Adjoint ölü.: Mrsler ugüü derszde rs eors err edeeğz. Mrs ouud ddörge elelrd oluş r eledır sır ve süu zı öre rsler şğıddır: j C Trspoz j ı rspozu T j dır. Öre T T T Kojuge j ı Kojuges j dır. Öre djo ı djo T dır

Detaylı

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1

YGS-LYS GEOMETRİ ÖZET ÇÖZÜMLERİ TEST 1 YGS-YS GOMTRİ ÖZT ÇÖZÜMRİ TST 1 1. 1. y 1 1 + 1 1ʺ 1 1ʹ 17 0ʹ 1 1ʹ ʹ + ʹ 1ʺ ʹ + ʹ 1ʺ 7 0ʹ 1ʺ 0 0ʹ 1ʺ bulunur. 1 y < + 1 y dir. y < 7 + 1 < 7 0 < < 1 in en büyü tm syı değeri 17 in en üçü tm syı değeri

Detaylı

TÜMEVARIM DİZİ - SERİ

TÜMEVARIM DİZİ - SERİ 99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SYISL ÇÖZÜMLEME SYISL ÇÖZÜMLEME 6. Hft LİNEER DENKLEM SİSTEMLERİ İÇİNDEKİLER Doğrusl Deklem Sistemlerii Çöümü Mtrisi Tersi ile Bilimeyeleri Bulm Örek uygulm MTLB t mtrisi tersii (iv komutu) lm Crmer Yötemi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI [, ] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI f : [, ] R sürekli ir foksio olsu. Bu [,] kplı rlığı = <

Detaylı

İ Ş İ İ ş ş ğ ç ğ ş ç ç ğ ç ğ Ç ö ç şi İ ç ç ş ğ ç ğ ç ç Ç ğ ö ğ İ ç ğ İ İ ğ ş ğ ğ ş öş ç ç ç ğ İ ş ğ İ ğ ç ç Ğ ş öş Ğ ç ç ç İ ğ ş ğ İ Ş ğ İ ğ ç ç İ Ğ

İ Ş İ İ ş ş ğ ç ğ ş ç ç ğ ç ğ Ç ö ç şi İ ç ç ş ğ ç ğ ç ç Ç ğ ö ğ İ ç ğ İ İ ğ ş ğ ğ ş öş ç ç ç ğ İ ş ğ İ ğ ç ç Ğ ş öş Ğ ç ç ç İ ğ ş ğ İ Ş ğ İ ğ ç ç İ Ğ İ Ş İ İ ş ş ğ ç ş ş ğ ğ ğ İ ğ İ İ ğ ş ğ ö ğ İ «ş ğ ş İ Ş ş ğ ş ş ğ İ ş ğ Ş İ Ş ş İ Ş ş Ş İİ Ş ş İ ğ Ş ö ş ö İ Ü Ü İ ö İ ş ç ğ ş çi ö ğ ç ş ç ö ğ ş ö ğ ç ş ğ ş ğ ş İ ö İ İ ö İ İ ç ş ş ö İ Ö ğ ş ğ İ ğ ş

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Joural of Egieerig ad atural Scieces Mühedislik ve Fe Bileri Dergisi Sigma 6/4 Araştırma Makalesi / Research Article O SPEKTRUM OF A SEF ADJOIT DIFFERATIA OPERATOR OF HIGHER ORDER WITH UBOUDED OPERATOR

Detaylı

Tanım Türevi F(x) yada diferansiyeli f(x)dx olan f(x) fonksiyonuna f(x) fonksiyonun bir ilkeli ya da belirsiz integrali denir ve f ( x)

Tanım Türevi F(x) yada diferansiyeli f(x)dx olan f(x) fonksiyonuna f(x) fonksiyonun bir ilkeli ya da belirsiz integrali denir ve f ( x) ÖLÜM - İNTEGRL KVRMI - İlel Fosiyo vey elirsiz İtegrl ir osiyou türevii sıl lıdığıı iliyoruz.u ölümde türevi lımış ir osiyou ileliiöei hlii sıl uluğıı ieleyeeğiz.ypğımız u işleme İtegrl lm vey osiyou ilelii

Detaylı

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar

4.İntegral Belirsiz İntegral Bir fonksiyonun belirsiz integrali Alıştırmalar İçieiler Ceir 4.İtegrl... 4. Belirsiz İtegrl... 4.. Bir fosiou elirsiz itegrli... Alıştırmlr 4.... 4.. Belirsiz İtegrli Özellileri...... 4.. Temel itegrl lm urllrı..... 4 Alıştırmlr 4.... 8 4..4 İtegrl

Detaylı

Sonlu Aralıkta Coulomb Potansiyele Sahip Sturm-Liouville Diferansiyel Denklemlerin Çözümleri İçin Bir Gösterilim

Sonlu Aralıkta Coulomb Potansiyele Sahip Sturm-Liouville Diferansiyel Denklemlerin Çözümleri İçin Bir Gösterilim C.Ü. Fe-Eeia Faülei Fe Bilimleri Dergii (7Cil 8 Saı Sol Aralıa Colom Poaiele Sahip Srm-Lioville Diferaiel Delemleri Çözümleri İçi Bir Göerilim R. h. AMİROV N. TOPSAAL Cmhrie Üiveriei Fe-Eeia Faülei Maemai

Detaylı

GRUP TANIMLAYAN BAZI YARIGRUP VE MONOİD TAKDİMLERİ* Some Semigroup and Monoid Presentations Defining a Group*

GRUP TANIMLAYAN BAZI YARIGRUP VE MONOİD TAKDİMLERİ* Some Semigroup and Monoid Presentations Defining a Group* GRU TANIMLAYAN BAZI YARIGRU VE MONOİD TAKDİMLERİ* Soe Seigroup d Mooid resettios Defiig Group* Bsri ÇALIŞKAN Ç.Ü. Fe Biieri Estitüsü Mteti Abii Dı Firet KUYUCU Ç.Ü.Fe Edebit Fütesi Mteti Böüü ÖZET Bu çışd

Detaylı

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş MAT 202 SAYISAL YÖNTEMLER Bhr 2005-2006 Hft Bu Hft Özet Ders Hkkıd Geel Bilgiler Mtris işlemlerie giriş 2 Öğretim Üyesi: Öğr. Gör. Od No: 442, Tel: 293 3 00 / -- E-mil: ltuger@itu.edu.tr Ders Stleri: Slı

Detaylı

ç ö ö ç ğ ğ ç ğ ğ ö

ç ö ö ç ğ ğ ç ğ ğ ö ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ POTANSİYELİ BİR POLİNOM OLAN SCHRÖDİNGER DENKLEMLERİNİN JOST ÇÖZÜMLERİ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ POTANSİYELİ BİR POLİNOM OLAN SCHRÖDİNGER DENKLEMLERİNİN JOST ÇÖZÜMLERİ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEİ POTANSİYELİ BİR POLİNOM OLAN SCHRÖDİNGER DENKLEMLERİNİN JOST ÇÖÜMLERİ Fahriye ehra BABACAN MATEMATİK ANABİLİM DALI ANKARA 2 Her Haı Salıdır

Detaylı

Anabilim Dalı: Matematik-Bilgisayar Programı: Matematik-Bilgisayar

Anabilim Dalı: Matematik-Bilgisayar Programı: Matematik-Bilgisayar İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELİPTİK İNTEGRALLER VE UYGULAMALARI YÜKSEK LİSANS TEZİ Aıl ÇİĞDEMDERE Ailim Dlı: Mtemtik-Bilgisyr Progrmı: Mtemtik-Bilgisyr Te Dışmı: Yrd.Doç.Dr. Ar

Detaylı

ABSOLUTE HAUSDORFF SUMMABILITY OF THE FOURIER SERIES

ABSOLUTE HAUSDORFF SUMMABILITY OF THE FOURIER SERIES Fourier Serilerii Mul Husdor Toplbilmesi C.B.Ü. Fe Bilimleri ergisi ISSN 35-385 C.B.U. Jourl o Sciece 7. ( 3 9 7. ( 3 9 FOURĐER SERĐLERĐNĐN MUTLAK HAUSORFF TOPLANABĐLMESĐ Abdullh SÖNMEZOĞLU Bozo Üiersiesi,

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

İ İ İ İ İç ğ ş ğ ş ğ İ Ğ ğ ğ ğ ç ş Ğ ş İ ş Çğ ğ ğ İ İş ğ İ İ ÖÜ ç ç ş Ü Ü ğ ç ş Ü ş ğ ş ğ ç ş öğ ğ öğ ğ ş ş ğ öğ ğ ş ç ş Öğ ç Öğ ğ Öğ ö ö ğ ğ ş İ ç Ç İ İİİ ğ Ü Ü İ İ İ İİ Ü Ü öğ ş öğ ş öğ ş ş ğ ç ç Ü İ

Detaylı

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI 6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI Y i β + β X i + β X i + + β k X ki + i (i,,, gibi çok çıklyıcı değişkee ship bir model, şğıdki gibi bir eşlı deklem modelii göstermektedir. Y β + β X + β

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

Ü İ İ İ Ğ öğ İ İ öğ İ Ü İ ö ç ö ö Ü ö Ö ö ö ö ç ö ö ö ç ö ö ö İ ç ö ç ö ç ö ö ö ö ç ç ö ç ç ç ö Ç ç ç ö ö ç ç ö ö ç ö ç ö Ö ö ö ö ö Ç ö ç ç ç ö ö Ö Ö Ö ö ö ç Ç Ö ö ö ö ç ö ç ö ç ö ö ö ç ç ç ö ö ö Ü ç Ö

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Fige GÜLTÜRK İNTERPOLASYON VE KALAN TEORİSİ MATEMATİK ANABİLİM DALI ADANA, 008 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNTERPOLASYON

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

ORAN VE ORANTI HESAPLARI. ORAN: Aynı birimle ölçülen iki çokluğun bölme yoluyla karşılaştırılmasına oran denir. a nın b ye oranı; b

ORAN VE ORANTI HESAPLARI. ORAN: Aynı birimle ölçülen iki çokluğun bölme yoluyla karşılaştırılmasına oran denir. a nın b ye oranı; b ORAN VE ORANTI HESAPLARI ORAN: Anı irimle ölçülen ii çoluğun ölme olul rşılştırılmsın orn enir. nın e ornı; şeline gösterilir. Örne.:Ali nin 0 TL si, Aşe nin 00 TL si oluğun göre Ali nin prsının Aşe nin

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÖTELEME YÜZEYLERİ ÜZERİNE Özge AKSOY MATEMATİK ANABİLİM DALI ANKARA 2005 Her hakkı sakl

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÖTELEME YÜZEYLERİ ÜZERİNE Özge AKSOY MATEMATİK ANABİLİM DALI ANKARA 2005 Her hakkı sakl ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÖTELEME YÜZEYLERİ ÜZERİNE Öze AKSOY MATEMATİK ANABİLİM DALI ANKARA 5 er ı slıdır Pro Dr Yusu YAYLI dışmlığıd, Öze AKSOY trıd zırl bu çlışm

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

ğ İ Ü Ü İĞ Ğİ İ İ Ü Ü Ü Ü ğ ğ öğ ğ ö Ö ğ ç ğ ş ğ ğ ç ç ğ ğ ö ğ ş ğ ğ ç ö ş ö ş ş ğ İ ş ğ ğ ç Ö ö ö ş ş ğ ğ ğ ğ ö ş ö ş ğ ğ ğ ğ Ü ğ ç Ş ç Ü ğ ş ş ç ş ş ö ö ş ç ş ş ğ ş ş ğ ğ İ ş ğ ç ğ ç ç ö öğ Ü ğ ç ş ğ

Detaylı

ABSRACT Master Thesis. KÖTHE-TEOPLITZ DUALS OF DIFFRENCE SEQUENCE SPACES l ( p) Osman DUYAR

ABSRACT Master Thesis. KÖTHE-TEOPLITZ DUALS OF DIFFRENCE SEQUENCE SPACES l ( p) Osman DUYAR ABSRACT Mter Thei KÖTHE-TEOPLITZ DUALS OF DIFFRECE SEQUECE SPACES, c d c O DUYAR Gzioş Uiverity Grdute Schoo of tur Ad Aied Sciece Dertet Of Mthetic Suervior: Ait. Prof. Dr. O ÖZDEMİR I the firt of chter

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

SINIR ŞARTLARININ BİRİNDE ÖZDEĞER PARAMETRESİ BULUNDURAN SÜREKSİZ STURM-LİOUVİLLE PROBLEMİNİN ÖZFONKSİYONLARI

SINIR ŞARTLARININ BİRİNDE ÖZDEĞER PARAMETRESİ BULUNDURAN SÜREKSİZ STURM-LİOUVİLLE PROBLEMİNİN ÖZFONKSİYONLARI PAMUKKALE ÜNİVERSİTESİ MÜHENDİ SLİK FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİSLİK BİLİMLERİ DERGİSİ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 00 : 8 : : 9-6 SINIR ŞARTLARININ

Detaylı

İ ö Ü ğ Ü ö ğ ö ö ç ğ ğ ç ğ ç ğ Ü ğ Ü ğ ğ ğ ç ğ ç ğ ğ ö ç ğ ç ğ ç ğ ğ ğ ö Ö ğ ç ö ö ğ ç Ü ğ ğ ğ ğ ğ ö ç

İ ö Ü ğ Ü ö ğ ö ö ç ğ ğ ç ğ ç ğ Ü ğ Ü ğ ğ ğ ç ğ ç ğ ğ ö ç ğ ç ğ ç ğ ğ ğ ö Ö ğ ç ö ö ğ ç Ü ğ ğ ğ ğ ğ ö ç Çİ İ İ ö Ü ğ Ü ö ğ ö ö ç ğ ğ ç ğ ç ğ Ü ğ Ü ğ ğ ğ ç ğ ç ğ ğ ö ç ğ ç ğ ç ğ ğ ğ ö Ö ğ ç ö ö ğ ç Ü ğ ğ ğ ğ ğ ö ç ö ğ ğ ğ ğ ö ğ ç ç ç ö ö ğ ğ ö ç ö ö ğ Ü ğ İ ğ ç ö ğ Ü ç ç ğ ö ğ ö ö ğ ç Ç ö «ğ ö ç ğ ö ö Ü Ü

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ İ İ İ İ Ö İ ç İ ö İ ö ö ç İ ö ç ç ö ö İç ö ç ö ö ö ö ç ç ö ö ç İ İ ç ö ç İ ç İ İ ö ö ö ö ç ç ö ö ç ö ç ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

BÖLÜM 3 3. REGRESYON İÇİN MATRİS VE VEKTÖR CEBRİ 3.1 VEKTÖRLER VE MATRİSLER

BÖLÜM 3 3. REGRESYON İÇİN MATRİS VE VEKTÖR CEBRİ 3.1 VEKTÖRLER VE MATRİSLER BÖLÜM. REGRESYON İÇİN MRİS VE VEKÖR CEBRİ Bölüm de, doğrusl regreso tek değişkeli sit model olrk ele lırk çıklmıştı. Bölüm 4 de ise çok değişkeli (k değişkeli) model içi giriş pılcktır. Çok değişkeli modelde

