Kare tabanl bir kutunun yükseklii 10 cm dir.taban uzunluunu gösteren X ise (2, 8) arasnda uniform (tekdüze) dalmaktadr.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kare tabanl bir kutunun yükseklii 10 cm dir.taban uzunluunu gösteren X ise (2, 8) arasnda uniform (tekdüze) dalmaktadr."

Transkript

1 SORU : Kare tabanl bir kutunun yükseklii 0 cm dir.taban uzunluunu gösteren X ise (, 8) arasnda uniform (tekdüze) dalmaktadr. Kutunun hacminin olaslk younluk fonksiyonu g(v) a%adakilerden hangisidir? v A)g(v)= 6 0 D) g(v)= 0v B) g(v) = E) g(v) = 6 v 0 v 0 C) g(v) = 6 0v SORU : Bir aktüer x ya%ndaki bireyin gelecek ya%am süresini gösteren T raslant t dei%keninin olaslk younluk fonksiyonunu f(t) =, 0 < t < 00 olarak 500 tanmlam%tr. x ya%ndaki birey için düzenlenen bir hayat sigortas poliçesinde sigorta %irketi, t annda ölen bir bireyin yaknlarna t tutarnda tazminat ödemektedir. Buna göre bu poliçe için ödenecek tazminat tutarnn beklenen deeri a%adaki seçeneklerden hangisinde verilmektedir? A) 5 75 B) C) 6 0 D) 6 44 E) SORU : X rastlant dei%keni = varyans ile Normal dalmldr. Bu dalmdan n=4 büyüklüünde rastgele bir örnek çekilmi%tir. H 0 : µ= 0 hipotezi, H: µ= hipotezine kar% test edilecektir. ;kinci tür hatann 0,05 olmas için, X< c e%itsizliini gerçekle%tirecek c deeri a%adaki seçeneklerden hangisinde verilmi%tir? A) 0,55 B),775 C),589 D),94 E),85

2 SORU 4: Verim (kg), scaklk ( 0 C) ve toprak türü (kumlu=0, kireçli=) dei%kenleri için regresyon denklemi verim=5+4 (scaklk)+,5 (toprak türü) biçiminde elde edilmi%tir. Toprak türü dei+keninin katsaysnn yorumu a%adakilerden hangisidir? A) Scaklk dei%keninin etkisi sabit olduunda, kireçli topran verimi kumlu topraa göre,5 kg daha fazladr. B) Verim ile toprak türü arasndaki ili%ki katsays,5 dir. C) Kumlu toprakta scaklk dei%keni 4 0 C arttnda verim 5 kg olmaktadr. D) Scaklk dei%keni 4 0 C, toprak türü dei%keni,5 arttnda verim 5 kg olmaktadr. E) Scaklk dei%keninin etkisi sabit olduunda, toprak türü bir birim arttnda verim,5 kg artmaktadr. SORU 5: X raslant dei%keninin < x < için olaslk younluk fonksiyonu f(x) = x olarak verilmi%tir. ( ) Y = n x raslant dei+keninin olaslk younluk fonksiyonu a%adakilerden hangisidir? A) ny y e B)( ny) e ( ny) y C) y ye D) y e e E) y ( ny) SORU 6: X ve X rastlant dei%kenlerinin bile%ik moment çkaran fonksiyonu + M(t,t ) = 0, + 0,5e t + 0,7e t t + 0,8e t t olarak verilmi%tir. Y = X X nin beklenen deeri a%adakilerden hangisidir? A) -0,5 B) 0, C), D),5 E),6

3 SORU 7: X raslant dei%keni 0,,,...,n tamsay deerlerini alan kesikli bir raslant dei%keni, Y raslant dei%keni de 0,,,...,n tamsay deerlerini alan kesikli tekdüze dalan bir raslant dei%kenidir. Var (X) Var(Y) nin deeri a%adaki seçeneklerden hangisinde verilmi%tir? A) n + B) n C) n D) n + E) n SORU 8: X raslant dei%keninin younluk fonksiyonu, k sabit bir katsay olmak üzere, f(x) = k(x + ), x > 0 biçiminde verimi%tir. E(X) in deeri a%adakilerden hangisidir? A) -5/ B) C) / D) E) 5/ SORU 9: at e X raslant dei%keninin moment türeten fonksiyonu M(t) =, < t < olarak bt verilmektedir. E(X)= ve Var(X)= olduuna göre a+b nin deeri a%adaki seçeneklerin hangisinde verilmi%tir? A) B) 4 C) 5 D) 6 E) 7

4 SORU 0: Y rastgele dei%keni (0,) aralnda uniform dalmaktadr. Buna göre Z= -a ln (-Y), (a>0 için ) olarak tanmlanan Z nin dalm a%adaki dalm ailelerinden hangisine aittir? A) Cauchy B) Lognormal C) Normal D) Uniform E) Üstel SORU : X raslant dei%keninin olaslk younluk fonksiyonu, x/ f( x, ) xe =,x > 0, > 0 olarak verilmi%tir. X in beklenen deeri, varyans dir. X, X,..., X n bu dalmdan seçilen basit bir rasgele örneklem ise en çok olabilirlik yöntemine göre nin yansz tahmin edicisi a%adakilerden hangisidir? A) B) C) D) X 4n + X X n + n + X E) ( + ) 4 Xn 4

5 SORU : Bir salk poliçesinde di% tedavi teminat da sunulmaktadr. Poliçe ortodonti, dolgu ve temizleme i%lemlerini kapsamaktadr. Poliçe süresince sigortalnn tedavi talebinde bulunma olaslklar Tedavi Olaslk Ortodonti i%lemleri Ortodonti ya da bir dolgu i%lemi Ortodonti ya da temizleme 4 Bir dolgu ve temizleme 8 olarak verilmektedir. Sigortalnn bu tedavileri birbirinden bamsz olarak gerçekle%mektedir. Buna göre sigortalnn poliçe süresince dolgu ve temizleme i+lemlerinin her ikisini de yaptrma olasl a%adaki seçeneklerden hangisinde yer almaktadr? A) 7 4 B) 8 C) D) 7 4 E) 5 6 5

