PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY"

Transkript

1 PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda populasyonun parametrelerne lşn yapılan hpotez testlerne parametr hpotez testler adı verlr. Parametr hpotez testler genellle normal dağılış varsayımı altıda gerçeleştrlen testlerdr. Merez lmt teorem gereğnce; Anaütle dağılışı ne olursa olsun o dağılışa lşn örneleme dağılışının normal dağıldığı sonucundan hareetle normal dağılışın ço yaygın br şelde ullanıldığı açıça ortadadır. Populasyonla lgl bell başlı varsayımların ve parametre tahmnlernn gerçeleştrlemedğ, bu sebepten dolayı dağılış varsayımı yapılamadığı durumlarda ullanılan testler, Parametr Olmayan Hpotez Testler olara adlandırılır. Parametr Olmayan Hpotez Testlernn Kullanılableceğ Durumlar: Parametr test varsayımının yerne getrlemedğ durumlarda, Testte ullanılaca değerler yerne bu değerlern sıra numaralarının verldğ durumlarda, Testte ullanılaca örnelern üçü hacml olduğu durumlarda ullanılır.

2 Parametr Olmayan Hpotez Testlernn ; AVANTAJLARI Uygulanması çn brço varsayıma gere yotur. Anlaşılması ve uygulanması olaydır. Küçü hacml br örne üzernden yapılması mümündür. DEZAVANTAJLARI Örne hacmnn büyü olması halnde uygulanması güçleşr. u tür testlern uygulanmasıyla elde edlen sonuçlar, parametr testlern uygulanmasıyla elde edlen sonuçlardan daha az güvenlrdr. 5 u dersn apsamı çnde parametr olmayan hpotez testlernn yalnız br ısmını oluşturan Parametr Olmayan K- Kare Hpotez Testler ne ye verlecetr. Günümüzde brço araştırmada ullanılan değşenler ntelsel yapıdadır. Zarın atıldığında alacağı değerler,göz reng,dn, ır ve dl gb sınıflamalar. azı durumlarda se ncelsel yapıda bazı değşenlern sınıflandırılara ntelsel hale dönüştürüldüğü görülür. 5 lonun altında olan şlere zayıf, 5-8 lo arasında olanlara normal, 8 lonun üstünde olanlara lolu denmes gb. Ntelsel yapıya sahp değşenler üzernde yapılan gözlemler çoğunlula araştırılan özellğ gösteren sınıfların 6 sayıları şelndedr. Ele alınan değşenlern ntelsel yapıda olduğu durumlarda, yapılan ölçüm ve gözlemlern lgl sınıflara at freanslarını date alan çalışmalar çn uygulanan hpotez testler, PARAMETRİK OLMAYAN Kİ-KARE HİPOTEZ TESTLERİ dr. Parametr Olmayan İy Uyum Testler r x c ağımsızlı Testler K- Kare Hpotez Testler Dağılışa Uyum Testler Unform nom Posson Normal 7 Parametr Olmayan (K- Kare Hpotez Testler adını ullanılan test statstğnden almıştır. Yuarıda da fade edlen falı K-Kare test; sayımla elde edlen veya ölçülen değerlern dda edlen teor freanslar uygun olup olmadığını, populasyonun farlı özellğnn brbrnden bağımsız olup olmadığını, populasyonunun dağılışının fade edlen blnen br dağılışa uygun olup olmadığını, ( nom, Normal vb. test etme amacıyla ullanılır. 8

3 urada ele alınan tüm durumlarda ullanılaca test statstğ orta olmala brlte K-Kare dağılışına uygundur. İy Uyum Testler Gözlenen freansların teor belenen freanslara uyup uymadığının araştırılmasında ullanılır. G : Gözlenen Değerler : elenen Değerler ( G 9 r zar atıldığında eğer zar hlesz se tüm değerlern ortaya çıma olasılığının brbrne eşt ve / 6 olması, r haftalı süre çnde Çğl- Kpa ya gelen müşterlern % 5 nn Cumartes, % 5 nn Pazar ve dğer hafta ç 5 günde de her gün % nun gelmes. Grup... Toplam Gözlenen değerler ( G H doğru en olasılı değer ( p H doğru en belenen değer ( G G G... G n p p p... p np np np... np n Kullanılan -are test statstğ göz önünde bulundurulaca olursa, gözlenen ve belenen değerler arasında farın anlamlı derecede büyü olması durumunda teor freanslara gözlenen freansların uymadığı sonucuna varılır. H : p ler fade edlen teor olasılı değerlerne eşttr. H : En az br eştl geçerszdr. ( G > ; α se H red edlr. : grup sayısı ( ategor sayısı