Detaylı

ö ğ ö ö ö ş ö

ö ğ ö ö ö ş ö Ç Ü ş ğ İş ş ğ öğ İ ç Ğ ö ğ İ İ ş ş ç İ İ İ İ İ İ Ğ ç İ ğ ğ çş ç İ İ ğ İ ğ ç Ü Ç ş ğ İ Ç ğ ş ğ ş ç ş ş ğ ş ç Ü ğ ç ç ç ş ö ş Ö Ö ğ Ç ş ğ İ Ç Ü Ç ğ ş ç ğ Ü Ü ö ğ ö ö ö ş ö ğ şğ ç ö ğ ş Ü ğ ğ çö ç ğ ö ğ

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

üzerinde tanımlı cyclic bir kod olduğu Wolfman tarafından 1999 da yaptığı bir çalışmayla gösterilmiştir. Daha sonra bu

üzerinde tanımlı cyclic bir kod olduğu Wolfman tarafından 1999 da yaptığı bir çalışmayla gösterilmiştir. Daha sonra bu GİİŞ Kodl teors l olr 94 lı yıllrı solrı doğr zı ühedsl roleler le ğltılı olr orty çııştır B o erde tet vrlrı llılr elştrlş ve Cersel Kodl Teors dıı lıştır t düzelt odlr teors se l trsfer yd deolsı essıd

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüeyt BAYILMIŞ Doç.Dr. Cüeyt BAYILMIŞ Syısl Alz SAYISAL ANALİZ İNTERPOLASYON Ar Değer Bulm Doç.Dr. Cüeyt BAYILMIŞ Syısl Alz İÇİNDEKİLER Ar Değer Hesbı İterpolsyo Doğrusl Ar Değer

Detaylı

Ğ Ğ Ğ Ş İ ğ ğ ç İ ç İ ç ş ğ ş ş ğ ö Ç ç ş ğ ç ö Şİ ş Ş ç İ ç İ İş ç ö Ç İ İ İ ö çi İ İş ç Ü Ç Ç Ü ÇÖ İ İ İ İ İ İ İ Ü İ İĞ Ü Ç İ İ İ ş Ü İ İ ö Ç ç Ş ş ç ç ş ö İ Ö Ş İ ğ ğ ö ş Ş İ İ ç Ş Ü İ İç ş Ş» Ş Ş ş

Detaylı

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü Mehmetoğlu Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü Mehmetoğlu Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÖZEL EĞRİLER VE REGLE YÜZEYLER İme ÖNCÜ MATEMATİK ANABİLİM DALI ANKARA 5 Her hı lıdır Prof. Dr. Yf YAYLI dışmlığıd İme ÖNCÜ rfıd hzırl çlışm

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü

Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü üş Ğ ü ü Ğ İ İ ü ç ü İ İ Ş ç Ü ş Ğ İ ş İ Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü ğ ö ü ö ğ ğ ö ü ç ç ü ç ö İ ğ ü ğ ş ş ğ Ş ç ş ö ü

Detaylı

Quasilineer uzaylarda alt ve üst yarı baz kavramları

Quasilineer uzaylarda alt ve üst yarı baz kavramları 48 Ç Yılmz ciyes Üisitesi Fe Bilimlei stitüsü Degisi 3():48-488 Qusiliee uzyl lt üst yı bz mlı * Sümeyye ÇAKAN Yılmz YIMAZ İöü Üisitesi Fe ebiyt Fültesi Mtemti Bölümü 448 Mlty Tüiye. Aht Kelimele: Qusiliee

Detaylı

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI KARŞI AKIŞI SU SOĞUTMA KUESİ BOYUTANIDIRIMASI Yrd. Doç. Dr. M. Turh Çob Ege Üiversitesi, Mühedislik Fkultesi Mkie Mühedisliği Bölümü turh.cob@ege.edu.tr Özet Bu yzımızd ters kışlı soğutm kulelerii boyut

Detaylı

ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş

ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş ş Ş Ş Ş ş Ş Ç «Ş ç ş ç ç ş ş ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş ö Ş ç ş ş ş ş ş ö ş ş

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

İçindekiler 1. Analiz 3 Ders Notları. Taylan Şengül. 21 Aralık Lütfen gördüğünüz hataları bildiriniz.

