OLASILIK. Temel Tanmlar ve Kavramlar-II. Temel Tanmlar ve Kavramlar-I

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OLASILIK. Temel Tanmlar ve Kavramlar-II. Temel Tanmlar ve Kavramlar-I"

Transkript

1 OLASILIK Populasyon hakknda blg sahb olmak amac le alnan örneklerden elde edlen blgler bre br doru olmayp heps mutlaka br hata pay tamaktadr. Bu hata paynn ortaya çkmasnn sebeb seçlen örneklern ansa bal olarak farkllklar göstermes ve bunun sonucunda her deneyde farkl sonuçlarla karlalmasdr. Olaslk, herhang br deneyn sonucunda gözleneblecek farkl durumlar le hang sklkla karlalaca br baka fadeyle ortaya çkan olaylarn belrszlnn ncelenmes anlamna gelr. Olaslk br der fadeyle br olayn meydana gelme ansnn saysal fadesdr. yy. da ans oyunlaryla brlkte kullanlmaya balanan olaslk, uygulamal matematn br dal olarak gelm gösterm ve statstksel yorumlamada öneml uygulama alan bulmutur. Örnekler: Maden parann atlmas sonucu tura gelme olasl, Br deste skambl kadndan çeklen kadn en az brnn papaz olma olasl, Nanl olan br çftn evlenme olasl.??? Temel Tanmlar ve Kavramlar-I Tekrarlanablr Deney: Sonucu kesn olarak kestrmlenemeyen br tek çkt (ans deken) oluturan br eylem, gözlem ya da süreçtr. Örnek: maden para atlmas, çnde sar lacvert blye bulunan torbadan br top çeklmes. Bast Olay: Br deneyn çkts daha bast br çkt olarak ayrtrlamyorsa bast olaydr. Temel Tanmlar ve Kavramlar-II Olay: Brden fazla bast olayn br araya gelmes sonucu oluur. Örnek: hlesz br zarn atlmas sonucu asal say gelmes, çnde sar lacvert blye bulunan torbadan top çekldnde brnn sar brnn lacvert olmas. Örnek Uzay: Br deneyn sonucunda elde edlen tüm mümkün bast olaylarnn oluturduu kümedr. Genellkle S le tanmlanr. Örnek: Hlesz br zarn atlmas sonucu elde edlen örnek uzay; Örnek: hlesz br zarn atlmas sonucu gelmes, br deste skambl kadndan çeklen x: zarn üst yüzünde gelen say S { x; x,,,4,, } kadn maça as olmas. 4

2 Temel Tanmlar ve Kavramlar-III Ayrk Olay: Eer A ve B gb k olay ayn anda geçekleemyor se bu olaylara ayrk(brbrn engelleyen) olaylar denr Örnek: Maden para atlmas sonucunda yaz veya tura gelmes ayrk olaylardr. Zarn atlmas sonucu ve tek say gelmes olaylar ayrk olaylar deldrler. Çünkü ayn anda gerçekleeblrler. Et Olaslkl Olaylar: Br örnek uzayndak tüm bast olaylarn ortaya çkma olasl et se bu olaylara et olaslkl olaylar denr. Örnek: Br deste skambl kadndan br adet kat çeklmes. Olasln k Temel Kural; ) Tüm bast olaylarn olaslklar 0 le arasndadr. ) Br örnek uzayndak tüm bast olaylarn ortaya çkma olaslklarnn toplam e e,ttr. DKKAT!!!! Hç br olayn OLASILI0I den büyük olamaz!!!! Br A olayn ortaya çkma olasl; A) eklnde gösterlr. Olasln Gel,m A,amalar Klask (A Pror) Olaslk Frekans (A Posteror) Olasl Aksyom Olasl NOT:Bu sralama olaslk teorsnn tarhsel gelmn tanmlamaktadr. Klask Olaslk Eer br örnek uzay n(s) adet ayrk ve et olaslkla ortaya çkan bast olaylardan oluuyor ve örnek uzayndak bast olaylardan n(a) aded A olaynn özellne sahp se A nn olasl: A) n(a) / n(s) kesr le elde edlr Klask olaslk TÜMDENGELEME dayanan çkarmlar yaparak olasl bulur. 8

3 Örnek: Br kapta sar, lacvert ve adet yel blye bulunmaktadr. Çeklen br blyenn sar olma olasl nedr? A: Çeklen br blyenn sar olmas n(s): Örnek uzay eleman says n(a): Örnek uzayndak A eleman says Klask Olaslk Nçn Yeterszdr? Örnek uzaynn eleman says sonsuz olduu durumlarda, Et olaslkl olay varsaym yaplamad durumlarda, Tümdengelm çkarmlar yaplamadnda n( A) A) n( S) 9 klask olaslk le hesaplama yaplamayacandan dolay yeterszdr. 0 Ne Yaplablr? Frekans Olasl Aratrlan anakütle üzernde tekrarl deneyler gerçekletrlerek sonuçlar analz edlmek üzere kayt edlmeldr. Aratrlan anakütle üzernde n adet deney uygulanr. Yaplan bu deneylerde lglenlen A olay n(a) defa gözlenm se A olaynn görel frekans (yaklak olasl): A) n(a) / n olarak bulunur.

4 Örnek: Br fabrkann üretm olduu televzyonlarn hatal olma olasl p nedr? Önce örnek uzay oluturulur: S{salam,hatal} Klask olasla göre (et olaslkl olaylar) p0. olup gerçe yanstt üpheldr. Frekans Olaslnn Kararllk Özell Gerçekletrlen deney says arttkça A) olaslk deerndek dekenlk azalacak ve gderek br sabt deere yaklaacaktr. Bu duruma kararllk özell ad verlr. Br olayn olasl deneyn tekrarlama says sonsuza yaklarken o olayn görel frekansnn alaca lmt deer olarak tanmlanr: Yaplmas gereken örneklem alarak p n(h) / n olasln hesaplamaktr. p A) lm n n(a) / n 4 Frekans Olasl Nçn Yeterszdr? Olasln kararllk deerne ulat deneme says kaçtr? Sonsuz adet deneme yapmak mümkün deldr. Ayn deney k defa ayn tekrar says le gerçekletrldnde elde edlen olaslklardan hangs olayn olasl olarak kabul görecektr? Aksyom Olasl Nedr? Olasln matematksel teorsn tanmlar. Bu teornn oluturduu deal modeller yaadmz dünyann problemlern çözmede kullanlr. Olasln k genel tpnn sahp olduu öneml ortak nokta: Her ksnn de, benzer koullarda (teork olarak ayn koullarda) uygulanan deneylere gereksnm duymasdr. Bununla brlkte benzer koullarda tekrarl olarak uygulanamayan durumlarda olaslklarn hesaplanmasnda AKSEYOM OLASILIMI yardmc olur. 4

5 Benzer Ko,ullarda Tekrarl Olarak Uygulanamayan Durumlara Örnekler: Türkye nn hafta çnde Kuzay Iraa snr ötes operasyon düzenleme olasl nedr? Çok holandnz br arkadanzla çkma olasl nedr? Fenerbahçe - Galatasaray maçnn -0 btmes olasl nedr? Aksyomlar Aksyom : A) örnek uzay S dek her A olay çn A)0 olan br gerçel saydr. Aksyom : S) { )0 } Aksyom : Eer S,S,...Olaylarnn her br S dek ayrk olaylar se,der br deyle S S j tüm j çn se, S S...)S )+S ) Sadece Aksyomlar Yeterl m? HAYIR Bu aksyomlarn ve onlara bal teoremlern faydal br model geltrlmesnde bze yardmc olablmes çn, S örnek uzayndak her br A olay çn olasln hesaplanmasnda kullanlacak br FONKSEYONA ya da br KURALA gereksnm vardr Bu fonksyonlar Elglenlen anakütlenn Tanmlad ÖRNEK UZAYINA Göre Farkllk Gösterr. Sk karlalan üç farkl örnek uzay; Sonlu elemanl keskl örnek uzay (saylablr sonlu) Genel keskl örnek uzay (saylablr sonsuz) Sürekl örnek uzay (saylamaz sonsuz) olarak fade edlr. 9 0

6 x : herhang br gün çnde yamur yamas x 0 ( yamur yamaz ) x ( yamur yaar ) Örnek Uzay; S { x / 0, } veya S { x / Yamursuz, Yamurlu } olarak belrlenr ve saylablr sonlu br örnek uzaydr. x : br zar çn gelnceye kadar yaplan at says Örnek Uzay; S { x /,,,.. } olarak belrlenr ve saylablr sonsuz br örnek uzaydr. (keskl,ans de,ken) x: örenclern boylar Örnek Uzay; S { x / 0 < x < 00 } olarak belrlenr ve saylamaz sonsuz br örnek uzaydr. (sürekl,ans de,ken) Baz Temel Olaslk Aksyomlar. P ( S ). P ( ) 0. A olaynn tümleyen A olarak gösterlr. A) A) 4. A ve B herhang k olay olmak üzere; A U B ) P ( A )+ P ( B ) P ( A U B ) Örnek Uzay ve Olay Saysn Belrleyen Sayma Yöntemler Klask olasln der br fade le et olaslkl olaylarn geçerl olduu durumlarda: Örnek uzaynn eleman says, Elglenlen olayn eleman saysnn belrlenmes gerekldr.. A ve B ayrk k olay se; A U B ) P ( A ) + P ( B ) Kullanlan k temel prensp; ) Toplama Yöntem ) Çarpma Yöntem 4

7 Toplama Yöntem Br A olay m farkl eklde, baka br B olay da n farkl eklde oluablen ayrk olaylar se; A veya B olay n + m farkl eklde oluablr. Örnek: Estanbul dan Ezmr e farkl tren sefer, 4 farkl havayolu frmas, 40 farkl otobüs frmas ve adet denzyolu frmas le gdlebldne göre Estanbul dan Ezmr e kaç farkl eklde gdlr? Çarpma Yöntem Br A olay m farkl eklde, baka br B olay da n farkl eklde oluablen ve ayn anda olu,malar mümkün olaylar se; A ve B olay n * m farkl eklde oluablr. Örnek: Br skambl destesnden çeklen k kartn brnn Kupa dernn Maça olmas kaç farkl eklde gerçekleeblr? * 9 NOT: Çarpma yöntem bamsz olaylar çn kullanlr k farkl sonuç veren br deney r kez tekrar edlrse ortaya çkan tüm durumlarn says; k r olarak hesaplanr. Örnek: Br zar kez attmzda ortaya çkablecek tüm mümkün durumlarn says says; adettr. Örnek Uzay ve Olay Saysnn Büyük Olduu Durumlar Örnek uzay ve olay saysnn büyük olduu durumlarda kullanlan sayma yöntemler; Permütasyon Kombnasyon Örnek uzaynn eleman says dr. 8