6 SORU : Varyasyon Kaynaklar Serbestlik derecesi (sd) Kareler Toplam (KT) Kareler Ortalamas (KO) F p- deeri Regresyon 9,488 4,5 0,0 Hata,76 Toplam 5 s=0,579 R =%98, R (düz)=%97,8 Yukardaki varyans analizi tablosuna göre a%adakilerden hangisi kesin olarak söylenebilir? A) R si yüksek bir regresyon modeli olduundan dolay geli%tirilen model bir tahmin modeli olarak kullanlabilir. B) Hata varyans oldukça küçük olduundan, daha kesin parametre tahminleri yaplabilmi%tir. C) F istatistiine ili%kin p-deeri sfr olduundan dolay model parametrelerinin en az birisi sfrdan farkldr. D) Hata terimine ili%kin varsaymlarn geçerlilii denetlenmeden modelin ba%arm ve model parametrelerinin istatistiksel önemlilii hakknda bir %ey söylenemez. E) F istatistii çok büyük olduundan dolay geli%tirilen regresyon modeli ba%arszdr. SORU 4: 5 soruluk bir testte her sorunun 5 cevap seçenei vardr. Bir örenci tüm sorular rasgele cevaplamaktadr. X, bu örencinin doru tahmin ettii soru saysn gösteren raslant dei%keni olarak tanmlandnda, örencinin en az E(X) kadar soruyu doru cevaplama olasl a%adaki seçeneklerden hangisinde yer almaktadr? A) 0,50 B) 0,55 C) 0,60 D) 0,65 E) 0,70 SORU 5: Bir portföydeki hasar tutarlar, ortalamas 4 olan bir üstel dalm ile modellenmektedir. Herhangi bir poliçenin hasar tutarnn ortalama ile medyan arasnda olma olasl a%adaki seçeneklerden hangisinde verilmi%tir? A) B) e e C) D) ln E) 4ln- 4e 6

7 SORU 6: ABC sigorta %irketinin aktüeri bir yl içinde kasko portföyündeki sürücülerden 0 ya%n altnda olanlarn kaza saylarnn n= ve p=0,04 parametreleriyle Binom, 0 ya% ve üzerinde olanlarn hasar saylarnn ise p=0,0 ile Bernoulli dalmlarna uyduunu belirlemi%tir. Portföyün %0 u 0 ya%n altnda olan sürücülerden olu%maktadr. Portföyden rasgele seçilen bir sürücünün bir önceki yl herhangi bir hasar getirmedii bilindiinde bu sürücünün sonraki yl da hasar getirmeme olasl a%adaki seçeneklerden hangisinde yer almaktadr? A) 0,68 B) 0,75 C) 0,8 D) 0,89 E) 0,96 SORU 7: Bir portföyde t=0 annda n adet poliçe bulunmaktadr. Hasar getiren poliçe sistemden çkarlmaktadr. Portföydeki poliçe says her yl % 0 azalmaktadr. 0 uncu ylda hasar getiren poliçe says 00 dür. Bu portföyden rastgele çekilen bir poliçenin üçüncü yldan önce hasar getirdii bilindiine göre, bu hasarn birinci ylda gerçekle+mesi olasl a%adaki seçeneklerden hangisinde yer almaktadr? A) 0,574 B) 0,69 C) 0,57 D) 0,87 E) 0,445 SORU 8: Katastrofik bir olayn risk analizinde, bir sonraki olayn ortaya çkmas için geçen sürenin ortalamas ile üstel dald varsaylm%tr. Sigortacnn portföyünde benzer risklere sahip birbirinden bamsz n adet poliçe vardr. Alk katastrofik hasarn ortaya çkmas için beklenen süre a+adakilerden hangisidir? n A)n B) n/ C) D) / n E) /n 7

8 SORU 9: Bir sigorta %irketinde A tipi poliçeler portföyün %40 n olu%turmaktadr. Bu poliçelerden gelen hasarlarn, [0, 00] deerleri arasnda uniform daldklar biliniyor. B tipi poliçeler %60 orannda ve bunlardan gelen hasarlar ise [50, 5] deerleri arasnda uniform dalyor. Rastgele bir poliçe seçiliyor, ve hasar tutar X olarak kaydediliyor. Hasarn 60 ile 80 birim arasnda olduu biliniyorsa, poliçenin A tipi bir poliçe olma olasl yani P( A tipi ( 60<X<80)) olasl a%adakilerden hangisidir? A) 0,49 B) 0,4 C) 0,570 D) 0,5600 E) 0,8570 SORU 0: ABC sigorta %irketinde sigortallarn ya% ve sigorta %irketine maliyeti bilgileri toplanm%tr. Bu örneklemdeki her mü%terinin kendinden bir ya% küçük mü%teriye göre %irkete maliyeti 0 TL daha azdr. Buna göre a%adakilerden hangisi dorudur? A) Bu iki dei%ken arasndaki korelasyon katsays dir. B) Bu iki dei%ken arasndaki korelasyon katsays 0.5 dir. C) Bu iki dei%ken arasndaki korelasyon katsays - dir. D) Bu iki dei%ken arasndaki korelasyon katsays dir. E) Bu iki dei%ken arasndaki korelasyon katsays 0 dr. 8

9 SORU : Bir sigorta %irketi, salk sigortas yapmadan önce mü%terilerinin basit bir kan testinden geçerek salkl olduklarna ili%kin bir doktor raporu almasn istemektedir. X hastal için de basit bir test yaplmaktadr. Ancak, bu test % 00 doru sonuçlar vermemektedir. X hastal olduu bilinen bir ki%inin test sonucunun pozitif olma olasl (yani, test tarafndan X hastalnn olduu sonucuna varlmas) % 95 dir. X hastal olmayan bir ki%i için pozitif sonuç görülmesi olasl ise % 4 tür. Ayrca, ara%trmalar Türkiye nüfusunun % 0, ünün X hastaln ta%dn göstermektedir. Test sonucu pozitif çkan bir mü+terinin X hastalnn olma olasl yakla%k olarak kaçtr? A) % 6,67 B) %,7 C) % 4,4 D) % 9,05 E) % 95,0 SORU : Bir aktüer yangn portföyündeki poliçelerin 0 yl önceki geçmi% hasar tutarlarn analiz etmi% ve parametresiyle üstel daldn görmü%tür. Bir hasarn 000 TL den az olmas olasl 0,5dir. Aktüer bugünün ko%ullarnda benzer hasarlarn 0 yl öncesine göre enflasyona bal olarak kat artacan öngörmü%tür. Buna göre bugün gerçekle+en bir hasarn 000 TL den az olmas olasl a%adaki seçeneklerden hangisinde yer almaktadr? A) 0,06 B) 0,5 C) 0,4 D) 0,6 E) 0,50 9

10 SORU : X, Gamma( n, / n) dalml sürekli bir raslant dei%kendir. Örneklem says n olan basit rasgele örneklemin ortalamas X olsun. X Y = n raslant dei%keninin limit dalm zayf büyük saylar yasasna X göre a%adakilerden hangisidir? A) N(0,) B) N(0,4) C) N(0,) D) N(0, ) E) Limit dalm yoktur. SORU 4: Evli bir çifte, TL lk tazminat ilk ölüm gerçekle%tiinde ödenen ve net tek primi 000 TL olan üç yl ertelenmi% hayat sigortas yaplm%tr. Dier bir deyi%le, ilk üç yl içinde ilk ölüm gerçekle%tiinde tazminat ödenmeyecektir. Bu sigortaya ili%kin %u bilgiler verilmi%tir: i) Kadn ve erkein birlikte en az yl ya%amas olasl 0,94 tür. ii) Erkein en az yl ya%amas ve kadnn üç yl içinde ölmesi olasl 0,0 dir. iii) Kadnn en az yl ya%amas ve erkein üç yl içinde ölmesi olasl 0,045 tir. Erkein en az yl ya+ad bilindiine göre, primin tazminat ödemesini a+mas durumunda a+an ksmn beklenen deeri a%adaki seçeneklerden hangisinde yer almaktadr?(parann zaman deeri dikkate alnmayacaktr.) A) 79 B) 857 C) 9 D) 987 E) 05 0

11 SORU 5: Bir roket B, B, B, B4, B5 olmak üzere 5 ayr bölümden olu%maktadr. Çal%abilmesi için tüm bölümlerin çal%yor olmas gerekmektedir. Bölümlerin düzgün çal%mas bamsz olup, her birinin bozulma olasl / tür. Roketin çal%mad bilindiine göre, B bölümünden dolay çal+mamas olasl a%adaki seçeneklerden hangisinde verilmi%tir? 4 A) D) 5 B) E) 4 5 C) 5 SORU 6: XYZ sigorta %irketi 45 bamsz birey için poliçe düzenlemi%tir. Her bir poliçeden hasar gelmesi olasl dr. Hasar gerçekle%tiinde ödenecek tazminat tutarnn 6 olaslk younluk fonksiyonu ( y) 0 < y < f(y) = 0 dier biçimindedir. Ödenecek toplam tazminat tutarnn beklenen deeri a%adakilerden hangisidir? A) B),5 C) D),5 E)

12 SORU 7: Defne ve Derin sinemaya gitmeye karar veriyorlar. Her ikisinin sinemaya ula%ma zamanlar birbirinden bamsz ve 4:00 ile 4:0 saatleri arasnda uniform dalm göstermektedir. Buna göre ilk gelenin, dierini 0 dakikadan fazla bekleme olasl a%adakilerden hangisidir? A) 9 B) 8 C) 7 D) 6 E) 5 SORU 8: A%adakilerden hangisi genellikle doru deildir? A) Aritmetik ortalama ve medyan bir dalmn merkezini ölçen ölçüm birimleridir. B) Sra istatistikleri ( order statistics ) genellikle aykr deerlere ( outliers ) dayankl olsa da, bu durum tüm sra istatistikleri için geçerli deildir. C) Aritmetik ortalamaya kyasla, medyan örneklemdeki aykr deerlerden daha az etkilenir. D) Standart sapmaya kyasla, çeyrek deerler geni%lii ( interquartile range ) örneklemdeki aykr deerlerden daha az etkilenir. E) Aykr deerler çe%itli hatalardan kaynaklanr ve veriden çkarlmaldr. SORU 9: X, X, X ve X 4, her biri standart normal dalm gösteren bamsz rastlant dei%kenleridir. Y rastlant dei%keni ise Y= (X + X ) + (X + X 4 ) olarak tanmlanm%tr. Buna göre, ay~ olabilmesi için a sabitinin deeri a%adaki seçeneklerden hangisidir? A) /4 B) / C) D) E) 4

13 SORU 0: X hasar raslant dei%keninin kümülatif dalm fonksiyonu, 0, x < 0 F(x) = 0, + 0,x 0 x < x. olarak verilmi%tir. XYZ sigorta %irketi hasarn (0< <) lk ksmn kar%layaca bir ksmi sigorta yapm%tr. Sigortacnn ödeyecei hasarn beklenen deeri 0,6 olduuna göre nn deeri a%adaki seçeneklerden hangisinde verilmi%tir? A) 0, B) 0,4 C) 0,5 D) 0,6 E) 0,7 CEVAPLAR D A A E D C B D C 4A 4C 4A 5E 5A 5B 6B 6E 6D 7D 7C 7A 8B 8E 8E 9B 9C 9B 0E 0C 0D

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn SORU : Aada tanm verilen f fonksiyonlarndan hangisi denklemini her R için salar? f + = f t dt integral e A) f = e B) f = e C) f D) f = E) f = e ( ) = e ( ) SORU : Bir sigorta portföyünde, t poliçe yln

Detaylı

2 400 TL tutarndaki 1 yllk kredi, aylk taksitler halinde aadaki iki opsiyondan biri ile geri ödenebilmektedir:

2 400 TL tutarndaki 1 yllk kredi, aylk taksitler halinde aadaki iki opsiyondan biri ile geri ödenebilmektedir: SORU 1: 400 TL tutarndaki 1 yllk kredi, aylk taksitler halinde aadaki iki opsiyondan biri ile geri ödenebilmektedir: (i) Ayla dönütürülebilir yllk nominal %7,8 faiz oran ile her ay eit taksitler halinde

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

2013 YILI II. SEVYE AKTÜERLK SINAVLARI MUHASEBE VE FNANSAL RAPORLAMA ÖRNEK SINAV SORULARI

2013 YILI II. SEVYE AKTÜERLK SINAVLARI MUHASEBE VE FNANSAL RAPORLAMA ÖRNEK SINAV SORULARI 2013 YILI II. SEVYE AKTÜERLK SINAVLARI MUHASEBE VE FNANSAL RAPORLAMA ÖRNEK SINAV SORULARI 1-Türkiye Finansal Raporlama Standartlar na (TFRS) göre deer dü"üklüü aada verilen hangi hesap kalemi için ayr(lmaz?

Detaylı

Bir torbada 6 beyaz 5 krmz ve 4 siyah bilye vardr. Torbadan rastgele çekilen 3 bilyenin a) Üçünün de beyaz olma olasl" b) Üçünün de ayn renkte olma

Bir torbada 6 beyaz 5 krmz ve 4 siyah bilye vardr. Torbadan rastgele çekilen 3 bilyenin a) Üçünün de beyaz olma olasl b) Üçünün de ayn renkte olma 1 Bir torbada 6 beyaz 5 krmz ve 4 siyah bilye vardr. Torbadan rastgele çekilen 3 bilyenin a) Üçünün de beyaz olma olasl" b) Üçünün de ayn renkte olma olasl" c) Üçünün de farkl renkte olma olasl" d) 1.

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI: SİGORTA MATEMATİĞİ. Soru 1

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI: SİGORTA MATEMATİĞİ. Soru 1 Soru Günde 8 saat çalışan bir bankanın müşterilerinin sayısı ile ilgili olarak şu bilgi verilmektedir: Müşteri sayısı, bankanın açıldığı an 9 müşteri ile başlayıp, her saat başı 9 oranı ile doğrusal artarak

Detaylı

Sigortac tazminatn ödedii sigortal maln sahibi olur. Sigortacnn bu ekilde sahip olduu mallarn satndan elde ettii gelire ne ad verilir?

Sigortac tazminatn ödedii sigortal maln sahibi olur. Sigortacnn bu ekilde sahip olduu mallarn satndan elde ettii gelire ne ad verilir? SORU 1: Aadaki sigorta türlerinden hangisi sigorta snflandrmas bakmndan dierlerine göre farkllk arz etmektedir? A) Kasko Sigortas B) Yangn Sigortas C) Nakliyat Sigortas D) Makine Montaj Sigortas E) Trafik

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

AKTÜERLK SINAVLARI FNANSAL MATEMATK SINAVI ÖRNEK SORULARI

AKTÜERLK SINAVLARI FNANSAL MATEMATK SINAVI ÖRNEK SORULARI AKTÜERLK SINAVLARI FNANSAL MATEMATK SINAVI ÖRNEK SORULARI SORU 1: 6 yl vade ile yllk %14 basit faiz oran üzerinden bir borç alnmtr. 3. yldaki faiz oranna e$de%er olan efektif iskonto oran a$a%dakilerden

Detaylı

2013 YILI II. SEVYE AKTÜERLK SINAVLARI FNANS TEORS VE UYGULAMALARI ÖRNEK SINAV SORULARI

2013 YILI II. SEVYE AKTÜERLK SINAVLARI FNANS TEORS VE UYGULAMALARI ÖRNEK SINAV SORULARI SORU 1: 013 YILI II. SEVYE AKTÜERLK SINAVLARI FNANS TEORS VE UYGULAMALARI ÖRNEK SINAV SORULARI ABC hisse senedinin spot piyasadaki fiyat 150 TL ve bu hisse senedi üzerine yazlm alivre sözle mesinin fiyat

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

SİGORTA MATEMATİĞİ SINAVI EKİM 2016 SORULARI

SİGORTA MATEMATİĞİ SINAVI EKİM 2016 SORULARI SİGORTA MATEMATİĞİ SINAVI EKİM 2016 SORULARI ÇÖZÜMLÜ SINAV SORULARI-WEB SORU-1: (i) P =0,06 x:n (ii) P x =0,03 (iii) P x + n=0,04 (iv) d =0,02 1 olarak veriliyor. Buna göre P x: n değeri aşağıdaki seçeneklerden

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Türkiye demir ve çelik sektöründe bir irketin yangn risklerinin aktüeryal modeli

Türkiye demir ve çelik sektöründe bir irketin yangn risklerinin aktüeryal modeli www.istatistikciler.org statistikçiler Dergisi 3 (010) 37-44 statistikçiler Dergisi Türkiye demir ve çelik sektöründe bir irketin yangn risklerinin aktüeryal modeli Özlem Ceren Gültekin skenderun Demir

Detaylı

SİGORTA MATEMATİĞİ SINAV SORULARI WEB. Belirli yaşlar için hesaplanan kommütasyon tablosu aşağıda verilmiştir.

SİGORTA MATEMATİĞİ SINAV SORULARI WEB. Belirli yaşlar için hesaplanan kommütasyon tablosu aşağıda verilmiştir. SORU 1 SİGORTA MATEMATİĞİ SINAV SORULARI WEB Şimdiki yaşı 56 olan Ahmet, Bireysel Emeklilik Sistemi (BES) ile biriktirmiş olduğu 250.000 TL yi yaşam süresi boyunca sabit ödemeli dönem başı yıllık maaş

Detaylı

PARAMETRK OLMAYAN STATSTKSEL TEKNKLER. Prof. Dr. Ali EN ÖLÇEKLER

PARAMETRK OLMAYAN STATSTKSEL TEKNKLER. Prof. Dr. Ali EN ÖLÇEKLER PARAMETRK OLMAYAN STATSTKSEL TEKNKLER Prof. Dr. Ali EN 1 Normal dalm artlarn salamayan ve parametrik istatistik tekniklerinin kullanlmasn elverisiz klan durumlarn bulunmas halinde, eldeki verilere bal

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir?

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir? 1. lim a 1 üzere a+b toplam kaçtr? A)-8 B)-5 C)- C)1 E)4 b, a,b R olmak 4. +y=14 ise.y 5 çarpmnn değeri en fazla kaça eşittir? A)4 6.10 B)10.4 5 C)10 5. D) 5.10 7 E)16.10 5. bir cisim için hareket denklemi

Detaylı

Keynesyen makro ekonomik modelin geçerli oldu(u bir ekonomide aa(daki ifadelerden hangisi yanltr?

Keynesyen makro ekonomik modelin geçerli oldu(u bir ekonomide aa(daki ifadelerden hangisi yanltr? SORU 31: 3 / 4 Bir ekonomide kii ba üretim fonksiyonu y = 2k biçiminde verilmektedir. Nüfus art hz %2, teknik ilerleme hz %2 ve amortisman oran %6 iken tasarruf oran da %30 ise bu ekonomideki kii ba sermaye

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Matematiksel denklemlerin çözüm yöntemlerini ara t r n z. 9. FORMÜLLER

Matematiksel denklemlerin çözüm yöntemlerini ara t r n z. 9. FORMÜLLER ÖRENME FAALYET-9 AMAÇ ÖRENME FAALYET-9 Gerekli atölye ortam ve materyaller salandnda formülleri kullanarak sayfada düzenlemeler yapabileceksiniz. ARATIRMA Matematiksel denklemlerin çözüm yöntemlerini aratrnz.

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Onüçüncü Bölüm Zaman Serisi Analizi

Onüçüncü Bölüm Zaman Serisi Analizi OnüçüncüBölüm ZamanSerisiAnalizi Hedefler Buüniteyiçalktansonra; Zaman serisine en uygun tahmin denklemini belirler, Tahmin denklemini kullanarak projeksiyon yapar, Tahminler için yaplan hatay ölçer, Belli

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yllar arasnda Y gayri safi milli hasla, M Para Araz (M) ve r faiz oran verileri a#a$da verilmi#tir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatas ta#yp ta#mad$n Ramsey RESET testi

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Türkiye Sigorta ve Emeklilik Sektörü

Türkiye Sigorta ve Emeklilik Sektörü Türkiye Sigorta ve Emeklilik Sektörü Can Akın ÇAĞLAR Başkan 3 Ağustos 2017 1 I. Sektöre İlişkin Genel Bilgiler II. Gündemdeki Önemli Konular 1. Zorunlu Trafik Sigortası 2. Bireysel Emeklilik Sistemi ve

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Sigorta irketlerinin Yaps ve Aktüerin Rolü. Aktüerler Derneği Nisan 2010

Sigorta irketlerinin Yaps ve Aktüerin Rolü. Aktüerler Derneği Nisan 2010 Sigorta irketlerinin Yaps ve Aktüerin Rolü Aktüerler Derneği Nisan 2010 Türkiye de sigortaclk ve bireysel emeklilik sektörü RKET SAYISI - NUMBER OF COMPANY 2006 2007 2008 Hayat D - Non Life (Alt adedi

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST YÜKSEKÖRETME GEÇ SINAVI (YGS) 11 NSAN 010 TEMEL MATEMATK TEST 1. 0, 0,0 0,. 6 1 ileminin sonucu kaçtr? ileminin sonucu kaçtr? A) D) 8 B) E) 1 C) 7 0 A) B) C) 1 D) 1 E) 1.. a1 a1 ileminin sonucu kaçtr?

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

GENEL DURUM. GERÇEKLE T R LEN FAAL YETLER ve PROJELER 1. SOSYAL YARDIMLAR

GENEL DURUM. GERÇEKLE T R LEN FAAL YETLER ve PROJELER 1. SOSYAL YARDIMLAR GENELDURUM Türk Kzlay Sosyal Hizmetler Müdürlüü; olaan ve olaanüstü durumlarda, yerel, ulusal ve uluslararas düzeyde insan onurunu korumak amac ile toplumdaki savunmasz ve incinebilir nüfus gruplarnn sorunlarn

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Haziran 2013 İSTATİSTİKLER

Haziran 2013 İSTATİSTİKLER Haziran 2013 İSTATİSTİKLER *Ekli dosyadaki istatistiki veriler sigorta şirketlerinin SBM ye gönderdiği verilerden oluşturulmuştur. 1 1 İçindekiler: 1. SBM Eksper Raporu (EKSRAP) İstatistikleri(*)... 3

Detaylı

1) 40* Do?u boylam?nda güne? 05.20 'de do?ar ise 27* do?u boylam?nda kaçta do?ar?

1) 40* Do?u boylam?nda güne? 05.20 'de do?ar ise 27* do?u boylam?nda kaçta do?ar? 1) 40* Do?u boylam?nda güne? 05.20 'de do?ar ise 27* do?u boylam?nda kaçta do?ar? A) 06.12 B) 04.28 C) 05.32 D) 05.07 E) 07.02 2) 60* bat? meridyeninde bulunan bir noktada yerel saat 11.12 iken yerel saati

Detaylı

ARSAN TEKST L T CARET VE SANAY ANON M RKET SER :XI NO:29 SAYILI TEBL E ST NADEN HAZIRLANMI YÖNET M KURULU FAAL YET RAPORU

ARSAN TEKST L T CARET VE SANAY ANON M RKET SER :XI NO:29 SAYILI TEBL E ST NADEN HAZIRLANMI YÖNET M KURULU FAAL YET RAPORU 1. Raporun Dönemi : 01.01.2009 31.03.2009 2. Konusu Arsan Tekstil Ticaret Ve Sanayi A.. (irket) 1984 ylnda Türkiye de kurulmu# olup faaliyet konusu; her türlü pamuk ipli)i üretimi, sentetik iplik üretimi,

Detaylı

ARTVN L GELME PLANI. Artvin l Geneli-2000. Bilinmeyen 80+ 75-79 70-74 65-69 60-64 55-59 50-54 45-49 40-44 35-39 30-34 25-29 20-24 15-19 10-14 5-9 0-4

ARTVN L GELME PLANI. Artvin l Geneli-2000. Bilinmeyen 80+ 75-79 70-74 65-69 60-64 55-59 50-54 45-49 40-44 35-39 30-34 25-29 20-24 15-19 10-14 5-9 0-4 ARTVN L GELME PLANI Artvin l Geneli-2000 Bilinmeyen Erkek 80+ 75-79 70-74 65-69 60-64 Kad n Y a Gruplar 55-59 50-54 45-49 40-44 35-39 30-34. 25-29 20-24 15-19 10-14 5-9 0-4 12 9 6 3 0 3 6 9 12 % NÜFUS

Detaylı

Olas l ksal ev Stabilitesi Analizlerinde Yerel De i kenli in Etkisi

Olas l ksal ev Stabilitesi Analizlerinde Yerel De i kenli in Etkisi Takn ve Heyelan Sempozyumu / 24-26 Ekim 2013, Trabzon - 221 - Olaslksal ev Stabilitesi Analizlerinde Yerel Deikenliin Etkisi H. Gören, E. Tekin, S. O. Akba, Gazi Üniversitesi, Mühendislik Fakültesi, naat

Detaylı

SIEMENS Siemens Sanayi ve Ticaret A..

SIEMENS Siemens Sanayi ve Ticaret A.. SIEMENS Siemens Sanayi ve Ticaret A.. Deerli Tedarikçilerimiz, Türk Vergi Usul Kanunu ve ana ortamz olan Siemens AG nin kurallar gerei, firmamza gelen faturalarn muhasebeletirilmesi, takibi ve vadesinde

Detaylı

Do u Karadeniz deki iddetli Ya lar ve Ta k n Debilerine Uyan Da l mlar n Analizi

Do u Karadeniz deki iddetli Ya lar ve Ta k n Debilerine Uyan Da l mlar n Analizi Takn ve Heyelan Sempozyumu / 4-6 Ekim 013, Trabzon - 377 - Dou Karadeniz deki iddetli Yalar ve Takn Debilerine Uyan Dalmlarn Analizi Prof. Dr. Ömer YÜKSEK (1), Ara. Gör. Tuçe ANILAN (), Yük. n. Müh. Uur

Detaylı

UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni

Detaylı

TÜRKYE DE Ç GÖÇ AKIMLARI ÜZERNE BR ÇALIMA: LOWRY HPOTEZ A STUDY ON THE INTERNAL MIGRATION FLOWS IN TURKEY: LOWRY HYPOTHESIS

TÜRKYE DE Ç GÖÇ AKIMLARI ÜZERNE BR ÇALIMA: LOWRY HPOTEZ A STUDY ON THE INTERNAL MIGRATION FLOWS IN TURKEY: LOWRY HYPOTHESIS TÜRKYE DE Ç GÖÇ AKIMLARI ÜZERNE BR ÇALIMA: LOWRY HPOTEZ Ögr. Gör. Dr. Ferhat Topba' 1 Ar'. Gör. Banu Tanr+över 2 ÖZET Bu çalmann amac, Türkiye için Gedik (1992) tarafndan 1965 1980 ve Yamak ve Küçükkale

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Monte Carlo stokastik optimizasyonu ile optimal saklama pay seviyesi hesab

Monte Carlo stokastik optimizasyonu ile optimal saklama pay seviyesi hesab www.istatistikciler.org statistikçiler Dergisi 4 (2011) 1-8 statistikçiler Dergisi Monte Carlo stokastik optimizasyonu ile optimal saklama pay seviyesi hesab Murat Büyükyazc Hacettepe Üniversitesi Fen

Detaylı

Özel sektörde aktüerya: Teori ve pratik buluş(ama)ması. Dünyada RİSK içeren her alanda Aktüerya vardır ve olmaya devam edecektir.

Özel sektörde aktüerya: Teori ve pratik buluş(ama)ması. Dünyada RİSK içeren her alanda Aktüerya vardır ve olmaya devam edecektir. Özel sektörde aktüerya: Teori ve pratik buluş(ama)ması Dünyada RİSK içeren her alanda Aktüerya vardır ve olmaya devam edecektir. Orhun Emre Çelik Aktüerler Derneği Başkanı Aktüerya Nedir? Aktüerya insanların,

Detaylı

TÜRK MOB L TELEKOMÜN KASYON P YASALARINDA REKABET VE EBEKE ETK LER

TÜRK MOB L TELEKOMÜN KASYON P YASALARINDA REKABET VE EBEKE ETK LER TÜRK MOB L TELEKOMÜN KASYON P YASALARINDA REKABET VE EBEKE ETK LER Mehmet Karaçuka * ÖZET Enformasyonun üretim sürecinin önemli bir girdisi olduu günümüz ekonomilerinde telekomünikasyon ebekeleri enformasyona

Detaylı

TEMEL SİGORTACILIK. Gerçekleşen hasar oranı, sigorta tarifesinde öngörülen hasar oranından daha düşük olursa aşağıdaki seçeneklerden hangisi doğrudur?

TEMEL SİGORTACILIK. Gerçekleşen hasar oranı, sigorta tarifesinde öngörülen hasar oranından daha düşük olursa aşağıdaki seçeneklerden hangisi doğrudur? TEMEL SİGORTACILIK SORU 1: Gerçekleşen hasar oranı, sigorta tarifesinde öngörülen hasar oranından daha düşük olursa aşağıdaki seçeneklerden hangisi doğrudur? A) Toplam Risk Primi, Toplam Ödenen Tazminat

Detaylı

SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için,

SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için, SİGORTA MATEMATİĞİ (Hayat-Hayat Dışı) Soru-1: (x) yaşında bir kişinin, tam sürekli tam hayat (whole life) sigortası için, (i) Āx=0,5 (ii) 2 Āx=0,40 (iii) δ=0,04 (iv) E[L]= -0,2 olduğuna, sürekli, T zamanı

Detaylı

Snf Öretmenlerinin Kendi Mesleki Yeterliklerine likin Görüleri: Genel Bir Deerlendirme. Dr. Halil Yurdugül Ali Çakrolu Mesude Ayan

Snf Öretmenlerinin Kendi Mesleki Yeterliklerine likin Görüleri: Genel Bir Deerlendirme. Dr. Halil Yurdugül Ali Çakrolu Mesude Ayan Snf Öretmenlerinin Kendi Mesleki Yeterliklerine likin Görüleri: Genel Bir Deerlendirme Dr. Halil Yurdugül Ali Çakrolu Mesude Ayan Öretmen Yeterlikleri Toplumsal geliim için, Eitimin kalitesini artrmak

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

İSTATİSTİĞE GİRİŞ VE OLASILIK

İSTATİSTİĞE GİRİŞ VE OLASILIK 1. 52 iskambil kağıdı ile oynanan bir kağıt oyununda çekilen kart vale ya da kız ise 3$, papaz ya da as ise 5$ kazanılmaktadır. Başka herhangi bir kartın çekilmesi durumunda oyun kaybedilmektedir. Oyunun

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

HACETTEPE ÜNVERSTES. l e t i i m. : H. Ü. Fen Fakültesi Aktüerya Bilimleri Bölümü Beytepe/Ankara. Telefon :

HACETTEPE ÜNVERSTES. l e t i i m. : H. Ü. Fen Fakültesi Aktüerya Bilimleri Bölümü Beytepe/Ankara. Telefon : l e t i i m Adres : H. Ü. Fen Fakültesi Aktüerya Bilimleri Bölümü 06800 Beytepe/Ankara Telefon : +90 312 297 6234 Faks : +90 312 297 7998 HACETTEPE ÜNVERSTES e-posta Web : aktuerya@hacettepe.edu.tr : www.aktuerya.hacettepe.edu.tr

Detaylı

Mali Yönetim ve Denetim Dergisinin May s-haziran 2008 tarihli 50. say nda yay nlanm r.

Mali Yönetim ve Denetim Dergisinin May s-haziran 2008 tarihli 50. say nda yay nlanm r. HURDAYA AYRILAN VARLIKLARIN MUHASEBELELMELER VE YAPILAN YANLILIKLAR Ömer DA Devlet Muhasebe Uzman info@omerdag.net 1.G Kamu idarelerinin kaytlarnda bulunan tarlar ile maddi duran varlklar doalar gerei

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

ARSAN TEKST L T CARET VE SANAY ANON M RKET SER :XI NO:29 SAYILI TEBL E ST NADEN HAZIRLANMI YÖNET M KURULU FAAL YET RAPORU

ARSAN TEKST L T CARET VE SANAY ANON M RKET SER :XI NO:29 SAYILI TEBL E ST NADEN HAZIRLANMI YÖNET M KURULU FAAL YET RAPORU 1. Raporun Dönemi : 01.01.2008 31.03.2008 2. Faaliyet Konusu Arsan Tekstil Ticaret Ve Sanayi A.. (irket) 1984 ylnda Türkiye de kurulmu# olup faaliyet konusu; her türlü pamuk ipli)i üretimi, sentetik iplik

Detaylı

Bulank kümeleme analizi ile ülkelerin turizm istatistikleri bakmndan snflandrlmas

Bulank kümeleme analizi ile ülkelerin turizm istatistikleri bakmndan snflandrlmas www.istatistikciler.org statistikçiler Dergisi 4 (011) 31-38 statistikçiler Dergisi Bulank kümeleme analizi ile ülkelerin turizm istatistikleri bakmndan snflandrlmas brahim Klç Afyon Kocatepe Üniversitesi,

Detaylı

yurdugul@hacettepe.edu.tr VB de Veri Türleri 1

yurdugul@hacettepe.edu.tr VB de Veri Türleri 1 yurdugul@hacettepe.edu.tr 1 VB de Veri Türleri 1 Byte 1 aretsiz tamsay Integer 2 aretli Tamsay Long 4 aretli Tamsay Single 4 Gerçel say Double 8 Gerçel say Currency 8 Gerçel say Decimal 14 Gerçel say Boolean

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 2303

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 2303 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: İSTATİSTİK I Dersin Orjinal Adı: İSTATİSTİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 0 Dersin Öğretim

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1 ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...

Detaylı

SRKÜLER NO: POZ / 54 ST,

SRKÜLER NO: POZ / 54 ST, - SRKÜLER NO: POZ - 2006 / 54 ST, 21.12. 2006 20.12.2006 tarih ve 26382 sayılı Resmi Gazete de yayınlanan 28 seri no.lu Motorlu Taıtlar Vergisi Genel Teblii ile (I) sayılı tarifede yer alan ve kasko deerinin

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

SAĞLIK SİGORTALARI SINAVI WEB-ARALIK 2015

SAĞLIK SİGORTALARI SINAVI WEB-ARALIK 2015 SAĞLIK SİGORTALARI SINAVI WEB-ARALIK 2015 Soru-1: Sosyal Güvenlik Kurumu altında sağlık güvencesi olan ve ayrıca AA Sigorta şirketinden 04.05.2015 başlangıç tarihli sağlık sigortası yaptıran Ali Bey, 10.05.2015

Detaylı

Y ll k Maksimum Ak mlar n Baz Olas l k Da l mlar na Uygunlu unun Ki-Kare Ve Kolmogorov-Smirnov Testleriyle Belirlenmesi

Y ll k Maksimum Ak mlar n Baz Olas l k Da l mlar na Uygunlu unun Ki-Kare Ve Kolmogorov-Smirnov Testleriyle Belirlenmesi Takn ve Heyelan Sempozyumu / 24-26 Ekim 2013, Trabzon - 339 - Yllk Maksimum Akmlarn Baz Olaslk Dalmlarna Uygunluunun Ki-Kare Ve Kolmogorov-Smirnov Testleriyle Belirlenmesi Yrd.Doç.Dr. Fatih SAKA 1, Prof.Dr.

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Temmuz 2012 İSTATİSTİKLER

Temmuz 2012 İSTATİSTİKLER Temmuz 2012 İSTATİSTİKLER *Ekli dosyadaki istatistiki veriler sigorta şirketlerinin SBM ye gönderdiği verilerden oluşturulmuştur. Sigorta Suistimalleri Bilgi Sistemi Veri Tabanı (SİSBİS) İstatistikleri

Detaylı

Bankacılık Sektörü: Aylık Gelimeler

Bankacılık Sektörü: Aylık Gelimeler Hisse Senedi / Sektör Görünümü 08/02/2011 Bankacılık Sektörü: Aylık Gelimeler Bilançolar zorlu bir yıla hazırlanıyor Bankacılık sektörü Aralık ayında 1.564 milyon TL net kar elde etti. BDDK nın yayımladıı

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Yap Kredi Emeklilik A..

Yap Kredi Emeklilik A.. 1 Ocak - 30 Eylül 2012 ara hesap dönemine ait finansal tablolar ve finansal tablolara ili$kin açklayc dipnotlar 30 EYLÜL 2012 TAR*H* *T*BAR*YLE DÜZENLENEN F*NANSAL TABLOLARIMIZA *L*K*N BEYANIMIZ liikte

Detaylı

Almanya Bilgileri,Turistik Mekanlar ve Vize??lemleri

Almanya Bilgileri,Turistik Mekanlar ve Vize??lemleri Almanya Bilgileri,Turistik Mekanlar ve Vize??lemleri Yeni Ülkeler isimli kategoride Bircok ülke hakk?nda (?uana kadar 30 kadar üke icin yaz?lar haz?rlad?k) bilgiler veriyoruz ve beraberinde o ülke hakk?nda

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

www.malieksen.com GENEL SA LIK S GORTASI UYGULAMASINA L K N SORU VE CEVAPLAR

www.malieksen.com GENEL SA LIK S GORTASI UYGULAMASINA L K N SORU VE CEVAPLAR GENEL SALIK SGORTASI UYGULAMASINA LKN SORU VE CEVAPLAR 1-1 Ocak 2012 tarihinden itibaren genel salk sigortas uygulamasndaki deiiklikler nelerdir? Genel salk sigortasndan yararlanlmasnda temel artlardan

Detaylı

SRKÜLER NO: POZ - 2005 / 87 ST, 30.12. 2005

SRKÜLER NO: POZ - 2005 / 87 ST, 30.12. 2005 SRKÜLER NO: POZ - 2005 / 87 ST, 30.12. 2005 27.12.2005 tarih ve 26036 sayılı Resmi Gazete de yayınlanan 26 seri no.lu Motorlu Taıtlar Vergisi Genel Teblii ile (I) sayılı tarifede yer alan ve kasko deerinin

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

TÜLN OTBÇER. Seminer Raporu Olarak Hazırlanmıtır.

TÜLN OTBÇER. Seminer Raporu Olarak Hazırlanmıtır. TÜLN OTBÇER Seminer Raporu Olarak Hazırlanmıtır. Ankara Hacettepe Üniversitesi Mayıs, 2004 ! - " $ - "%%&%$ - "%' $ - "(%' $ - "( ) (* $+,( $ - ") (',( $ - "- %./$ 0 1*&/1(2, %("%. 3/1(4""3%(/1-( /32 $$

Detaylı