İçindekiler 1. Analiz 3 Ders Notları. Taylan Şengül. 21 Aralık Lütfen gördüğünüz hataları bildiriniz. Aliz 3 Ders Notlrı Tyl Şegül 2 Arlık 28 Lütfe gördüğüüz htlrı bildiriiz. İçidekiler İçidekiler Ö Bilgiler 3. Supremum ve İfimum................................... 3 Foksiyo Dizileri 5. Reel Syı Dizileri.......................................

Detaylı

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU ANKASI ANKARA İÇİNDEKİLER Fonksionlr... Polinomlr... II. Dereceden Denklemler... 7 II. Dereceden Fonksionlrın Grfiği (Prbol)... 7 Krmşık Sılr... 9 Mntık...

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi;

Sistem-atik Membran Kapak Sipariş Takip ve Üretim Takip Sistemi; S i s t e m - a t i k M e m b r a n K a p a k S i p a r i T a k i p v e Ü r e t i m T a k i p S i s t e m i ; T ü r k i y e l d e b i r i l k o l a r a k, t a m a m e n m e m b r a n k a p a k ü r e t

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ TG ÖABT İLKÖĞETİM MATEMATİK Bu testlerin her hı slıdır. Hngi mçl olurs olsun, testlerin tmmının vey bir ısmının İhtiyç

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI. Fatma İÇER

KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI. Fatma İÇER T.C. DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI Ftm İÇER YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI DİYARBAKIR Hzir 203 TEŞEKKÜR Çlışmmı her

Detaylı

ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç

ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç ğ ç ğ ğ ğ ö ğ ğ ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç ç ğ ğ ğ ç ğ ç ğ ğ ö ğ ğ ç ğ ğ ç ğ ğ

Detaylı

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known?

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known? 1 Mrkov ve Chebychev Eşitsizlikleri Pr [ ] = 1 Pr [ < ] = 1 f ( ) dx = 1 () x dx F Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) Wht if ot kow? bilimiyor olbilir r.d. i sdece ortlmsıı ve vrysıı bildiğimizi vrsylım. Ortlm

Detaylı

TG 5 ÖABT ORTAÖĞRETİM MATEMATİK

TG 5 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 5 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hı slıdı. Hgi mçl olus olsu testlei tmmıı vey i ısmıı İhtiyç Yyıcılı

Detaylı

FEKETE-SZEGÖ PROBLEM ÜZER NE. Halit ORHAN, Ömer DURMAZPINAR, Hükmi KIZILTUNÇ. Atatürk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Erzurum

FEKETE-SZEGÖ PROBLEM ÜZER NE. Halit ORHAN, Ömer DURMAZPINAR, Hükmi KIZILTUNÇ. Atatürk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Erzurum Eylül 009 Cilt:7 No:3 Kstmonu Eğitim Dergisi 933-940 FEKETE-SZEGÖ PROBLEM ÜZERNE Hlit ORHAN, Ömer DURMAZPINAR, Hükmi KIZILTUNÇ Attürk Üniversitesi, Fen Fkültesi, Mtemtik Bölümü, Erzurum Özet α (0 α < ),

Detaylı

GELECEĞİ DÜŞÜNEN ÇEVREYE SAYGILI % 70. tasarruf. Sokak, Park ve Bahçelerinizi Daha Az Ödeyerek Daha İyi Aydınlatmak Mümkün

GELECEĞİ DÜŞÜNEN ÇEVREYE SAYGILI % 70. tasarruf. Sokak, Park ve Bahçelerinizi Daha Az Ödeyerek Daha İyi Aydınlatmak Mümkün www.urlsolar.com S L D-S K -6 0 W ile 1 5 0 W St an d art S o kak L a m ba sı F iya t K arşılaşt ırm a sı kw h Ü c reti Yıllık Tü ke tim Ü cre ti Y ıllık T ü ketim Fa rkı kw Sa at G ü n A y Stan d art

Detaylı

İ İ İ Ş Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ğ ğ ö ç İ ç ö ç İ ğ ğ ğ ö ğ ö ç ö ç İ ç ö ç İ ğ ğ ç ç ç ğ ö ö Ü