8 Permütasyon Sraya konulacak n adet nesne olsun ve her br sadece br kez kullanlmak üzere kaç farkl sralama yaplablr? n n- n-... n nesnenn mümkün sralamalarnn says: n(n-)(n-)...()()n! n P n n! 9 n tane nesne arasndan seçlm x tane nesnenn permütasyon says P n x..olarak fade edlr. Toplam n tane nesne arasndan x tane nesne seçlr ve bunlar sraya konulursa ortaya çkablecek sralamalarn saysdr ve u eklde hesaplanr: n P x n! ( n x)! Kullanld durumlar Eadesz örnekleme Örnee çk sras öneml 0 Örnek: 8 atletn katld 00 metre yarmasnda lk üç dereceye grenler kaç farkl eklde belrlenr? 8! 8 P 8** (8 )! Örnek:,,,, ve 9 saylarn kullanarak 4 basamakl rakamlar brbrnden farkl kaç say oluturulur?! P4 ** 4* 0 ( 4)! 4 0 Kombnasyon n adet nesne arasndan seçlen x tanesnn kombnasyon says n C x le gösterlr. Sralama öneml olmakszn tüm durumlarn says olarak fade edlr. Bu say u eklde hesaplanr: n C x n! ( n x)! x! Kullanld durumlar; Eadesz örnekleme Örnee çk sras önemsz 8

9 Örnek: Be klk br topluluktan üç klk br komsyon kaç farkl eklde seçlr?! *4** ( )!! ** C 0 Örnek: 0 bay ve bayan arasndan bay ve bayan üye çeren br kurul kaç farkl eklde oluturulur? 0! 0*9 C (0 )!!! C ( )!! 0 4 ( 0 bay arasndan bay ) ( bayan arasndan bayan ) Çarpm kural uygulanarak 4 * farkl eklde oluturulur. Örnek: 0 letme ve 8 ktsat örencs arasndan klk br komsyon oluturulacaktr. Rasgele br seçm yapldnda komsyonda çounlukla letme örencs olma olasl nedr? letme 0 ktsat, 4 letme ktsat, letme ktsat C C C C C 8C 8C C C 0, Örnek: Al ve Can sml k arkada zar atarak oyun oynuyorlar. Oyuna Al balyor. Zar veya gelrse oyunu kazanyor.,4 veya gelrse oyuna devam etme hakkn kazanyor. gelrse zar atma sras Velye geçyor. Al nn bu oyunu kazanma olasl bulunuz. Al nn oyunu kazanma olasl p olsun, Al veya atar oyunu kazanr, olaslk : /,4 ve atar oyuna tekrar devam eder ve sonra oyunu kazanr olaslk: (/)p lk at,ta atar oyun cana geçer ve can oyunu kaybeder olaslk (/)(-p) p / + (/)p + (/)(-p) Z p /4 4 Aaç Dyagram Örnek: Al le Can masa tens oynamaktadrlar. set kazanann galp gelece maçn ortaya çkablecek tüm mümkün sonuçlarn gösteren aaç dyagramn oluturunuz. Olas Durumlar; Her brnn sonucunun sonlu sayda olduu brden fazla deneyn tüm mümkün sonuçlarn görsel br eklde ortaya koymak çn kullanlr. AAA,CCC AACA,CCAC ACAA,CACC ACCC,CAAA ACACA,CACAC AACCA,CCAAC AACCC,CCAAA ACACC,CACAA ACCAA,CAACC ACCAC,CAACA 0 A D E T 9

10 Fartl Olaslk A ve B gb k olaydan B olaynn gerçeklet blnd durumda A olaynn gerçeklemes olaslna A olaynn artl olasl denr. A / B ) le gösterlr. A B) A/ B) B) A nn gerçeklet blndnde B nn ortaya çkma olasl; B A) B / A) A) P ( BIA) AIB) A/ B). B) B/ A). A) Örnek: Br ünverstede okuyan örenclern % 0 tyatroya, % se snemaya lg duymaktadr. a) Br örencnn snemaya lg duyduu blndnde tyatroya lg duyma olasl 0,40 se her k aktvteye brden lg duyma olasl nedr? b) Br örencnn tyatro veya snemaya lg duyma olasl nedr? T:Tyatroya lg duyma S:Snemaya lg duyma P ( T ) 0,0 S ) 0, a) P ( T / S ) 0,40 P (T U S )? b) T S) T/S) S) T S) T/S) *S) 0,40* 0, 0,4 T U S) T) + S) - T S) 0,0 + 0,- 0,4 0,9 8 Fartl Olaslklarn Blnd Durumlarda Tek Br Olayn Olaslnn Bulunmas Aadak eklde A olaynn brbryle ayrk olan farkl olayn brlemnden meydana geld görülür. B B A B B4 B A olay her br B olay le kesmler cnsnden fade edldnde;(brbrn engelleyen olaylarn brlemnn olasl toplama kuralna göre) A) AB ) + AB ) AB ) P A B ) A/ B ). B ) ( A) A / B ) B ) + A / B ) B) + A / B ) B) + A / B ) B ) + A / B ) B )

11 Örnek: Br laç üç fabrka tarafndan üretlmektedr.. Fabrkann üretm. ve. fabrkalarn üretmnn katdr. Ayrca. ve. fabrkalar %,. fabrka % 4 orannda bozuk laç üretmektedr. Üretlen tüm laçlar ayn depoda saklandna göre bu depodan rast gele seçlen br lacn bozuk olma olasl nedr. A Seçlen lacn bozuk olma olasl P ( A )? B Seçlen lacn nc fabrkada üretlmes B ) B )+ B ) B )+ B )+ B ) olduundan; B ) 0,0 B ) B ) 0, olarak elde edlr. P ( A) A / B ) B ) + A / B ) B) + A / B) B) A)(0.0)(0.)+(0.0)(0.)+(0.04)(0.)0,0 Bayes Teorem Sonucun blnd durumda sebebn hang olaslkla hang olaydan meydana geld le lglenr. Ele alnan örnekte depodan rast gele seçlen br lacn bozuk çkmas halnde.fabrkadan gelmesnn olasl aratrldnda Bayes Teoremne htyaç duyulmaktadr. P ( B / A) P ( A B ) P ( A / B ) P ( B ) P ( A) P ( A / B ) P ( B ) k Depodan seçlen 000 ürünün tanesnn hataldr. 4 4 Depodan rasgele seçlen br lacn bozuk olduu blndne göre nc fabrkadan gelm olma olasl; A/B )B) B/A) A/B )B ) + A/B )B ) + A/B )B (0.0)(0. ) B /A) 0,40 (0.0)(0. ) + (0.0)(0. ) + (0.04)(0. ) 4 ) Bamsz Olaylar Ele alnan olaylardan brnn gözlenp gözlenmemesnn olasl der br olayn ortaya çkp çkmama olasln etklemyorsa bu olaylara bamsz olaylar denr. P ( A U B ) P ( A / B ). P ( B ) P ( B / A ). P ( A) A ve B olaylar bamsz se br baka fadeyle B olaynn meydana gelme olasl A olaynn meydana gelme olaslna bal del se ve k olay ayn anda meydana geleblyor se; P ( A / B ) P ( A) ve P ( B / A ) P ( B ) olur. Sonuç olarak A ve B olaylar bamsz seler P ( A G B ) P ( A ). P ( B ) etl elde edlr. Ayn eklde P ( A U B ) P ( A ). P ( B ) se A ve B 44 olaylar bamszdr denr.

12 Örnek: Al ve Can sml k avcnn br hedef vurma olaslklar srasyla 0, ve 0,40 olarak verlmtr. Ek avc hedefe brlkte ate ettnde hedefn vurulma olasl nedr? A Al nn hedef vurmas P ( A ) 0, C Can n hedef vurmas P ( C ) 0,40 P ( A U C )? A U C ) P ( A )+ P ( C ) P ( A U C ) Al le Can nn hedef vurmalar brbrnden bamsz olduundan; P ( A U C ) P ( A ). P ( C ) 0, * 0,40 0, Keskl ve Sürekl Fans De,kenler çn; Olaslk Dalmlar Beklenen Deer ve Varyans Olaslk Hesaplamalar A U C ) 0, + 0,40 0, 0,9 4 4 Keskl Fans De,kenlernn Olaslk Fonksyonlar X, ans deken ve x,x,..,x n bu tesadüf dekenn alablece deerler olsun X tesadüf dekennn herhang br x deern alma olasl Pr{Xx} eklnde gösterlr. Bu olaslk X n dalm ya da olaslk kanunu dye adlandrlr. Keskl X dekennn hang deerler hang olaslklarla alacan gösteren fonksyona olaslk fonksyonu denr. Br dalmn keskl olaslk fonksyonu olablmes çn. x) 0, tüm x deerler çn. P ( x ) Tümx artlarn salamas gerekr. 4 Örnek: Hlesz br zarn atldnda x ans deken üst yüze gelen sayy fade etmek üzere bu x ans dekennn olaslk fonksyonunu elde ednz. S { x /,,,4,, } P ( X x ) / X P ( X x ) X x) 0 / / x / x x x 4 x x d. d 4 / / / k farkl,eklde fade edlen x,ans de,kennn dalmna bakldnda X ) N 0 ve tüm x deerler çn OXx),artlar saland görülmekte ve Xx) n br olaslk fonksyonu olduu sonucu ortaya çkmaktadr. 48

13 Beklenen Deer Br ans dekennn herhang br olaslk fonksyonunda alm olduu tüm deerlern ortalamas o ans dekennn beklenen deerdr. X ans dekennn beklenen deer; le gösterlr. E (x) Br,ans de,kenn beklenen deer o,ans de,kennn ortalamasna e,ttr. E (x) Q 49 Var E Beklenen Deer Kullanarak Varyansn Elde Edlmes E(x ): x ans dekennn karesnn beklenen deer ( x) E( x ) [ E ( x ( x ) [ E ( x Var( x) E ( x µ ) )] )] 0 Keskl Fans De,kenler çn Beklenen Deer ve Varyans E ( x) x ) Var Var( x) Tümx x E ( x ) x ) Tümx x ( x) E( x ) [ E ( x )] x ( ) P x tüm x tüm x x ( ) P x Örnek: Br otomobl baysnn günlük araba satlarnn dalmnn aadak gb olduunu fade etmektedr. X X) 0,0 0,08 0, 0,9 0,4 0, 0,0 0,04 0,0 Bu dala göre baynn; a) ten fazla araba satmas olasln bulunuz X ) + P ( X ) + P ( X 8 ) 0, b) Satlarn beklenen deern hesaplayp yorumlaynz. E(X) x x ) (0)(0,0)+()(0,08)+()(0,)+.+(8)(0,0), Baynn 00 günde araba sat yapmas beklenr. c) Satlarn varyansn bulunuz. E(X ) x x (0 )(0,0)+( )(0,08)+.+ (8 ) )(0,0),8 Var(X) E(X ) - [E(X)],8 - (,),84

14 Sürekl Fans De,kenlernn Olaslk Fonksyonlar Sürekl dekenlerdek olaslk fonksyonuna sürekl olaslk fonksyonu, olaslk younluk fonksyonu, veya sadece younluk fonksyonu denr. Sürekl br ans dekenn olaslk younluk fonksyonu f(x) le gösterlr. Herhang br fonksyonun olaslk younluk fonksyonu olablmes çn; ) X n tanm aral çn f(x ) ` 0, ) f ( x) dx artlarn salamas gerekldr. tüm x Sürekl Fans De,kenler çn Olaslk Sürekl br dekenn tanml olduu aralkta sonsuz sayda deer vardr. Dekenn bunlar çnden belrl br deer alma olasl 0 olur. Bu sebepten dolay, sürekl dekenlere at olaslk fonksyonlar, keskl dekenlern aksne bu dekenn belrl br deer alma olaslklarnn hesaplanmasna mkan vermez. Bu fonksyonlarda dekenn belrl br deer yerne belrl br aralkta deer alma olaslnn hesaplanmas yoluna gdlr. Sürekl br x ans dekenn a le b arasnda olma olasl; b P ( a < x < b) f ( x) dx eklnde hesaplanr. a 4 Örnek: f(x) fonksyonu aadak gb tanmlanyor olsun x, x f ( x) 0, dger x' ler cn a) f(x) olaslk younluk fonksyonu mudur? f x dx se f(x) olaslk younluk fonksyonudur. tüm x ( ) x dx x olduundan f(x) olaslk younluk fonksyonudur. b) P (, < x <,8 )? 8, 8 x, < x <,8) x dx,,, 8,8, 0,04 Sürekl Fans De,kenler çn Beklenen Deer ve Varyans E ( x) x f ( x) dx E Var ( x) tüm x ( x ) x f ( x) dx x f ( x) dx tüm x tüm x x f ( x) dx 4

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Bir torbada 6 beyaz 5 krmz ve 4 siyah bilye vardr. Torbadan rastgele çekilen 3 bilyenin a) Üçünün de beyaz olma olasl" b) Üçünün de ayn renkte olma

Bir torbada 6 beyaz 5 krmz ve 4 siyah bilye vardr. Torbadan rastgele çekilen 3 bilyenin a) Üçünün de beyaz olma olasl b) Üçünün de ayn renkte olma 1 Bir torbada 6 beyaz 5 krmz ve 4 siyah bilye vardr. Torbadan rastgele çekilen 3 bilyenin a) Üçünün de beyaz olma olasl" b) Üçünün de ayn renkte olma olasl" c) Üçünün de farkl renkte olma olasl" d) 1.

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

PARAMETRK OLMAYAN STATSTKSEL TEKNKLER. Prof. Dr. Ali EN ÖLÇEKLER

PARAMETRK OLMAYAN STATSTKSEL TEKNKLER. Prof. Dr. Ali EN ÖLÇEKLER PARAMETRK OLMAYAN STATSTKSEL TEKNKLER Prof. Dr. Ali EN 1 Normal dalm artlarn salamayan ve parametrik istatistik tekniklerinin kullanlmasn elverisiz klan durumlarn bulunmas halinde, eldeki verilere bal

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Onikinci Bölüm Korelasyon ve Regresyon

Onikinci Bölüm Korelasyon ve Regresyon OnkncBölüm KorelasyonveRegresyon Hedefler Buünteyçalktansonra; k deken arasnda lk olup olmad arar, lknn anlaml olup olmad belrler, Anlaml br lk varsa lknn modeln formüle eder, Dekenlerden br le dern tahmn

Detaylı

f 1 (H ) T f 1 (H ) = T

f 1 (H ) T f 1 (H ) = T Bölüm 15 TIKIZLIK 15.1 TIKIZ UZAYLAR 15.1.1 Problemler 1. Her sonlu topolojik uzay tkzdr. 2. Ayrk bir topolojik uzayn tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. 3. Ayn bir küme üzerinde S T

Detaylı

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür. Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk

Detaylı

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir?

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir? 1. lim a 1 üzere a+b toplam kaçtr? A)-8 B)-5 C)- C)1 E)4 b, a,b R olmak 4. +y=14 ise.y 5 çarpmnn değeri en fazla kaça eşittir? A)4 6.10 B)10.4 5 C)10 5. D) 5.10 7 E)16.10 5. bir cisim için hareket denklemi

Detaylı

Soyut Matematik Test A

Soyut Matematik Test A 1 Soyut Matematik Test A 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. Her hangi bir A kümeler ailesi üzerinde

Detaylı

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Kİ-KAR TSTLRİ A) Kİ-KAR DAĞILIMI V ÖZLLİKLRİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk gösterp

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

L SANS YERLE T RME SINAVI 1

L SANS YERLE T RME SINAVI 1 LSANS YERLETRME SINAVI MATEMATK TEST SORU KTAPÇII 9 HAZRAN 00. ( )( + ) + ( )( ) = 0 eitliini salayan gerçel saylarnn toplam kaçtr?. ( )( ) < 0 eitsizliinin gerçel saylardaki çözüm kümesi aadaki açk aralklarn

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: ölüm 4 Olasılık 1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

Soyut Matematik Test B

Soyut Matematik Test B 1 Soyut Matematik Test B 1. Hangisi tümel (tam, linear) sralama ba ntsdr? (a) Yansmal, antisimetrik, geçi³ken ve örgün olan ba ntdr. (b) Yansmal, simetrik, geçi³ken ve örgün olan ba ntdr. (c) Yansmaz,

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Kare tabanl bir kutunun yükseklii 10 cm dir.taban uzunluunu gösteren X ise (2, 8) arasnda uniform (tekdüze) dalmaktadr.

Kare tabanl bir kutunun yükseklii 10 cm dir.taban uzunluunu gösteren X ise (2, 8) arasnda uniform (tekdüze) dalmaktadr. SORU : Kare tabanl bir kutunun yükseklii 0 cm dir.taban uzunluunu gösteren X ise (, 8) arasnda uniform (tekdüze) dalmaktadr. Kutunun hacminin olaslk younluk fonksiyonu g(v) a%adakilerden hangisidir? v

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Doğrusal Korelasyon ve Regresyon

Doğrusal Korelasyon ve Regresyon Doğrusal Korelasyon ve Regresyon En az k değşken arasındak lşknn ncelenmesne korelasyon denr. Kşlern boyları le ağırlıkları, gelr le gder, öğrenclern çalıştıkları süre le aldıkları not, tarlaya atılan

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Çarpm ve Bölüm Uzaylar

Çarpm ve Bölüm Uzaylar 1 Ksm I Çarpm ve Bölüm Uzaylar ÇARPIM UZAYLARI 1 ÇARPIM TOPOLOJ S 2 KARMA P R O B E M L E R 1. A ile B, srasyla, (X, T )X ile (Y, S ) topolojik uzaylarnn birer alt-kümesi olsunlar. (a) (A B) = A B (b)

Detaylı

Sıklık Tabloları ve Tek Değişkenli Grafikler

Sıklık Tabloları ve Tek Değişkenli Grafikler Sıklık Tabloları ve Tek Değşkenl Grafkler Sıklık Tablosu Ver dzsnde yer alan değerlern tekrarlama sayılarını çeren tabloya sıklık tablosu denr. Sıklık Tabloları tek değşken çn marjnal tablo olarak adlandırılır.

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ 1 Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

BÖLÜM 1. Matematiksel ndüksiyon Prensibi

BÖLÜM 1. Matematiksel ndüksiyon Prensibi BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: ölüm 4 Olasılık 1 OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102

Detaylı

Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm)

Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm) Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm) Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ Giri³ 2 3 4 LS Tahmin Edicilerinin Özellikleri 5 Genel Kareler Toplamnn Parçalan³ ndirgenmi³ Model-Tam Model Yakla³m

Detaylı

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç SOYUT MATEMAT K DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi FenEdebiyat Fakültesi Matematik Bölümü Eylül 2010 çindekiler 1 Önermeler ve spat Yöntemleri 1 2 Kümeler 13

Detaylı

PARÇALI DOĞRUSAL REGRESYON

PARÇALI DOĞRUSAL REGRESYON HAFTA 4 PARÇALI DOĞRUSAL REGRESYO Gölge değşkenn br başka kullanımını açıklamak çn varsayımsal br şrketn satış temslclerne nasıl ödeme yaptığı ele alınsın. Satış prmleryle satış hacm Arasındak varsayımsal

Detaylı

Soyut Matematik Test 01

Soyut Matematik Test 01 1 Soyut Matematik Test 01 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. A³a dakilerden hangisi do rudur?

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan ..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise 0.1. PROBLEMLER 1 19.8. PROBLEMLER // 0.1 PROBLEMLER // 1. a herhangi bir nicelik says ise (i) a + 0 = a, a0 = 0, a 0 = 1 oldu unu gösteriniz. A³a daki kümelerin e³güçlülü ünden nicelik saylar için istenen

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x)

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x) Bölüm 13 MATEMAT KSEL YAPILAR 13.1 YAPI KAVRAMI Ça da³ Matematik kümeleri, kümeler üzerindeki yaplar, yaplar arasndaki dönü³ümleri inceler. Buraya dek ö e, küme, i³lem, fonksiyon kavramlarn kullandk. Bunlar

Detaylı

Tek Yönlü Varyans Analizi (ANOVA)

Tek Yönlü Varyans Analizi (ANOVA) VARYANS ANALİZİ İ örne ortalaması arasında farın önem ontrolü, örne büyülüğüne göre z veya testlernden bryle yapılır. Bu testlerle, den fazla örne ortalamasını brlte test etme ve aralarında farın önem

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin

Detaylı

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir?

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? 1 TOPOLOJ TEST A 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? (a) Açk kümeleri belirleme (b) Kapal kümeleri belirleme (c) Alt-kümeleri belirleme (d) Kaplamlar belirleme (e) çlemleri belirleme

Detaylı

HİPERSTATİK SİSTEMLER

HİPERSTATİK SİSTEMLER HİPERSTATİK SİSTELER Tanım: Bütün kest zorlarını ve bunlara bağlı olarak şekl değştrmelern ve yer değştrmelern hesabı çn denge denklemlernn yeterl olmadığı sstemlere Hperstatk Sstemler denr. Hperstatk

Detaylı

SUALTI ve SUÜSTÜ GEM LER N N AKUST K Z ÇIKARTIMI

SUALTI ve SUÜSTÜ GEM LER N N AKUST K Z ÇIKARTIMI SUALTI ve SUÜSTÜ GEMLERNN AKUSTK Z ÇIKARTIMI Erkul BAARAN (a), Ramazan ÇOBAN (b), Serkan AKSOY (a) (a) Yrd. Doç. Dr., Gebze Yüksek Teknoloji Enstitüsü, Elektronik Müh. Böl., 41400, Gebze, Kocaeli erkul@gyte.edu.tr

Detaylı

Baml deikenin simetrik bulank say olmas durumunda parametre tahmini

Baml deikenin simetrik bulank say olmas durumunda parametre tahmini www.statstkcler.org statstkçler Dergs 3 (00) 54-6 statstkçler Dergs Baml dekenn smetrk bulank say olmas durumunda arametre tahmn Kamle anl Kula Ah Evran Ünverstes, Matematk Bölümü, 4000, Krehr, ürkye sanl004@hotmal.com

Detaylı

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2] Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET

TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Faik YNAM ÖZET TÜRKYE'DE TRAFK KAZALARININ MODELLENMES K. Selçuk ÖÜT A. Fak YNAM stanbul Teknk Ünverstes stanbul Teknk Ünverstes ÖZET Trafk kazaları, ülkemz gündemn sürekl olarak gal eden konularıdan brdr. Üzernde çok

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

Türkiye demir ve çelik sektöründe bir irketin yangn risklerinin aktüeryal modeli

Türkiye demir ve çelik sektöründe bir irketin yangn risklerinin aktüeryal modeli www.istatistikciler.org statistikçiler Dergisi 3 (010) 37-44 statistikçiler Dergisi Türkiye demir ve çelik sektöründe bir irketin yangn risklerinin aktüeryal modeli Özlem Ceren Gültekin skenderun Demir

Detaylı

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir?

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir? 1 TOPOLOJ TEST B 1. {( 1) n 1 n : n > 0} dizisi için a³a dakilerden hangisi do rudur? (a) Dizinin limiti 1 ve +1 dir; y lma noktas 1 ve +1 dir. (b) Dizinin limiti 1 ve +1 dir; y lma noktas yoktur. (c)

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

GENEL DESTEK PROGRAMI. B R NC Amaç, Kapsam, Dayanak ve

GENEL DESTEK PROGRAMI. B R NC Amaç, Kapsam, Dayanak ve LETMELER GEL T RME VE DESTEKLEME DARES BA KANLI I (KOSGEB) GENEL DESTEK PROGRAMI B R NC Amaç, Kapsam, Dayanak ve Amaç MADDE 1 - (1) Bu p kar bçmde gerçekle dares Ba uygulanacak Genel Kapsam MADDE 2 - (1)

Detaylı

kili ve Çoklu Kar³la³trmalar

kili ve Çoklu Kar³la³trmalar kili ve Çoklu Kar³la³trmalar Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ 2 3 4 5 6 7 Bu bölümde, (2.1) modelinde, H 0 : µ 1 = µ 2 = = µ a = µ (1) ³eklinde ifade edilen sfr hipotezinin reddedilmesi durumunda,

Detaylı

PROJE SEÇİMİ VE KAYNAK PLANLAMASI İÇİN BİR ALGORİTMA AN ALGORITHM FOR PROJECT SELECTION AND RESOURCE PLANNING

PROJE SEÇİMİ VE KAYNAK PLANLAMASI İÇİN BİR ALGORİTMA AN ALGORITHM FOR PROJECT SELECTION AND RESOURCE PLANNING Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Clt 3, Sayı:2, 2001 PROJE SEÇİMİ VE KAYAK PLALAMASI İÇİ BİR ALGORİTMA lgün MORALI 1 C. Cengz ÇELİKOĞLU 2 ÖZ Kaynak tahss problemler koşullara bağlı olarak

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe lar Birdal eno lu ükrü çindekiler 1 2 3 4 5 A³amal tasarmlar (hierarchical designs) olarak da bilinen iç-içe tasarmlarda (nested designs), ³u ana kadar gördü ümüz tasarmlardan farkl olarak iki veya ikiden

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünte 11: İndeksler Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT İndeks 2 Üntede Ele Alınan Konular 11. İndeksler 11.1. Bast İndeksler 11.1.1. Fyat İndeks 11.1.2. Mktar İndeks 11.1.3. Mekan İndeks 11.2. Bleşk

Detaylı

S = {T Y, X S T T, S S} (9.1)

S = {T Y, X S T T, S S} (9.1) Bölüm 9 ÇARPIM UZAYLARI 9.1 ÇARPIM TOPOLOJ S Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpmnn da bo³ olmad n, Seçme Aksiyomu [13],[20], [8] ile kabul ediyoruz. imdi verilen aileye

Detaylı

Elektrik Akımı. Test 1 in Çözümleri. voltmetresi K-M arasına bağlı olduğu için bu noktalar arasındaki potansiyel farkını ölçer. V 1. = i R KM 1.

Elektrik Akımı. Test 1 in Çözümleri. voltmetresi K-M arasına bağlı olduğu için bu noktalar arasındaki potansiyel farkını ölçer. V 1. = i R KM 1. 5 Elektrk kımı 1 Test 1 n Çözümler 1. 4 Ω Ω voltmetre oltmetrenn ç drenc sonsuz büyük kabul edlr. Bu nedenle voltmetrenn bulunduğu koldan akım geçmez. an voltmetrenn olduğu koldak drenç dkkate alınmaz.

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir?

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir? 1 TOPOLOGY TEST 02 1. S ailesi X kümesi üzerinde bir süzgeç ise, a³a dakilerden hangisi sa lanmaz? (a) / S (b) * S (c) X S (d) A, B S A B S (e) (V S ) (V W ) W S 2. A³a dakilerden hangisi bir süzgeç de

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t :

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t : HAFTA 13 GÖLGE EĞİŞKENLERLE REGRESYON (UMMY VARIABLES) Gölge veya kukla (dummy) değşkenler denen ntel değşkenler, cnsyet, dn, ten reng gb hemen sayısallaştırılamayan ama açıklanan değşkenn davranışını

Detaylı

Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 8, Say: 3, 2006 OYLAMA YÖNTEMNE DAYALI AIRLIKLANDIRMA LE GRUP KARARININ OLUTURULMASI

Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 8, Say: 3, 2006 OYLAMA YÖNTEMNE DAYALI AIRLIKLANDIRMA LE GRUP KARARININ OLUTURULMASI Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 8, Say: 3, 2006 OYLAMA YÖNTEMNE DAYALI AIRLIKLANDIRMA LE GRUP KARARININ OLUTURULMASI Onur ÖZVER( * ÖZET Organizasyonlarda karar vericiler

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır.

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır. KONU : DUAL MODELİN EKONOMİK YORUMU Br prmal-dual model lşks P : max Z cx D: mn Z bv AX b AV c X 0 V 0 bçmnde tanımlı olsun. Prmal modeln en y temel B ve buna lşkn fyat vektörü c B olsun. Z B B BB c X

Detaylı

A = i I{B i : B i S} A = x A{B x A : B x S}

A = i I{B i : B i S} A = x A{B x A : B x S} Bölüm 4 TOPOLOJ TABANI 4.1 TOPOLOJ TABANI Tanm 4.1.1. Bir S P(X) ailesi verilsin. S ye ait kümelerin her hangi bir bile³imine e³it olan bütün kümelerin olu³turdu u aileye S nin üretti i (do urdu u) aile

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Eşit Ağırlık ve Sayısal Adaylar İçin ALES KONU ANLATIMLI ALES. eğitimde. Kenan Osmanoğlu Kerem Köker. Özgün Sorular. Çıkmış.

Eşit Ağırlık ve Sayısal Adaylar İçin ALES KONU ANLATIMLI ALES. eğitimde. Kenan Osmanoğlu Kerem Köker. Özgün Sorular. Çıkmış. Eşit Ağırlık ve Sayısal Adaylar İçin 2018 KONU ANLATIMLI Özgün Sorular eğitimde Çıkmış 30.yıl Sorular Kenan Osmanoğlu Kerem Köker Pratik Bilgiler Kenan Osmanoğlu - Kerem Köker Eşit Ağırlık ve Sayısal Konu

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1)

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1) DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular 1 1) a n = (n + 1) n + n n + 1 olmak üzere, a 1 + a + a 3 +... + a 99 toplamn bulunuz. 9 evap: 10 a n = (n + 1) n n n + 1 n(n + 1) n (n + 1) oldu

Detaylı

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.

Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. 5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya

Detaylı

Matematiksel denklemlerin çözüm yöntemlerini ara t r n z. 9. FORMÜLLER

Matematiksel denklemlerin çözüm yöntemlerini ara t r n z. 9. FORMÜLLER ÖRENME FAALYET-9 AMAÇ ÖRENME FAALYET-9 Gerekli atölye ortam ve materyaller salandnda formülleri kullanarak sayfada düzenlemeler yapabileceksiniz. ARATIRMA Matematiksel denklemlerin çözüm yöntemlerini aratrnz.

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

Monte Carlo stokastik optimizasyonu ile optimal saklama pay seviyesi hesab

Monte Carlo stokastik optimizasyonu ile optimal saklama pay seviyesi hesab www.istatistikciler.org statistikçiler Dergisi 4 (2011) 1-8 statistikçiler Dergisi Monte Carlo stokastik optimizasyonu ile optimal saklama pay seviyesi hesab Murat Büyükyazc Hacettepe Üniversitesi Fen

Detaylı

Içindekiler. Bölünebilme ve Bölme Algoritmas Bölme Algoritmas 12 Bölünebilme Kurallar 15 Bölünebilme Problemlerinde En Çok Kullanlan Yöntemler 22

Içindekiler. Bölünebilme ve Bölme Algoritmas Bölme Algoritmas 12 Bölünebilme Kurallar 15 Bölünebilme Problemlerinde En Çok Kullanlan Yöntemler 22 Içindekiler BIRINCI BÖLÜM Bölünebilme ve Bölme Algoritmas Bölme Algoritmas 12 Bölünebilme Kurallar 15 Bölünebilme Problemlerinde En Çok Kullanlan Yöntemler 22 Çözümlü Test 25 Çözümler 28 Problemler (Bölünebilme)

Detaylı

'~'l' SAYı : 34203882-821 i ı 1-1 C _:J 1...110/2013 KONU : Kompozisyon Yarışması. T.C SINCAN KAYMAKAMllGI Ilçe Milli Eğitim Müdürlüğü

'~'l' SAYı : 34203882-821 i ı 1-1 C _:J 1...110/2013 KONU : Kompozisyon Yarışması. T.C SINCAN KAYMAKAMllGI Ilçe Milli Eğitim Müdürlüğü BÖLÜM: Temel Eğtm T.C SINCAN KAYMAKAMllGI Ilçe Mll Eğtm Müdürlüğü SAYı : 34203882-821 ı 1-1 C _:J 1...110/2013 KONU : Kompozsyon Yarışması TÜM OKUL MÜDÜRLÜKLERNE SNCAN Ilg :Vallk Makamının 25.10.2013 tarh

Detaylı

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr III. Asmetr ve Basıklık

Detaylı

Doğru Önermeler, Yanlış Önermeler 1 Ali Nesin

Doğru Önermeler, Yanlış Önermeler 1 Ali Nesin Doğru Önermeler, Yanlış Önermeler Al Nesn Bu yazıda 6 mantık sorusu sorup yanıtlayacağız. Brnc Blmece. Yargıç karar recek. Mahkeme tutanaklarından şu blgler çıkıyor: Eğer A suçsuzsa, hem B hem C suçlu.

Detaylı

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V Bölüm 6 SÜREKL FONKS YONLAR 6.1 YEREL SÜREKL L K Tanm 6.1.1. (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f(x 0 ) ö esinin her V kom³ulu una kar³lk f(u) V olacak ³ekilde x

Detaylı