4 Örne: r spor yazarı, Türye de şlern % snn Fenerbahçe, % 5 unun Galatasaray, % snn eştaş, % nun Trabzonspor u ve gerye alan % 5 l ısmın se dğer taımları desteledğn düşünmetedr. u amaçla şl br örne alındığında aşağıda da sonuçlar elde edlmştr. Yazarın ddasını % 5 l hata payıyla test ednz. Taım Taraftar Sayısı F 87 GS 59 JK 8 TS 97 Dğer 9 Toplam H : p F,, p GS,5, p JK,, p TR,, p D,5 H : En az br eştl geçerszdr. F n p F (,, G F 87 GS n p GS (,5 5, G GS 59 JK n p JK (,, G JK 8 TR n p TR (,, G TR 97 D n p D (,5 5, G D 9 ( ( ( ( G h, ,α 5-;,5 ;,5 9,9 h < t olduğundan H o red edlemez. Spor yazarının taraftarların dağılış yüzdeleryle lgl ddasının % 5 hata payıyla doğru olduğu söyleneblr. r x c ağımsızlı Testler r populasyonun özellğnn brbrnden bağımsız olup olmadığını test etmede ullanılır. Örneğ meydana getren breyler farlı rtere göre sınıflanır. Örneğn breylern hem sgara çp çmemelerne hem de ç çp çmemelerne göre sınıflandırılması, İtsat bölümünde öğrenclern matemat ve statst derslernde başarı durumuna göre sınıflandırılması gb. 5 Populasyonun sınıflandırılmasında özell date alındığından dolayı yönlü lar ( ontenjans ları ullanılır. u ların satırlarında ele alınan özelllerden brncnn farlı sevye veya durumlarını, sütunlarında se nc araterlern farlı sevye veya durumlarını gösterlr. u durumlar, sıralayıcı ve sınıflayıcı ölçeler şelnde olablr. 6

5 İ Yönlü ( Kontenjans Tablolarda elenen Değerlern Hesaplanması Özell... R Toplam G G G... G r C G G G... G r C Özell A C C G c G c G c... G rc C c Toplam R R R R r N 7 Herhang br hücrenn belenen değern hesaplanmasında özellğn var olması sebebyle, o hücrenn bulunduğu satır ve sütun toplamlarının çarpımının örne hacmne bölünmesyle hesaplanır.. nc satır, j. nc sütunda br gözlemn belenen değer, R C j j N şelnde bulunur.. satır,. sütunda hücrenn belenen değer, R C N şelndedr. 8 H : Populasyonun özellğ brbrnden bağımsızdır. ( aralarında lş yotur. H : Populasyonun özellğ brbrnden bağımsız değldr.( aralarında lş vardır. Test İstatstğ: j j r c ( Gj j r c ( G j j > (r j (c ;α j se H red edlr. 9 Örne: İzmr n uca lçesnde yapılan br anet çalışmasında şlern oy verdler part le cnsyetler arasında br lş olup olmadığı araştırılmatadır. Aşağıda da anet sonucunda elde edlen blgler bulunmatadır. uca lçesnde oturan şlern cnsyetler le oy verdler part arasında lş olup olmadığını α, önem sevyesnde test ednz. Partler A C Kadın Cnsyet Ere 5 5 5

6 H : Cnsyet le oy verlen part brbrnden bağımsızdır. H : Cnsyet le oy verlen part brbrnden bağımsız değldr. Cnsyet A Partler C Toplam R C N Kadın Ere Toplam * 5 5 r c ( G j j ( 5 ( 5 5 ( j j 5 ( ( 75 ( 75 (r (c ;α ( ( ;, 9, h t , 7, > 9, olduğundan dolayı H red edlr. % 99 olasılıla uca lçesnde şler çn oy verlen partler le cnsyet arasında br lş olduğu söyleneblr. DAĞILIŞA UYUM TESTLERİ Örne verlernden yola çıara populasyonun dağılımı haında ortaya atılan ddayı test etme çn Dağılışa Uyum Testler ullanılır. Örne verler gözlenen değerler olara, örne hacm date alınara lgl dağılışın olasılı değerlernden yola çıara belenen değerler (teor freanslar hesaplanır. Dağılışa Uyum Testlernde de ullanılaca olan test statstğ dağılışına uymatadır. Örneten elde edlen gözlenen değerler le dağılıştan yola çıara hesaplanan belenen değerler brbrne yaınsa hesaplanan değer üçü çıaca ve örne verlernn dağılışının dda edlen dağılışa uygun olduğu sonucu ortaya çıacatır. H o : Örne verler lgl dağılışa uygundur. H : Örne verler lgl dağılışa uygun değldr. Dağılışa Uyum Testlernde Kullanılaca Olan Test İstatstğ: ( G 6

7 Hesaplanan hesap değer le dan bulunan değer arşılaştırılara ddanın doğruluğu haında arar verlr. hesap > se H red edlr. v --g : hesap değer bulunuren date alınan grup sayısı v, α g : İlgl dağılış çn örne verler ullanılara hesaplanan (tahmn edlen parametre sayısı KESİKLİ ÜNİFORM(DÜZGÜN DAĞILIŞ Tanımlı olduğu değerler eşt olasılılar le alan şans değşenlernn dağılışıdır. Kesl ünform dağılışı gösteren br şans değşen N farlı değer eşt olasılılar le alıyorsa her br değer alma olasılığı /N e eşttr. ( X x H ın red edlemedğ durumlarda örne verlernn dağılışı parametres blnen veya örneten tahmn edlen brbrne eşt ve /6 olacatır. dağılışa uygun olduğu sonucuna varılır. 5 N adet 6 P N p/n x,,,......n d.d Hlesz br zar atıldığında zarın yüzeylernde bulunan 6 sayının zarın ön yüzünde gelmesnn olasılığı brbrne Örne: üyü br şletmede hafta çersnde 5 gün çersnde şe gelmeme sayılarının dağılışı araştırılmatadır. u amaçla br hafta boyunca her gün şe gelmeyen şç sayıları ontrol edlere not edlmştr. Hafta çersnde ş yerne gelmeyen şç sayılarının dağılışının Ünform(Düzgün Dağılışa uygun olup olmadığını % 5 hata payıyla test ednz. Günler p ( G Pazartes Salı Çarşamba Perşembe Cuma toplam şe gelmeyen şç sayısı(g /5 /5 /5 /5 /5 İşe gelmemes belenen şç sayısı( 6,75,75,75,8,,66 7 H o : İlgl şletmede hafta ç günlerde şe gelmeyen şç sayılarının dağılışı Ünform Dağılışına uygundur. H : İlgl şletmede hafta ç günlerde şe gelmeyen şç sayılarının dağılışı Ünform Dağılışına uygun değldr. ( G h,66 v, α v - - g 5-- Ünform Dağılışında tahmn edlen parametre sayısı dır.,.5 9, 9 h < t olduğundan H o red edlemez. İlgl şletmede hafta ç günlerde şe gelmeyen şç sayılarının dağılışı Ünform Dağılışına uygun olduğu % 5 hata payıyla söyleneblr. 8 7

8 Örne: Meyve suyu üretcs br frma ürettğ meyve sularını her brnde şşe bulunma üzere utular halnde poşetlemetedr. İşletmenn deposundan utu seçlere utuların her brnde hatalı şşelenmş olan meyve suları sayılara ayıt edlmştr. Aşağıda da utuların sayısı ve çersnde hatalı bulunan şşe sayıları verlmştr. a Toplam aç şşe ontrol edlmştr? b Toplam aç hatalı şşe bulunmuştur? c Örnete hatalı şşelern oranı nedr? d Kutuların çersnde bulunan hatalı meyve sularının sayılarının nom Dağılışına uygun olup olmadığını % 5 hata payıyla test ednz. Hatalı Şşe Sayısı 5 ve daha fazla a Toplam utu ontrol edlmştr. Her br utu çersnde şşe meyve suyu bulunduğuna göre toplam adet şşe ontrol edlmştr. b x f Kutu Sayısı c pˆ 96,8,5 d H o : Kutularda bulunan hatalı şşelern sayısı n olan nom Dağılışına uygundur. H : Kutularda bulunan hatalı şşelern sayısı n olan nom Dağılışına uygun değldr. Hatalı Şşe Sayısı Kutu Sayısı (G p,585,77,887,596,,5 elenen Kutu Sayısı ( P n x 5,85 7,7 8,87 5,96,585, x n x ( X x p ( p P( X (,5 (,5 5 ve daha fazla,5 (K-Kare Parametr Olmayan Testler de herhang br hücrenn veya grubun belenen değer 5 ten üçü se endsne en yaın olan hücre veya grup le brleştrlr. u şleme herhang br hücre veya grup çersnde 5 ten üçü br belenen değer fades almayıncaya adar devam edlr. - Hatalı Şşe Sayısı Kutu Sayısı (G elenen Kutu Sayısı ( h 8 5,85 5 7,7 5 8,87 ( G ( ( 8 5,85 5,85 ve daha fazla 7,5 7,5..., 7,5 5,99 v, α --g,α --,,5,,5 nom Dağılışında parametre sayısı (n,p olmasına rağmen soruda tahmn edlen parametre sayısı (p dr h > t olduğundan H o red edlr. Kutularda bulunan meyve sularının çersnde hatalı şşelenenlernn sayısının n olan nom Dağılışına uygun olmadığı % 5 hata payıyla söyleneblr. 8

9 Örne: r havaalanında uçuşlar alış zamanına göre zamanında ve gecmel olara şelde sınıflandırılmıştır. Aşağıda da saatl süre çersnde gecmel gerçeleşen uçuşların sayıları fade edlmştr. a r saatl süre çersnde ortalama aç adet gecmel uçuş yapılmatadır? b r saatl süre çersnde gecmel uçuş sayılarının Posson Dağılışına uygun olup olamadığını % 5 hata payıyla test ednz? Gecmel uçuş sayısı Freans ve daha fazla a x f λ f b H o : r saatl süre çersnde gecmel uçuş sayısı Posson Dağılışına uygundur. H : r saatl süre çersnde gecmel uçuş sayısı Posson Dağılışına uygun değldr. Gecmel uçuş sayısı Freans (G p elenen Uçuş Sayısı ( - λ e λ P ( X x x! P ( X x,5, 5,77,6,77,6 5,8 7,7 6,9,5 5,6 5, 6,,8 - e! 7,,5 8,9, 9 ve üstü,, saatte gerçeleşen gecmel uçuş saysı 5 ve üstü Freans G elenen uçuş sayısı,,6,6 7,7,5 7,9 ( G, 7 7,9...,9, 7,9 h v,α --g,α 6--,,5,,5 Posson Dağılışında parametre sayısı (λ dr. h < t olduğundan H o red edlemez. 9,9 Havaalanında saatl süre çersnde gerçeleşen gecmel uçuş sayılarının Posson Dağılımın uygun olduğu % 5 hata payıyla söyleneblr. 5 Normal Dağılışa Uyum Test Örneğ: Kmyasal br madde üreten br frma günlü satışlarının ( galon normal dağılışa uygun olup olmadığını araştırma stemetedr. u amaçla gün boyunca satılan mtarlar ayıt edlere aşağıda sınıflanmış ver set elde edlmştr. una göre % 5 hata payıyla satışların normal dağılışa uygun olup olmadığını test ednz. Satışlar ( galon x <,, x < 5,5 5,5 x < 7, 7, x < 8,5 8,5 x <,, x <,5,5 x <,, x <,5,5 x <6, 6, x Toplam Satılan Gün Sayısı

10 Uyumu araştırılaca dağılış olan normal dağılışın parametreler fade edlmedğnden verlen örneten yola çıılara, örne statstler tahmn edlr. x s, 5 Her br sınıfa at olan olasılı değerler sınıflanmış verlern aralığına düşmes olasılığına arşılı gelr. Anaütle dağılışının uygun olduğu varsayılan normal dağılışla lşn olasılı hesaplamaları standart normal dağılışa ( z dönüştürme yoluyla hesaplanır. P( < x < P( < z <,,5,98,8 P ( < x <,5 P ( < z <,6,57 Hesaplanan bu olasılılar toplam örne hacmyle çarpılara belenen değerler elde edlr. np,8 *,6 6 np 6,57 * 5 H o : Satışlar normal dağılışa uygundur. H : Satışlar normal dağılışa uygun değldr. 7 8 Satışlar x <,, x < 5,5 5,5 x < 7, 7, x < 8,5 8,5 x <,, x <,5,5 x <,, x <,5,5 x <6, 6, x G G, 7,8 p np,8,6,7 5,5,79 5,8,59,8,57 5,,57 5,,59,8,79 5,8,77 5,5,8,6 G - 5,8,6,6 -, 5,86 -,8-5,8-6,8 (G - /,776,95,6,5,767,757,5 5,9 h ( G v - - g 8-- 5,776, ,9 5,9 v;α --g;α 8--5;,5 5;,5,7 h > t olduğundan H o red edlr. Frmanın günlü satışlarının normal dağılışa uygun olmadığı % 5 hata payıyla söyleneblr. G 9 8, 8 6,8

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

Düşük Hacimli Üretimde İstatistiksel Proses Kontrolü: Kontrol Grafikleri

Düşük Hacimli Üretimde İstatistiksel Proses Kontrolü: Kontrol Grafikleri Düşü Hacml Üretmde İstatstsel Proses Kontrolü: Kontrol Grafler A. Sermet Anagün ÖZET İstatstsel Proses Kontrolu (İPK) apsamında, proses(ler)de çeştl nedenlerden aynalanan değşenlğn belrlenere ölçülmes,

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

ÜÇ BOYUTLU ÇAPRAZ TABLOLARDA LOGARİTMİK DOĞRUSAL ANALİZ: ÇOCUK İŞGÜCÜ DEĞİŞKENLERİ ARASINDAKİ ETKİLEŞİMLER

ÜÇ BOYUTLU ÇAPRAZ TABLOLARDA LOGARİTMİK DOĞRUSAL ANALİZ: ÇOCUK İŞGÜCÜ DEĞİŞKENLERİ ARASINDAKİ ETKİLEŞİMLER Uludağ Ünverstes İtsad ve İdar lmler Faültes Dergs lt XXV, ayı, 006, s. 41-70 ÜÇ OYUTLU ÇPRZ TLOLRD LOGRİTMİK DOĞRUL NLİZ: ÇOUK İŞGÜÜ DEĞİŞKENLERİ RINDKİ ETKİLEŞİMLER erpl ÜLÜL * Özet Kategor verlerde

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

En Küçük Etkili Doz Düzeyini Belirleme Yöntemlerinin Karşılaştırmaları

En Küçük Etkili Doz Düzeyini Belirleme Yöntemlerinin Karşılaştırmaları S Ü Fen Fa Fen Derg Sayı 36 () 83-94, KONYA En Küçü Etl Doz Düzeyn Belrleme Yöntemlernn Karşılaştırmaları Murat HÜSREVOĞLU, Hamza GAMGAM * Gaz Ünverstes, Fen Edebyat Faültes, İstatst Bölümü, Tenoullar,

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

ISL223 İSTATİSTİK I DERS NOTLARI

ISL223 İSTATİSTİK I DERS NOTLARI T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI ISL3 İSTATİSTİK I DERS NOTLARI HAZIRLAYAN PROF. DR. ALİ SAİT ALBAYRAK

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

TÜRKİYE DE HANELERİN KONUT TERCİHİ: EKONOMETRİK YAKLAŞIM

TÜRKİYE DE HANELERİN KONUT TERCİHİ: EKONOMETRİK YAKLAŞIM T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI YÜKSEK LİSANS TEZİ TÜRKİYE DE HANELERİN KONUT TERCİHİ: EKONOMETRİK YAKLAŞIM Canan GÜNEŞ Danışman Prof. Dr. Şenay ÜÇDOĞRUK

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

YAŞAM VERİLERİNİN META ANALİZİ META ANALYSIS OF SURVIVAL DATA

YAŞAM VERİLERİNİN META ANALİZİ META ANALYSIS OF SURVIVAL DATA YAŞAM VERİLERİNİN META ANALİZİ META ANALYSIS OF SURVIVAL DATA HATİCE YENİAY PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatst Anablm Dalı İçn Öngördüğü

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

30 %30iskonto oranı bulunur.

30 %30iskonto oranı bulunur. Örne 9: 900 TL re eğerl ve 80 gün vael br senen peşn eğer, ç soo üzernen 8000 TL olara hesaplanığına göre uygulanan soo oranı ner? çözü:.yol: =900 TL n=80 gün P 8000TL t=? P..900 8000 80t 8000( 80t).900

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

SABİT-KUTUP YAKLAŞIMI KULLANILARAK TELEKONFERANSTA ODA AKUSTİK EKO YOK ETME

SABİT-KUTUP YAKLAŞIMI KULLANILARAK TELEKONFERANSTA ODA AKUSTİK EKO YOK ETME SABİ-KUUP YAKLAŞIMI KULLAILARAK ELEKOFERASA ODA AKUSİK EKO YOK EME uğba Özge ÖZDİÇ Rıfat HACIOĞLU Eletr-Eletron Mühendslğ Bölümü Mühendsl Faültes Zongulda Karaelmas Ünverstes, 671, Zongulda ozdnc_ozge@hotmal.com

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

ERS-2 Raw Datası için Dönüşüme Dayalı Sıkıştırma

ERS-2 Raw Datası için Dönüşüme Dayalı Sıkıştırma ERS- Raw Datası çn Dönüşüme Dayalı Sııştırma. Göhan. KASAPOĞLU, İrahm. PAPİLA, Bngül YAZGA, Sedef KET İstanul Ten Ünverstes, Eletr-Eletron Faültes, Eletron ve Haerleşme Mühendslğ, 066, Masla, İstanul Tel:

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

META ANALİZİNDE HETEROJENLİĞİN SAPTANMASINDA KULLANILAN YÖNTEMLERİN SİMÜLASYON TEKNİĞİ İLE KARŞILAŞTIRILMASI

META ANALİZİNDE HETEROJENLİĞİN SAPTANMASINDA KULLANILAN YÖNTEMLERİN SİMÜLASYON TEKNİĞİ İLE KARŞILAŞTIRILMASI T.C. MERSİN ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK VE TIBBİ BİLİŞİM ANABİLİM DALI META ANALİZİNDE HETEROJENLİĞİN SAPTANMASINDA KULLANILAN YÖNTEMLERİN SİMÜLASYON TEKNİĞİ İLE KARŞILAŞTIRILMASI

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

Ticari Bankalarının Yerli ve Yabancı Bankalar Açısından Performansları ve Performans Sürekliliklerinin Analizi: Türkiye Ölçeği (2002-2012 ÖZET

Ticari Bankalarının Yerli ve Yabancı Bankalar Açısından Performansları ve Performans Sürekliliklerinin Analizi: Türkiye Ölçeği (2002-2012 ÖZET Tcar Banalarının Yerl ve Yabancı Banalar Açısından Performansları ve Performans Sürelllernn Analz: Türye Ölçeğ (2002-202) Selahattn KOÇ* Azz BAĞCI ** Al SÖZDEMİR *** ÖZET Son yıllarda yaşanan üreselleşme

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

ç ş ç ş ş ş ş ş ş ç ş ş ç ş ç ş ş ç ç ş ş ş ç ç ş ç ç ç ç ç ş ç ç ş ç ş ç ç ç ç ç ş ç ş ş Ç İ ş ş ç ç ç ç ç ç Ö ç ş Ö ç ş ş İ ş ç ş ç ş ş ç ç ş Ö ç Ö ç ş ç ç ş ş ş ç ş ç ş ş ş Ö Ö ç Ö Ö ç ç ç İ ş ç ş ş

Detaylı

İ ö ç ç ç ç ö ç ç ö ç ç ö ç ö ç ç ç ç ç ç Ç ç ö ö Ç Ç ö ö ö Ç ö ö ö ö Ç ö ö ö ç ç ç ö Ç ö ö ö ç ç ö Ç ö Ç ç ç ç ö Ç ö ç ö İ çö ç ç ç çö ç çö ö ç ç ç ç İ ç ç ç ç ç ç ç ç ç ç ç ç ç ö İ ö ç ö ö ç çö ö ç İ

Detaylı

ğ İ ö ö Ö İ ç ö Ş İ İ ö Ş ö Ö ç ç ğ ö ö ğ ö Ş İ ğ ğ Ç Ö Ş İ Ş Ş İ ğ Ş ç ö ö ğ Ç Ö ğ ç ğ ğ ç ğ ğ Ç ö İ ç ö ç ö ö ç ç ğ ğ ğ ç ö İ ö ğ ö ğ ğ ğ ğ ç Ç ö ç ğ İ Ö ç ç ö ç ç ö ö ç Ç ğ ç ö ö ğ ö ğ ğ ç ö ö Ç ö ç

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

ö Ğ Ş ç Ğ Ğ ö ö ç ö Ö ç ö Ş ö ö Ç Ö ç ö ç Ğ Ğ Ş Ğ Ş ö ö Ş ç ö ç Ş ö ö ö ç ç Ö ö Ö ö ö ç Ş ö Ç Ş ç ö ö ö ö Ç Ğ ç ç» ç ç» Ğ» ÖĞ Ş ÜŞÜ Ü Ü Ş ö ö ö ö ç ö ç ç ö ç ç Ş Ç ö ö ö «Ğ Ö Ç Ç ç ö ç Ç Ç Ş Ö Ü Ö ç ç

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

Türk Bankacılık Sektöründe Etkinlik Analizi: 2008-2014

Türk Bankacılık Sektöründe Etkinlik Analizi: 2008-2014 Uluslararası Aya İşletme Faültes Dergs Yıl:26, C:8, S:, s.-2 Internatonal Journal of Aya Faulty of Busness Year:26, Vol:8, No: s.-2 Tür Baılı Setöründe Etnl Analz: 28-24 Effeny Analyss n Tursh Bng Setor:

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

T.c. MALİYE BAKANLIGI. KÜTAHYA VALİLİGİNE (Defterdarlık Personel Müdürlüğü)

T.c. MALİYE BAKANLIGI. KÜTAHYA VALİLİGİNE (Defterdarlık Personel Müdürlüğü) Sayı : 7291 1396-903.99-E.1 16043 Konu : Seyahat Kartları T.c. MALİYE BAKANLIGI Gelr İdares Başkanlığı İnsan Kaynakları Dare Başkanlığı SÜREl 04/12/2015 KÜTAHYA VALİLİGİNE (Defterdarlık Personel Müdürlüğü)

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

Yaklaşık İdeal Talep Analizi Yöntemi. ve Fiyat Esnekliklerinin Tahmini

Yaklaşık İdeal Talep Analizi Yöntemi. ve Fiyat Esnekliklerinin Tahmini Yalaşı İdeal Talep Analz Yöntem le Harcama ve Fyat Esnellernn Tahmn Mehmet Arf ŞAHİNLİ İstatstç, Türye İstatst Kurumu, Ulusal Hesaplar ve Eonom Göstergeler Dare Başanlığı arfsahnl@tu.gov.tr Yalaşı İdeal

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 2. Konu ELEKTRİK AKIMI, POTANSİYEL FARK VE DİRENÇ ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF ONU NTII. ÜNİTE: EETİ E NYETİZ. onu EETİ II, POTNSİYE F E DİENÇ ETİNİ ve TEST ÇÖZÜEİ Ünte Elektrk ve anyetzma 1.. Ünte. onu (Elektrk kımı) nın Çözümler ampul 3. Şekl yenden aşağıdak gb çzeblrz.

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

Ş ş ş ğ Ö ç Ç ş ö ş ğ ğ ğ ç ğ ğ ş ğ ş ö ğ Ş ş ş ş ş Ş ş ğ ç ç ş ş ğ Ş ş ş Ş Ş Ş ö ö ş ğ Ü ş ö ş ç ğ Ş ö ğ ç ç ş ç ö ğ ş ö ğ ğ ç ş ş ş ğ ö ş ö ğ ö Ş ç ç ş Ç ğ ş ş ö ş ğ ğ ö ş ç ö ç ğ ş Ç ş ş ş ğ ç ğ ö Ö

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

ANE - AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF

ANE - AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF AEGON EMEKLİLİK VE HAYAT A.Ş. DENGELİ EMEKLİLİK YATIRIM FONU FON KURULU ÜÇÜNCÜ 3 AYLIK FAALİYET RAPORU Bu rapor AEGON Emekllk ve Hayat A.Ş Dengel Emekllk Yatırım Fonu nun 01.07.2011 30.09.2011 dönemne

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1.

2 Mayıs 1995. ELEKTRONİK DEVRELERİ I Kontrol ve Bilgisayar Bölümü Yıl içi Sınavı Not: Not ve kitap kullanılabilir. Süre İKİ saattir. Soru 1. ELEKONİK DEELEİ I Kntrl ve Blgsayar Bölümü Yıl ç Sınavı Nt: Nt ve ktap kullanılablr. Süre İKİ saattr. Sru.- r 00k 5k 5k 00Ω 5 6 k8 k6 7 k 8 y k5 0kΩ Mayıs 995 Şekl. Şekl-. de kullanılan tranzstrlar çn

Detaylı

KATEGORĠK VERĠLER ĠÇĠN LOGARĠTMĠK DOĞRUSAL MODELLER VE GÖÇ ĠSTATĠSTĠKLERĠ ÜZERĠNE BĠR UYGULAMA*

KATEGORĠK VERĠLER ĠÇĠN LOGARĠTMĠK DOĞRUSAL MODELLER VE GÖÇ ĠSTATĠSTĠKLERĠ ÜZERĠNE BĠR UYGULAMA* KATEGORĠK VERĠLER ĠÇĠN LOGARĠTMĠK DOĞRUSAL MODELLER VE GÖÇ ĠSTATĠSTĠKLERĠ ÜERĠNE BĠR UGULAMA* ÖET Snan METE ** Aydın ÜNSAL *** İ yönlü olumsallı tablolarında statst çıarsamalar çn Pearson un -are statstğ

Detaylı

ENDÜSTRİYEL TAŞIYICI SİSTEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ

ENDÜSTRİYEL TAŞIYICI SİSTEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ ENDÜSTRİYEL TAŞIYICI SİSTEMLERİN YAPAY SİNİR AĞLARI İLE ANALİZİ İlyas KACAR Mana Mühendslğ Bölümü Mühendsl-Mmarlı Faültes Nğde Ünverstes, 500, Nğde e-posta: acar@gmal.com Anahtar sözcüler: Endüstryel Taşıyıcı

Detaylı

ENDEKS SAYILAR. fiyat, üretim, yatırım, ücret ve satış değişimlerinin belirlenmesi. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör.

ENDEKS SAYILAR. fiyat, üretim, yatırım, ücret ve satış değişimlerinin belirlenmesi. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. ENDEKS SLAR Bir değişenin farlı birimler üzerinde veya zaman içerisindei değişimini oransal olara ifade sayılara ENDEKS SLAR adı verilir. Endes sayılar ısaca endesler olara ifade edilir. Kullanım alanları;

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

HİDROJEN-METAN KARIŞIM YANMASINDA YANMA MODEL SABİTİNİN DEĞERLENDİRİLMESİ

HİDROJEN-METAN KARIŞIM YANMASINDA YANMA MODEL SABİTİNİN DEĞERLENDİRİLMESİ Isı Blm ve Tenğ Dergs, 3, 1, 45-57, 21 J. of Thermal Scence and Technology 21 TIBTD Prnted n Turey ISSN 13-3615 HİDROJEN-METAN KARIŞIM YANMASINDA YANMA MODEL SABİTİNİN DEĞERLENDİRİLMESİ İler YILMAZ *,

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

Hipotez Testinin Temelleri

Hipotez Testinin Temelleri Hipotez Testleri Hipotez Testinin Temelleri Tanımlar: Hipotez teori, önerme yada birinin araştırdığı bir iddiadır. Boş Hipotez, H 0 popülasyon parametresi ile ilgili şu anda kabul edilen değeri tanımlamaktadır.

Detaylı

KOYCK - ALMON YAKLAŞIMI İLE TÜTÜN ÜRETİMİ VE FİYAT İLİŞKİSİ

KOYCK - ALMON YAKLAŞIMI İLE TÜTÜN ÜRETİMİ VE FİYAT İLİŞKİSİ KOYCK - ALMON YAKLAŞIMI İLE TÜTÜN ÜRETİMİ VE FİYAT İLİŞKİSİ ÖET Nedm DİKMEN * aman sers verler ullanılan br regresyon denlemnde açılayıcı değşen n yalnız şmd değerler değl, geçmş (gecmel) değerler de yer

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 1 s Ocak 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 1 s Ocak 2005 DEÜ MÜHENDİSİK FAKÜTESİ FEN ve MÜHENDİSİK DERGİSİ Clt: 7 Sayı: s. 7-85 Oca 5 ÜÇ BOYUTU BİR ÇERÇEVENİN UZAYSA VE DÜZEMSE STATİK YAPISA DAVRANIŞARININ KIYASANMASI (THE COMPARISON BETWEEN THE SPACE AND PANAR

Detaylı

EK:1 İÇ DENETÇİ EĞİTİM PROGRAMI 23 NİSAN-17 MAYIS 2014, İZMİR 1.GRUP 24 NİSAN 2014 PERŞEMBE. 09.00-10.30 Kurumsal Risk Yönetimi

EK:1 İÇ DENETÇİ EĞİTİM PROGRAMI 23 NİSAN-17 MAYIS 2014, İZMİR 1.GRUP 24 NİSAN 2014 PERŞEMBE. 09.00-10.30 Kurumsal Risk Yönetimi 1.GRUP 24 NİSAN 2014 PERŞEMBE 25 NİSAN 2014 CUMA 12.15-14.15 Öğle Arası 14.15-15.15 Kamu İç Denetim Yazılımı (İçDen) 15.15-15.30 Çay/Kahve Arası 15.30-16.00 Kamu İç Denetim Yazılımı (İçDen) 26 NİSAN 2014

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu TAP Fzk Olmpyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değşkenl doğrusal olmayan karar modelnn çözümü Hazırlayan Doç. Dr. Nl ARAS Anadolu Ünverstes, Endüstr Mühendslğ Bölümü İST8 Yöneylem Araştırması Ders - Öğretm Yılı

Detaylı