İ İ İ Ş Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ğ ğ ö ç İ ç ö ç İ ğ ğ ğ ö ğ ö ç ö ç İ ç ö ç İ ğ ğ ç ç ç ğ ö ö Ü İ İ Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ç İ ğ ğ İ İ ğ ö ö ç İ ğ ö ç ğ ğ ğ ğ ç ö ç İ ğ ğ ö ç İ ç ö ç İ ğ ğ ç ç ç ğ ö ö ö İ İ İ Ş Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ğ ğ ö ç İ ç ö ç İ ğ ğ ğ ö ğ ö ç ö ç İ ç ö

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ UFUK KAYA Mersi Üiversitesi Fe Bilimleri Estitüsü Matematik Aa Bilim Dalı YÜKSEK LİSANS TEZİ Tez Daışmaı Prof. Dr. Nazım KERİMOV MERSİN Hazira - 8 ÖZ Bu çalışmada

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI LİNEER OLMAYAN FOURIER TABANLI YAKLAŞIM

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI LİNEER OLMAYAN FOURIER TABANLI YAKLAŞIM T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI LİNEER OLMAYAN FOURIER TABANLI YAKLAŞIM DOKTORA TEZİ HATİCE ASLAN BALIKESİR, ARALIK - 06 T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

En iyi donanımlı yatlarla en iyi hizmet

En iyi donanımlı yatlarla en iyi hizmet Bi Cruisr 00 + TH Dufour r'lg 0 Kopri + TH KP Fi Döri 0 Oc is is M M Hz Hz ADB 0-0 Tm p B Pr Pr Y A Ti Y A Y / Hf Kim / Ism 0 Kirm Fi Lis 0 Ks Ar Ei 0 Ks E Ei Br 0 -.0.0.0.0.0 MI.0.0.0.0.0 Oc Smos 0 0

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Diziler. 1. Aşağıdakilerden kaç tanesi bir dizinin genel ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersi Adı SINIFI: KONU: Diziler Dersi Kousu. Aşğıdkilerde kç tesi bir dizii geel terimi olbilir? I. II. log III. IV. V. 7 7 9 9 t 4 4 E). Aşğıdkilerde hgisi bir dizii geel

Detaylı

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 6 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı ve ir kısmıı

Detaylı

İslam da İhya ve Reform, çev: Fehrullah Terkan, Ankara Okulu Yayınları, Ankara 2006.

İslam da İhya ve Reform, çev: Fehrullah Terkan, Ankara Okulu Yayınları, Ankara 2006. Faz lur Rah man: 21 Ey lül 1919 da Pa kis tan n Ha za ra şeh rin de doğ du. İlk öğ re ni mi ni Pa kis tan da Ders-i Niza mî ola rak bi li nen ge le nek sel med re se eği ti mi şek lin de biz zat ken di

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 1. BÖÜM A DAGAARI MDE SRU - 1 DEİ SRUARIN ÇÖZÜMERİ 1. 5. T x x x uvvet vektörüü degede uzaklaşa ucu ile hız vektörüü ları çakışık olalıdır. Bua göre şeklide. Dal ga la rı ge li ği de ge ok ta sı a ola

Detaylı

4. DEVİRLİ ALT GRUPLAR

4. DEVİRLİ ALT GRUPLAR 4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme

Detaylı

IV.1. YÜKSEK MERTEBE DENKLEMLER VE DİFERANSİYEL DENKLEM SİSTEMLERİ

IV.1. YÜKSEK MERTEBE DENKLEMLER VE DİFERANSİYEL DENKLEM SİSTEMLERİ IV.. YÜKSEK MERTEBE DENKLEMLER VE DİFERANSİYEL DENKLEM SİSTEMLERİ B ısı bşlngıç oşllrı lındi üse erebeden difernsiel denlelerin nüeri çözülerine bir giriş olşrdır. Trışıln eniler bir üse erebeden denlei

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı