OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık"

Transkript

1 ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb seçlen örneklern şansa bağlı olarak farklılıklar göstermes ve bunun sonucunda her deneyde farklı sonuçlarla karşılaşılmasıdır. Olasılık, herhang br deneyn sonucunda gözleneblecek farklı durumlar le hang sıklıkla karşılaşılacağı br başka fadeyle ortaya çıkan olayların belrszlğnn ncelenmes anlamına gelr. Olasılık br dğer fadeyle br olayın meydana gelme şansının sayısal fadesdr. 7 yy. da şans oyunlarıyla brlkte kullanılmaya başlanan olasılık, uygulamalı matematğn br dalı olarak gelşm göstermş ve statstksel yorumlamada öneml uygulama alanı bulmuştur. Örnekler: Maden paranın atılması sonucu tura gelme olasılığı, r deste skambl kağıdından çeklen kağıdın en az brnn papaz olma olasılığı, Nşanlı olan br çftn evlenme olasılığı.??? Temel Tanımlar ve Kavramlar-I Tekrarlanablr Deney: Sonucu kesn olarak kestrmlenemeyen br tek çıktı şans değşken oluşturan br eylem, gözlem ya da süreçtr. Örnek: maden para atılması, çnde sarı 7 lacvert blye bulunan torbadan br top çeklmes. ast Olay: r deneyn çıktısı daha bast br çıktı olarak ayrıştırılamıyorsa bast olaydır. Örnek: hlesz br zarın atılması sonucu gelmes, br deste skambl kağıdından çeklen kağıdın maça as olması. 4

2 Temel Tanımlar ve Kavramlar-II Olay: rden fazla bast olayın br araya gelmes sonucu oluşur. Örnek: hlesz br zarın atılması sonucu asal sayı gelmes, çnde sarı 7 lacvert blye bulunan torbadan top çekldğnde brnn sarı brnn lacvert olması. Örnek Uzayı: r deneyn sonucunda elde edlen tüm mümkün bast olaylarının oluşturduğu kümedr. Genellkle S le tanımlanır. Örnek: Hlesz br zarın atılması sonucu elde edlen örnek uzayı; x: zarın üst yüzünde gelen sayı S = { x; x =,,,4,,6 } Temel Tanımlar ve Kavramlar-III yrık Olay: Eğer ve gb k olay aynı anda geçekleşemyor se bu olaylara ayrıkbrbrn engelleyen olaylar denr Örnek: Maden para atılması sonucunda yazı veya tura gelmes ayrık olaylardır. Zarın atılması sonucu ve tek sayı gelmes olayları ayrık olaylar değldrler. Çünkü aynı anda gerçekleşeblrler. Eşt Olasılıklı Olaylar: r örnek uzayındak tüm bast olayların ortaya çıkma olasılığı eşt se bu olaylara eşt olasılıklı olaylar denr. Örnek: r deste skambl kağıdından br adet kağıt çeklmes. 6 Olasılık çn Notasyon Olasılığın Lmtler olasılığa karşılık gelr.,, ve spesfk olayları tanımlar. - olayının meydana gelmes olasılığını fade eder. İmkansız br olayın olasılığı 0 dır. Kesn br olayın olasılığı dr. r olayı çn

3 Olasılığın İk Temel Kuralı; Tüm bast olayların olasılıkları 0 le arasındadır. r örnek uzayındak tüm bast olayların ortaya çıkma olasılıklarının toplamı e eşttr. DİKKT!!!! Hç br olayın OLSILIĞI den büyük olamaz!!!! Tanımlar ve olayları, eğer brlkte meydana gelemyorlarsa, ayrıktır brbrn engelleyen olaylardır. r olayın ortaya çıkma olasılığı; şeklnde gösterlr. 9 0 rbrn ütünleyen Tümleyen Olaylar ve yrık olaylarıdır Tüm bast olaylar, veya çersnde yer alır. + = Tümleyen Olaylar le İlgl Kurallar = =

4 Olayının Venn Dyagramı Gösterm Olasılığın Gelşm şamaları Klask ror Olasılık Frekans osteror Olasılığı ksyom Olasılığı NOT:u sıralama olasılık teorsnn tarhsel gelşmn tanımlamaktadır. 4 Klask Olasılık Eğer br örnek uzayı ns adet ayrık ve eşt olasılıkla ortaya çıkan bast olaylardan oluşuyor ve örnek uzayındak bast olaylardan n aded olayının özellğne sahp se nın olasılığı: = n ns kesr le elde edlr. Örnek: r kapta sarı, lacvert ve adet yeşl blye bulunmaktadır. Çeklen br blyenn sarı olma olasılığı nedr? : Çeklen br blyenn sarı olması ns: Örnek uzayı eleman sayısı = n: Örnek uzayındak elemanı sayısı = n n S 6 4

5 Klask Olasılık Nçn Yeterszdr? Örnek uzayının eleman sayısı sonsuz olduğu durumlarda, Eşt olasılıklı olay varsayımı yapılamadığı durumlarda, Ne Yapılablr? raştırılan anakütle üzernde tekrarlı deneyler gerçekleştrlerek sonuçlar analz edlmek üzere kayıt edlmeldr. klask olasılık le hesaplama yapılamayacağından dolayı yeterszdr. 7 8 Frekans Olasılığı raştırılan anakütle üzernde n adet deney uygulanır. Yapılan bu deneylerde lglenlen olayı n defa gözlenmş se olayının görel frekansı yaklaşık olasılığı: olarak bulunur. = n n 9 Örnek: r fabrkanın üretmş olduğu televzyonların hatalı olma olasılığı p nedr? Önce örnek uzayı oluşturulur: S={sağlam,hatalı} Klask olasılığa göre eşt olasılıklı olaylar p=0. olup gerçeğ yansıttığı şüpheldr. Yapılması gereken örneklem alarak p = nh n olasılığını hesaplamaktır. 0

6 üyük Sayılar Kanunu r prosedür deney tekrarlandıkça, frekans olasılığı gerçek olasılığa yaklaşma eğlm gösterr. Frekans Olasılığının Kararlılık Özellğ Gerçekleştrlen deney sayısı arttıkça olasılık değerndek değşkenlk azalacak ve gderek br sabt değere yaklaşacaktır. u duruma kararlılık özellğ adı verlr. r olayın olasılığı deneyn tekrarlama sayısı sonsuza yaklaşırken o olayın görel frekansının alacağı lmt değer olarak tanımlanır: p = = lm n n n Frekans Olasılığı Nçn Yeterszdr? Olasılığın kararlılık değerne ulaştığı deneme sayısı kaçtır? Sonsuz adet deneme yapmak mümkün değldr. ynı deney k defa aynı tekrar sayısı le gerçekleştrldğnde elde edlen olasılıklardan hangs olayın olasılığı olarak kabul görecektr? ksyom Olasılığı Nedr? Olasılığın matematksel teorsn tanımlar. u teornn oluşturduğu deal modeller yaşadığımız dünyanın problemlern çözmede kullanılır. Olasılığın k genel tpnn sahp olduğu öneml ortak nokta: Her ksnn de, benzer koşullarda teork olarak aynı koşullarda uygulanan deneylere gereksnm duymasıdır. ununla brlkte benzer koşullarda tekrarlı olarak uygulanamayan durumlarda olasılıkların hesaplanmasında KSİYOM OLSILIĞI yardımcı olur. 4 6

7 enzer Koşullarda Tekrarlı Olarak Uygulanamayan Durumlara Örnekler: Türkye nn hafta çnde Kuzay Irağa sınır ötes operasyon düzenleme olasılığı nedr? Çok hoşlandığınız br arkadaşınızla çıkma olasılığı nedr? Fenerbahçe - Galatasaray maçının 6-0 btmes olasılığı nedr? Subjektf Olasılıklar olayının meydana gelme olasılığı, konu le lgl blgler ve nanışlarına bağlı olarak belrlenr. Örnek: Kşsel yatırımcıların hçbr borsanın gelecektek davranışı konusunda aynı görüşü paylaşmaz. u kşlern subjektf olasılıkları, ulaşabldkler blgye ve onu yorumlama bçmlerne bağlıdır. 6 ksyomlar ksyom : örnek uzayı S dek her olayı çn 0 olan br gerçel sayıdır. ksyom : S= { =0 } ksyom : Eğer S,S,...Olaylarının her br S dek ayrık olaylar se,dğer br deyşle S S j = tüm j çn se, S S...=S +S Sadece ksyomlar Yeterl m? HYIR u aksyomların ve onlara bağlı teoremlern faydalı br model gelştrlmesnde bze yardımcı olablmes çn, S örnek uzayındak her br olayı çn olasılığın hesaplanmasında kullanılacak br FONKSİYON ya da br KURL gereksnm vardır 8 7

8 u fonksyonlar İlglenlen anakütlenn Tanımladığı ÖRNEK UZYIN Göre Farklılık Gösterr. Sık karşılaşılan üç farklı örnek uzayı; Sonlu elemanlı keskl örnek uzayı sayılablr sonlu Genel keskl örnek uzayı sayılablr sonsuz Sürekl örnek uzayı sayılamaz sonsuz olarak fade edlr. x : herhang br gün çnde yağmur yağması x = 0 yağmur yağmaz x = yağmur yağar Örnek Uzayı; S = { x 0, } veya S = { x Yağmursuz, Yağmurlu } olarak belrlenr ve sayılablr sonlu br örnek uzayıdır. 9 0 x : br zar çn 6 gelnceye kadar yapılan atış sayısı Örnek Uzayı; S = { x,,,.. } olarak belrlenr ve sayılablr sonsuz br örnek uzayıdır. keskl şans değşken x : öğrenclern boyları Örnek Uzayı; S = { x 0 < x < 00 } olarak belrlenr ve sayılamaz sonsuz br örnek uzayıdır. sürekl şans değşken azı Temel Olasılık ksyomları. S =. = 0. olayının tümleyen olarak gösterlr. 4. ve herhang k olay olmak üzere; U = +. ve ayrık k olay se; U = + 8

9 Oranlar Özellkle bahs oyunlarında olasılıklar, oranlar le açıklanır. Organzatörler her üç sonuç çn kend değerlendrmelerne göre brer olasılık belrlyorlar. Ev sahb galbyet=.60, beraberlk=., deplasman galbyet=. gb. Ev sahbnn kazanması olayı E olsun. u durumda E nn lehndek oran, E-E, E nn aleyhne oran -EE olur. Örnek Uzayı ve Olay Sayısını elrleyen Sayma Yöntemler Klask olasılığın dğer br fade le eşt olasılıklı olayların geçerl olduğu durumlarda: Örnek uzayının eleman sayısı, İlglenlen olayın eleman sayısının belrlenmes gerekldr. Kullanılan k temel prensp; Toplama Yöntem Çarpma Yöntem 4 Toplama Yöntem r olayı m farklı şeklde, başka br olayı da n farklı şeklde oluşablen ayrık olaylar se; veya olayı n + m farklı şeklde oluşablr. Örnek: İstanbul dan İzmr e farklı tren sefer, 4 farklı havayolu frması, 40 farklı otobüs frması ve adet denzyolu frması le gdlebldğne göre İstanbul dan İzmr e kaç farklı şeklde gdlr? Çarpma Yöntem r olayı m farklı şeklde, başka br olayı da n farklı şeklde oluşablen ve aynı anda oluşmaları mümkün olaylar se; ve olayı n * m farklı şeklde oluşablr. Örnek: r skambl destesnden çeklen k kartın brnn Kupa dğernn Maça olması kaç farklı şeklde gerçekleşeblr? * =69 NOT: Çarpma yöntem bağımsız olaylar çn kullanılır =

10 k farklı sonuç veren br deney r kez tekrar edlrse ortaya çıkan tüm durumların sayısı; k r olarak hesaplanır. Örnek: r zarı kez attığımızda ortaya çıkablecek tüm mümkün durumların sayısı sayısı; 6 = 6 adettr. Örnek Uzayı ve Olay Sayısının üyük Olduğu Durumlar Örnek uzayı ve olay sayısının büyük olduğu durumlarda kullanılan sayma yöntemler; ermütasyon Kombnasyon Örnek uzayının eleman sayısı 6 dır. 7 8 Notasyon Faktöryel sembolü! zalan poztf tamsayıların çarpımını fade eder. Örneğn, 4! 4 4. Tanım gereğ, 0! =. ermütasyon Sıraya konulacak n adet nesne olsun ve her br sadece br kez kullanılmak üzere kaç farklı sıralama yapılablr? n n- n-... n nesnenn mümkün sıralamalarının sayısı: nn-n-...=n! n n = n!

11 n tane nesne arasından seçlmş x tane nesnenn permütasyon sayısı n x..olarak fade edlr. Toplam n tane nesne arasından x tane nesne seçlr ve bunlar sıraya konulursa ortaya çıkablecek sıralamaların sayısıdır ve şu şeklde hesaplanır: x n n! n x! Örnek: 8 atletn katıldığı 00 metre yarışmasında lk üç dereceye grenler kaç farklı şeklde belrlenr? 8! 8 8*7*6 6 8! Örnek:,,,6,7 ve 9 sayılarını kullanarak 4 basamaklı rakamları brbrnden farklı kaç sayı oluşturulur? 6! 6 4 6** 4* ! Kullanıldığı durumlar İadesz örnekleme Örneğe çıkış sırası öneml =60 4 ermutasyon Kuralı when some tems are dentcal to others n nesne verlmş olsun. u n nesnenn n tanes brnc çeşt, n tanes knc çeşt,... n k tanes k. Çeşt olsun. k grup ve her br grupta sırayla n, n,... nk nesne olacaktır. Tümü brlkte alınan n nesnenn permütasyonlarının sayısı kartlık standart br deste 4 oyuncu arasında kaç farklı şeklde dağıtılablr? n! n!. n! n k! 4 44

12 Kombnasyon n adet nesne arasından seçlen x tanesnn kombnasyon sayısı n x le gösterlr. Sıralama öneml olmaksızın tüm durumların sayısı olarak fade edlr. u sayı şu şeklde hesaplanır: x n Kullanıldığı durumlar; n! n x! x! İadesz örnekleme Örneğe çıkış sırası önemsz 4 Örnek: eş kşlk br topluluktan üç kşlk br komsyon kaç farklı şeklde seçlr?! *4**!! ** 0 Örnek: 0 bay ve bayan arasından bay ve bayan üye çeren br kurul kaç farklı şeklde oluşturulur? 0! 0*9 0!!!!! bay arasından bay bayan arasından bayan Çarpım kuralı uygulanarak 4 * = farklı şeklde 46 oluşturulur. Örnek: 0 şletme ve 8 ktsat öğrencs arasından kşlk br komsyon oluşturulacaktır. Rasgele br seçm yapıldığında komsyonda çoğunlukla şletme öğrencs olma olasılığı nedr? şletme 0 ktsat, 4 şletme ktsat, şletme ktsat ,6 Örnek: l ve an sml k arkadaş zar atarak oyun oynuyorlar. Oyuna l başlıyor. Zar veya gelrse oyunu kazanıyor.,4 veya gelrse oyuna devam etme hakkını kazanıyor. 6 gelrse zar atma sırası Velye geçyor. l nn bu oyunu kazanma olasılığı bulunuz. l nn oyunu kazanma olasılığı p olsun, l veya atar oyunu kazanır, olasılık : 6,4 ve atar oyuna tekrar devam eder ve sonra oyunu kazanır olasılık: 6p İlk atışta 6 atar oyun cana geçer ve can oyunu kaybeder olasılık 6-p p = 6 + 6p + 6-p p = 4 47 ğaç Dyagramı Her brnn sonucunun sonlu sayıda olduğu brden fazla deneyn tüm mümkün sonuçlarını görsel br şeklde ortaya koymak çn kullanılır. 48

13 Örnek: l le an masa tens oynamaktadırlar. set kazananın galp geleceğ maçın ortaya çıkablecek tüm mümkün sonuçlarını gösteren ağaç dyagramını oluşturunuz. Olası Durumlar;,,,,,,,,,, 0 D E T 49 Şartlı Olasılık ve gb k olaydan olayının gerçekleştğ blndğ durumda olayının gerçekleşmes olasılığına olayının şartlı olasılığı denr. le gösterlr. nın gerçekleştğ blndğnde nn ortaya çıkma olasılığı;.. 0 Örnek: r ünverstede okuyan öğrenclern % 70 tyatroya, % se snemaya lg duymaktadır. a r öğrencnn snemaya lg duyduğu blndğnde tyatroya lg duyma olasılığı 0,40 se her k aktvteye brden lg duyma olasılığı nedr? b r öğrencnn tyatro veya snemaya lg duyma olasılığı nedr? T:Tyatroya lg duyma S:Snemaya lg duyma T = 0,70 S = 0, a T S = 0,40 T S =? b T S TS S TS TS*S 0,40*0, 0,4 T U S T S - T S 0,70 0,- 0,4 0,9 Şartlı Olasılıkların lndğ Durumlarda Tek r Olayın Olasılığının ulunması şağıdak şeklde olayının brbryle ayrık olan farklı olayın brleşmnden meydana geldğ görülür. 4

14 4 olayı her br olayı le kesşmler cnsnden fade edldğnde;brbrn engelleyen olayların brleşmnn olasılığı toplama kuralına göre Örnek: r laç üç fabrka tarafından üretlmektedr.. Fabrkanın üretm. ve. fabrkaların üretmnn katıdır. yrıca. ve. fabrkalar %,. fabrka % 4 oranında bozuk laç üretmektedr. Üretlen tüm laçlar aynı depoda saklandığına göre bu depodan rast gele seçlen br lacın bozuk olma olasılığı nedr. = Seçlen lacın bozuk olma olasılığı =? = Seçlen lacın nc fabrkada üretlmes = = olduğundan; = 0,0 = = 0, olarak elde edlr. = =0,0 Depodan seçlen 000 ürünün tanesnn hatalıdır. ayes Teorem Sonucun blndğ durumda sebebn hang olasılıkla hang olaydan meydana geldğ le lglenr. Ele alınan örnekte depodan rast gele seçlen br lacın bozuk çıkması halnde.fabrkadan gelmesnn olasılığı araştırıldığında ayes Teoremne htyaç duyulmaktadır. k 6 0, Depodan rasgele seçlen br lacın bozuk olduğu blndğne göre nc fabrkadan gelmş olma olasılığı;

15 ağımsız Olaylar Ele alınan olaylardan brnn gözlenp gözlenmemesnn olasılığı dğer br olayın ortaya çıkıp çıkmama olasılığını etklemyorsa bu olaylara bağımsız olaylar denr. =. =. ve olayları bağımsız se br başka fadeyle olayının meydana gelme olasılığı olayının meydana gelme olasılığına bağlı değl se ve k olay aynı anda meydana geleblyor se; = ve = olur. Sonuç olarak ve olayları bağımsız seler Örnek: l ve an sml k avcının br hedef vurma olasılıkları sırasıyla 0,6 ve 0,40 olarak verlmştr. İk avcı hedefe brlkte ateş ettğnde hedefn vurulma olasılığı nedr? = l nn hedef vurması = 0,6 = an ın hedef vurması = 0,40 U =? U = + l le an nın hedef vurmaları brbrnden bağımsız olduğundan; =. = 0,6 * 0,40 = 0,6 =. eştlğ elde edlr. ynı şeklde =. se ve 7 olayları bağımsızdır denr. U = 0,6 + 0,40 0,6 = 0,79 8 Testng for Independence In Secton -4 we stated that events and are ndependent f the occurrence of one does not affect the probablty of occurrence of the other. Ths suggests the followng test for ndependence: Two events and are ndependent f = or and = Two events and are dependent f = or and = üyük anakütlelerden küçük örnekler Eğer örnek mktarı anakütlenn % nden az se, seçm şlemn bağımsız olarak varsayablrz. gerçekte seçmler adesz ve dolayısı bağımlı olsalar ble 9 60

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ders Kodu Teork Uygulama Lab. Ulusal Kred Öğretm planındak AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ön Koşullar : Grafk İletşm I ve II, Tasarım Stüdyosu I, II, III derslern almış ve başarmış

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

Dr. Akarsu Hafta-4 11/16/2014 1

Dr. Akarsu Hafta-4 11/16/2014 1 Dr. Akarsu Hafta-4 11/16/2014 1 GİRİŞ Olasılık dolaylı istatistiğin önemli metotlarının temelini oluşturmaktadır. Örneğin, cinsiyet belirleyici bir prosedür belirlediğinizi iddia ediyorsunuz ve her seferinde

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI ISSN:1306-3111 e-journal of New Worl Scences Acaemy 2008, Volume: 3, Number: 4 Artcle Number: A0108 NATURAL AND APPLIED SCIENCES MATHEMATICS APPLIED MATHEMATICS Receve: March 2008 Accepte: September 2008

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Öğretm üyes: Doç. Dr. S. Özoğuz Tel: 85 36 9 e-posta: serdar@ehb.tu.edu.tr Ders saat: Pazartes,.-3. / D-4 İçndekler. Dere teors, toplu parametrel dereler, Krchhoff un gerlm e akım

Detaylı

Communication Theory

Communication Theory Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır.

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır. OLİGOOLİ Olgopolc pyasa yapısını ncelemek çn ortaya atılmış bell başlı modeller şunlardır.. Drsekl Talep Eğrs Model Swezzy Model: Olgopolstc pyasalardak fyat katılığını açıklamak çn gelştrlmştr. Olgopolcü

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR

ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR HEDEFLER İÇİNDEKİLER TEMEL KAVRAMLAR İstatstğn Tanımı Anakütle ve Örnek Kavramları Tam Sayım ve Örnekleme Anakütle ve Örnek Hacm Parametre ve İstatstk Kavramları İSTATİSTİĞE GİRİŞ Doç.Dr.Suph Özçomak Bu

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

Olasılık: Klasik Yaklaşım

Olasılık: Klasik Yaklaşım Olasılık Teorisi Olasılık: Klasik Yaklaşım Olasılık Bir olayın meydana gelme şansına olasılık denir. Örnek Türkiye nin kazanma olasılığı Hava durumu Loto Olayların Olasılığını Belirleme Rastsal (gelişigüzel)

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim.

Elektrik Akımı Test Çözümleri. Test 1'in Çözümleri 3. 4 Ω. 1. Kolay çözüm için şekli yeniden çizip harflendirelim. Elektrk kımı Test Çözümler Test 'n Çözümler. 4 Ω voltmetre. olay çözüm çn şekl yenden çzp harflendrelm. 0 Ω Ω Ω 5 Ω Ω oltmetrenn ç drenc sonsuz büyük kabul edlr. u nedenle voltmetrenn bulunduğu koldan

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

Toplam Olasılık Prensibi

Toplam Olasılık Prensibi 1 Toplam Olasılık Prensibi A 1, A 2,, A n karşılıklı kapsamayan ve birlikte tamamlayan olaylar kümesi olsun: A k A A j 0 = 0 k j j nn j j 1 = 1 B, S içinde herhangi bir olay ise k j AA j = ise S ise Pr[A

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ 1 DENEY TASARIMI VE ANALİZİ 1.1. Varyans Analz 1.. Tek Yönlü Varyans Analz Model 1.3. İk Yönlü Varyans Analz Model Prof Dr. Leven ŞENYAY XII-1 İsask II Bundan öncek bölümlerde bell br araşırma sonucu elde

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI OYUN KURAMININ EKONOMİDE UYGULANMASI Hall İbrahm KESKİN YÜKSEK LİSANS TEZİ ADANA 009 TÜRKİYE CUMHURİYETİ ÇUKUROVA

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N

2 MANYETİZMA. 7. Etki ile mıknatıslanmada mıknatısın 5. K L M F F S N S N S N 3 Manyetzma Test Çözümler 1 Test 1'n Çözümler 3. 1 2 3 4 5 6 1. X Şekl I M 1 2 Y 3 4 Mıknatıs kutupları Şekl I dek gb se 4 ve 5 numaralı kutuplar zıt şaretl olur. Manyetk alan çzgler kutup şddet le doğru

Detaylı

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I

TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I TEKNOLOJİ BAĞIMLI YAŞAMIN MATEMATİKSEL DESENLERİ-I Fevz ÜNLÜ *, Esra DALAN YILDIRIM **,Şule AYAR *** ÖZET: Evren her an nano-önces, nano, mkro, normal, makro ve makro-ötes gözler le gözlemlermze açıktır.

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

OLASILIK.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) OLASILIK 46 0 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

T.c. MALİYE BAKANLIGI. KÜTAHYA VALİLİGİNE (Defterdarlık Personel Müdürlüğü)

T.c. MALİYE BAKANLIGI. KÜTAHYA VALİLİGİNE (Defterdarlık Personel Müdürlüğü) Sayı : 7291 1396-903.99-E.1 16043 Konu : Seyahat Kartları T.c. MALİYE BAKANLIGI Gelr İdares Başkanlığı İnsan Kaynakları Dare Başkanlığı SÜREl 04/12/2015 KÜTAHYA VALİLİGİNE (Defterdarlık Personel Müdürlüğü)

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı