TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM"

Transkript

1 TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM Emrah ONAT SDT - Space & Defence Technologes A.Ş. Ömer ÖZDİL TÜBİTAK - BİLGEM / İLTAREN Özetçe Bu bldrde, Türkye dek trafk şaretlernn renk ve şekller gb bazı özntelklernden faydalanılarak sınıflandırılması anlatılmaktadır. MATLAB ortamında oluşturulan algortmalar le trafk şaretler öncelkle fotoğraftak dğer öğelerden ayırt edlmş, daha sonra renklerne göre fltrelenmştr. Fltreleme şlem sonrası lk olarak kenar bulma fonksyonundan geçrlp Hough dönüşümü veya DVM (Destek Vektör Makneler) kullanılarak trafk şaretler şekllerne göre sınıflandırmaya tab tutulmuştur. Anahtar Kelmeler Trafk İşaretlernn Sınıflandırılması, Hough Dönüşümü, DVM Abstract In ths paper, classfcaton of traffc sgns n Turkey wth the help of ther some features such as color and shape s explaned. In the algorthm that s generated n MATLAB, frstly trafc sgns are dstngushed from the other objects of the mage and then fltered by ther colors. After flterng, edge detecton s processed and then Hough Transform and SVM are used for shape classfcaton. Keywords Traffc Sgn Classfcaton, Hough Transform, Support Vector Machne I. GİRİŞ Trafk şaretlernn temel amacı trafk güvenlğn sağlamak ve trafk kazalarını önlemek çn sürücüler trafğn akışı çersnde uyarıp doğru br şeklde yönlendrmektr [1]. Bu sebeple trafk şaretler sürücüler tarafından kolayca farkedlp tanınacak ve anlaşılacak şeklde bulundukları ortamdan ayırt edleblmesn sağlayacak şekl ve renklerde tasarlanırlar [2]. İnsanların sürüş kablyetler pskolojk ve fzksel durumuna bağlı olarak değşkenlk göstereblr. Ruhsal olarak bunalmış veya fzksel olarak sürüş anında bazı sıkıntıları olan br sürücü trafk şaretlern dkkatl okuyamayablr. Bu tp durumlarda, sürüş esnasında sürücülere trafk şaretler hakkında yararlı blgler vereblmek sürüş kaltesn artıracağı gb aynı zamanda kaza rskn de azaltmış olacaktır [3]. Trafk şaretler, sürücüler tarafından doğal çevreden kolayca ayırt edleblmes ve farkedleblmes çn farklı özel şekl ve renklerde tasarlanırlar [4]. Genel olarak tüm dünyada trafk şaretler 2 boyutlu br levhanın üçgen, dkdörtgen veya dare şekl verlerek sarı, kırmızı veya mav renkte dkkat çekc br renk le boyanması veya levhanın etrafının şert olarak çzlmes le oluşturulurlar. Ülkeden ülkeye trafk şaretlernn şeklnn ve rengnn farklı anlamlar taşımasıyla beraber bu şaretler ülkemzde aşağıdak anlamlara gelmektedrler [5]. Uyarıcı Trafk şaretler : Ekseryetle üçgen şeklnde ve kırmızı şertl Trafk Tanzm şaretler : Ekseryetle dare şeklnde ve kırmızı şertl veya mav renkte Trafk Blg şaretler : Ekseryetle dkdörtgen şeklnde mav veya sarı renkte Hızlı, gerçek zamanlı ve güvenl çalışan otomatk trafk şaret tanımlama ve sınıflandırma sstem trafk güvenlğnn ve konforunun artırılması adına büyük önem taşımaktadır. Ayrıca bu sstemler akıllı araba sürücü yardımcı özellkler açısından da önemldr. Örneğn bazı araçlarda gdlen yol le kesşen tren yolları veya başka yollar hakkında sürücüyü blglendren ve uyaran akıllı yardımcı uygulamaları kullanılmaktadır [6]. II. TRAFİK İŞARETLERİNİN SINIFLANDIRILMASI Çalışmada kullanılacak ver set, İstanbul ve Ankara sokakalarındak trafk şaretlernn farklı günlerde farklı fotoğraf makneler le çeklmesyle oluşturulmuştur. Çeklen fotoğraflardak trafk şaretler fotoğrafın merkeznde kalacak şeklde fotoğraflar kırpılmıştır. Sınıflandırma yapacak algortma lk olarak ssteme grd olarak verlen kırpılmış RGB fotoğrafları, standart boyutlara getrmektedr. Böylelkle br nev tüm grdlern boyutları standardze edlmektedr. A. Renk Sınıflandırması Trafk şaretlernn sınıflandırma şlem yapılırken öncelkle fotoğraf karesndek trafk şaretnn dışındak kalan dğer öğelerden ayırt edlmeldr çünkü fotoğraftak dğer nesneler sınıflandırma şlemnde algortmaya olumsuz tesr göstereblrler. Bu sebeple lk etapta renk fltrelemesnn yapılması planlanlanmıştır. Renk fltres yapıldığında hem trafk şaret fotoğraftak dğer öğelerden büyük ölçüde ayrılırken hem de lk sınıflandırma şlemne uğramış olacaktır. Ra fr( x, y) Rb g(x, y) = k 1 eğer Ga f g( x, y) Gb Ba fb( x, y) Bb g(x, y) = k 2 dğer durumlarda (1) /15/$ IEEE

2 1 numaralı denklem dzsnde de görüldüğü üzere trafk şaretlernn belrl renklerden oluştuğu gerçeğ göz önüne alınarak her renk çn RGB eşk değerler eğtme ver setndek fotoğraflar üzernden belrlenp trafk şaretnn fotoğraftak dğer öğelerden ayırt edlmes sağlanmıştır. Ancak fltreleme şlem sonrasında üç temel sorun meydana gelmektedr. Bunlardan lk, fotoğraf karesnn çersnde trafk şaretn rengnn fltrelendğ RGB aralıklarında başka pkseller de olablmektedr. Bu pkseller fltrelenmeden geçecek ve algortmanın lerleyen aşamalarında olumsuz etkler oluşturableceklerdr. Br dğer sorun tahrp olmuş, fzksel etkenler sebebyle reng solmuş veya üzerne lan, pankart veya poster gb trafk şaretlernn rengn şekln anlamayı güçleştrecek kağıtlar yapıştırılmış olması durumunda trafk şaret de stenen ve beklenen şeklde fltrelenemeyeblecektr. Son sorun se bazı trafk şaretlernn kırmızı, mav ve sarı reng brlkte bulundurmasıdır. Böylelkle trafk şaretnn oluşturulan 3 fltreden de geçeblen parçaları olablmektedr. Burada da çözüm olarak fltreden geçen pksel sayısına bakılmış ve hang renk ağırlıkda se trafk şaretnn rengne sayıca fazla olan o renk olarak karar verlmştr. olması muhtemel yarıçap eşk büyüklüğünden fazla br yarıçaptaysa bu fotoğraftak trafk şaret dare şeklndedr kararı verlp; dare, belrlendğ koordnatlara şekln üzerne çzdrlecektr. Böylelkle hang renk fltresnden geçtğ blnen dare şeklnde trafk şaretnn KGM standartlarında hang sınıfa at olduğuna kolaylıkla karar verlecektr. Dkdörtgen ve üçgen şeklndek trafk şaretlern sınıflandırırken se daha farklı br yöntem uygulamaktadır. Burada renk fltresnden geçrldkten sonra hang renk sınıfına at olduğuna göre uygulanacak şlem değşmektedr. Kırmızı çn üçgen bulma yöntem uygulanırken mav ve sarı renk çn se dkdörtgen bulma algortması çalışmaktadır. Ancak renk fltresnden ve kenar bulma şlemnden sonra köşe bulma algortması le köşeler bulunmaya çalışılan trafk şaretlernn pek başarılı sonuçlar vermemes üzerne burada doğrusal DVM kullanılmasına karar verlmştr. En bast tanımlamalarıyla durumu anlatacak olursak fotoğraf karesnn dört kenarından fotoğrafın çne doğru pksel pksel yaklaştığımızda kenar bulma yöntem le kenarları çıkartılmış trafk şaretne temas edlen noktaların oluşturduğu vektörler bzm x vektörlermz olmaktadır. Böylelkle fotoğraf karesnn solundan, sağından, üstünden ve altından çer doğru Şekl 2 dek gb yaklaşarak trafk şaretne lk temas edlen nokta vektörün lk elemanını, son temas edlen nokta se son elemanını oluşturmaktadır. Bu noktalardan lk ve sonuncusu dahl olmak kaydıyla eşt aralıklarla toplam 11 nokta alınıp DVM şlemne x vektörü olarak grd yapılmaktadır. Şekl 1: Trafk İşaretlernde Renk Sınıflandırması Bell br başarı oranı le fltreden geçen trafk şaretler burada renklerne göre br sınıflandırmaya tab tutulmuş da olacaklardır. Bundan sonrak aşama se trafk şaretlernn şekllerne göre sınıflandırmasının yapılması ve karayolları genel müdürlüğünün belrledğ hang sınıfa grdklernn tespt edlmesdr. B. Şekl Sınıflandırması Trafk şaretlernn sınıflandırılması yapılırken daha öncede bahsedldğ gb öncelkle hang renk olduğuna karar verlmştr. Rengne karar verlen trafk şaretnn hang şekllerde olableceğ se Şekl 1 dek dyagramdan çıkartılablmektedr. Kırmızı ve mav renk fltresnden geçen fltrelenmş fotoğrafların dare şeklnde olup olmadıklarına bakılacaktır. Bunun çn öncelkle fltrelenmş fotoğrafın canny kenar bulma algortması le denklem 2 dek gb kenarları bulunacaktır. Şekl 2: DVM çn x Değerlernn Oluşturulması [7] Trafk şaretnn büyüklüğüne göre noktalar arasındak uzaklık değşmekle beraber toplam nokta sayısı sabt ve 11 dr. Bunlardan 1,3,5,7,9 ve 11 br sınıfa (+1) atanırken, kalan dğer noktalar da dğer sınıfa (-1) atanmış ve böylece z matrs de oluşturulmuştur. Böylece bu k sınıfı brbrnden ayıran ω.x + ω 0 = 0 doğrusu Şekl 3 dek gb olacaktır. mage_red_edge = EDGE(mage_red,'canny',0.5,2); (2) Kenarları bulunan yen ver matrsnde dare şeklnde br görüntü olup olmadığını anlamak çn bu matrse Hough dönüşümü uygulanarak fotoğraf karesnn çersnde dare şeklnde br şekl varsa bulunacak ve belrlenen bu darenn boyutları standardze edlmş fotoğraf karesnn çersnde Şekl 3: Doğrusal Olarak Sınıfları Ayıran Hper Düzlem

3 ω, z ve w 0 değşkenlern 3 numaralı eştszlğ sağlamalıdır. z (x ω+ ω ) (3) Belrl kısıtları olan br değer mnmze etmek çn Lagrange kullanıp problem br optmzasyon problemne dönüştürürsek; 1 2 T L( ω) = ω α z( ω x + ω0) 1 2 (4) Renk fltrelemes aşamasından sonra hem kırmızı hem mav fltreden de geçen kısımların bulunduğu görülmektedr. Burada kırmızı renkte geçen pksel sayısının fazla olması sebebyle kırmızı renk sınıfına karar verlmştr. Renk fltrelemes aşamasından sonra lk olarak kenar bulma algortması çalışmaktadır. Lagrange denklem 4 dek gb olacaktır. Burada Lagrange denklemnn ω ve ω 0 a göre türevler alındığında; α z = 0, ω = α zx (5, 6) olarak bulunmaktadır. Bulunan bu değerler Lagrange denklemnde yerne yazıldığında se; 1 T ω0 = ω x z olacaktır. Algortmada kenar noktaları üzerndek noktaları k sınıfa ayırarak bu noktaları doğrusal olarak kye ayıran br doğru elde edlmek stenmş ve bu doğrunun üçgenn veya karenn kenarlarından br olacağı düşünülmüştür. Ancak sınıflandırmayı kolaylaştırmak çn belrlenen sınıflardak noktalar brbrlernden braz daha uzaklaştırılarak (belrl br offset verlerek) sınıflandırma kolaylaştırılmıştır. (7) Şekl 5: Canny Kenar Bulma İşlem Sonrası Görüntü Otomatk kenar bulma algortmasından sonra se Hough dönüşümü algortması yardımıyla Şekl 5 dek dare bulunarak görüntü üzerne çzdrlmştr. Kırmızı Renkl ve Dare Şeklnde Matlab ortamında α değerlerne ulaşablmek çn 8 numaralı denklemdek fonksyon kullanılmıştır. Bu fonksyon çn gerekl grdler belrlenen x ve z değerlernden türetlmştr. alfa=quadprog((h+eye(11)*0.0001),f,a,a,b,b); (8) Buradan bulunan α değerler kullanılarak ω ve ω 0 a ulaşılmıştır. Böylelkle renk fltres ve kenar bulma şlemnden geçerek gelmş görüntü üzerndek trafk şaretne at olan kenarlar da DVM kullanılarak bulunmuştur. Böylece zaten reng blnen trafk şaretnn üçgen veya dkdörtgen olduğuna da karar verlerek nha sınıflandırma yapılmıştır. Şekl 6: Kırmızı Renkl ve Dare Şeklnde Trafk İşaret - Trafk Tanzm İşaret Sonuç olarak kırmızı renkte ve dare şeklnde br trafk şaret olduğu Şekl 6 dak gb görülmektedr. III. ALGORİTMANIN MODELLENMESİ Teork olarak bahsedlen algortmanın modelleme aşamaları bu kısımda sırasıyla anlatılacaktır. Öncelkle trafk şaret bulunan fotoğraf kares Şekl 4 dek gb fltrelenr. Burada kırmızı reng, mav reng ve sarı reng geçrp dğer tüm renkler geçrmemes çn 1 numaralı denklem setndek gb her br rengn RGB değerler çn 3 ayrı aralık eğtme vers üzernden belrlenmştr. Şekl 7: Algortma Dyagramı Şekl 4: Orjnal fotoğraf ve kırmızı, mav ve sarı renk çn belrlenmş fltrelerden geçrldkten sonra çıkan fltrelenmş görüntüler Modellenen algortmanın akış dyagramı Şekl 7 de verlmştr.

4 Şekl 7 de görüldüğü üzere mav renk çn farklı br akış sözkonusudur. Mav renk gökyüzü rengnden dolayı fltrelenmekte zorlandığı çn mav renk fltres stenlen düzeyde fltreleme yapamamaktadır. Bu sebeple mav renk çn renk fltresne alternatf olarak RGB den gr renge dönüştürülen görüntüler Şekl 8 dek gb daha sonra canny kenar bulma algortmasına verlmştr. Daha sonra yne aynı şeklde Hough dönüşümü yardımıyla dare şeklnde olup olmadığına bakılmıştır. Şekl 9 dan da görüldüğü üzere trafk şaretnn her br kenarının üzernde 11 nokta belrlenerek bu noktaları brbrnden ayıran doğrular 4 adet DVM yardımıyla çzdrlmştr. Aynı algortma üçgen şeklnde trafk şaret çnde uygulanmıştır ancak bu sefer DVM lerden br tanes anlamlı sonuç vermeyecektr. Bu sebeple anlamlı sonuç vermeyen DVM (fotoğraf karesnn üst kenarından üçgene yaklaşılarak bulunan noklatar) göz ardı edlmştr. Üçgen şeklnde trafk şaret çn çıkan sonuç Şekl 10 da verlmştr. Kırmızı Renkl ve Üögen Şeklnde Şekl 10: Kırmızı Renkl ve Üçgen Şeklnde Trafk İşaret - Uyarıcı Trafk İşaret Şekl 8: Mav Renkl ve Dare Şeklnde Trafk İşaret - Trafk Tanzm İşaret Üçgen ve dkdörtgen şeklndek trafk şaretlern bulmak çn se her trafk şaretne 4 adet DVM uygulanmaktadır. Fotoğraf karesnn her br kenarından fotoğrafın merkezne doğru pksel pksel yaklaşılarak beyaz renge temas edlen noktaların koordnatlarından belrl aralıklarda seçlen 11 tanes bu DVM lern x vektörlern oluşturmaktadır. Sarı Renkl ve Dkdörtgen Şeklnde IV. SONUÇ Bu çalışmada, trafk güvenlğnn sağlanması amacıyla trafk şaretlernn sınıflandırılması çn kullanılan algortma ve yöntem teork olarak anlatılmış ve MATLAB ortamında smulasyonu yapılmıştır. Smulasyon sonucunda dare, üçgen ve dkdörtgen şeklnde şaretler renk fltrelendrmes düzgün yapılablen trafk şaretler çn yüksek br başarı oranı le belrleneblmştr. Ancak renk fltresnden geçen trafk şaret dışındak dğer pkseller algortmanın çalışma performansını etklemektedr. Bu sebeple mav renk fltres çn alternatf çözüm olarak gr ölçek kullanılmıştır. Renk fltresnden sonrak aşamada se lteratürdek alternatf yöntemlerden farklı olarak dare şeklnn belrlenmes çn Hough dönüşümü kullanılmıştır. Üçgen ve dkdörtgen şeklndek trafk şaretler çn se DVM kullanılarak şekl sınıflandırması tamamlanmıştır. Sınıflandırmalar sonucunda her br şekl ve renk çn yaklaşık %70 başarı oranında doğru sınıflandırma yapıldığı görülmüştür. Başarı elde edlemeyen trafk şaretlernn yaklaşık yarısı renk fltresnden düzgün fltreleme yapılamadığı çn doğru sonuçlar vermezken, gerye kalan kısım se trafk şaretnn şeklnn doğru belrlenememesnden kaynaklanmaktadır. V. TEŞEKKÜR Yazarlar, çalışmanın hazırlanmasında sağladıkları katkıdan ve verdkler destekden dolayı Sn. Burak Gökçe ve Sn. Mthat Perköz e teşekkür eder. Şekl 9: Sarı Renkl ve Dkdörtgen Şeklnde Trafk İşaret - Trafk Blg İşaret

5 KAYNAKÇA [1] C.Y. Fang, C.S. Fuh, P.S. Yen, S. Cherng, S.W. Chen, An Automatc Road Sgn Recognton System Based On a Computatonal Model of Human Recognton Processng, Computer Vson and Image Understandng vol.96, pp , [2] de la Escalera, A., Moreno, L.E., Salchs, M.A., Armngol, J.M., Road traffc sgn detecton and classfcaton, IEEE Transactons on Industral Electroncs, vol.44, no.6, pp , Dec [3] H. Fleyeh, Color detecton and segmentaton for road and traffc sgns, IEEE Conference on Cybernetcs and Intellgent Systems, vol.2, pp , 2004 [4] S.L. Arroyo, P.Garca-Daz, F.J.Acevedo-Rodrguez, P.Gll-Jmenez, S.Maldonado-Bascon, Traffc Sgn Classfcaton Invarant to Rotatons Usng Support Vector Machne, AVICS 04, August 2004 [5]http://www.kgm.gov.tr/Sayfalar/KGM/SteTr/Trafk/TehlkeUyarI saretler.aspx [6] B. Cyganek, Real-Tme Detecton of the Trangular and Rectangular Shape Road Sgns, AGH - Unversty of Scence and Technology, Poland [7] S.L. Arroyo, P.Gll-Jmenez, R.Maldonado-Bascon, F.Lopez-Ferreras, S.Maldonado-Bascon, Traffc Sgn Shape Classfcaton Evaluaton I: SVM Usng Dstance to Borders, ICAPR 09, 2009 [8] S.L. Arroyo, P.Gll-Jmenez, R.Maldonado-Bascon, F.Lopez-Ferreras, S.Maldonado-Bascon, Traffc Sgn Shape Classfcaton Evaluaton I: SVM Usng Dstance to Borders, ICAPR 09, 2009 [9] D. C. Cresan, U. Meer, J. Masc, and J. Schmdhuber, A commttee of neural networks for traffc sgn classfcato. IJCNN. IEEE, pp , 2011

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

2. STEGANOGRAFİ 1. GİRİŞ

2. STEGANOGRAFİ 1. GİRİŞ 1. GİRİŞ Bu çalışmada, steganograf sstemnn FPGA üzernde tasarımı ve gerçeklenmes sağlanmıştır. Esk Yunancada gzlenmş yazı anlamına gelen steganograf, blgnn görünürlüğünü gzleme blmne verlen smdr. Günümüzde

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA

STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA STANDART VE HİBRİD YAPILAR KULLANARAK YAPAY SİNİR AĞLARI İLE İMZA TANIMA Canan ŞENOL Tülay YILDIRIM Kadr Has Ünverstes, Elektronk Mühendslğ Bölümü, 3430, Cbal, Fath-İstanbul Yıldız Teknk Ünverstes, Elektronk

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

GRAFİK TABANLI ŞİFRELERİN GÜVENLİK ANALİZİ İÇİN BİR YAKLAŞIM

GRAFİK TABANLI ŞİFRELERİN GÜVENLİK ANALİZİ İÇİN BİR YAKLAŞIM Uludağ Ünverstes Mühendslk-Mmarlık Fakültes Dergs, Clt 11, Sayı 2, 2006 GRAFİK TABANLI ŞİFRELERİN GÜVENLİK ANALİZİ İÇİN BİR YAKLAŞIM Ahmet Emr DİRİK Özet: Grafk tabanlı şfreler, alfanümerk şfrelerden farklı

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:305-63X Yapı Teknolojler Elektronk Dergs 008 () - TEKNOLOJĐK ARAŞTIRMALAR Makale Başlığın Boru Hattı Etrafındak Akıma Etks Ahmet Alper ÖNER Aksaray Ünverstes, Mühendslk

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Kamuflaj Tespiti için Hiperspektral Görüntüleme Hyperspectral Imaging for Camouflage Detection

Kamuflaj Tespiti için Hiperspektral Görüntüleme Hyperspectral Imaging for Camouflage Detection Karaca A. C., Ertürk A., Güllü M. K., Elmas M., Ertürk S., Kamuflaj Tespt çn Hperspektral Görüntüleme, Clt 3, Sayı 5, Syf 35-39, Hazran 2013 SAVTEK Makales Kamuflaj Tespt çn Hperspektral Görüntüleme Hyperspectral

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : 1 : 951-957

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN DESTEK VEKTÖR MAKİNELERİ SINIFLANDIRMA TEKNİĞİ KULLANILARAK BELİRLENMESİ

BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN DESTEK VEKTÖR MAKİNELERİ SINIFLANDIRMA TEKNİĞİ KULLANILARAK BELİRLENMESİ 292 BİNALARIN YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDEN DESTEK VEKTÖR MAKİNELERİ SINIFLANDIRMA TEKNİĞİ KULLANILARAK BELİRLENMESİ Dlek Koç San 1 ve Mustafa Türker 2 1 ODTÜ, Fen Blmler Ensttüsü, Jeodez ve

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

DETERMINATION OF THE ECONOMIC DISPATCH IN ELECTRIC POWER SYSTEMS USING SIMULATED ANNEALING(SA) ALGORITHM

DETERMINATION OF THE ECONOMIC DISPATCH IN ELECTRIC POWER SYSTEMS USING SIMULATED ANNEALING(SA) ALGORITHM 5 Uluslararası İler Teknolojler Sempozyumu (IATS 09), 3-5 Mayıs 2009, Karabük, Türkye ELEKTRİK GÜÇ SİSTEMİNDE OPTİMAL YAKIT MALİYETİNİN BENZETİM TAVLAMA (BT) ALGORİTMASI İLE BELİRLENMESİ DETERMINATION

Detaylı

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar

Detaylı

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı *

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı * İMO Teknk Derg, 2013 6211-6231, Yazı 392 Şehrç Karayolu Ağlarının Sezgsel Harmon Araştırması Optmzasyon Yöntem le Ayrık Tasarımı * Hüseyn CEYLAN* Halm CEYLAN** ÖZ Bu çalışmada, şehrç ulaştırma ağlarının

Detaylı

EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering

EMG İşaretlerinin K-Ortalama Algoritması Kullanılarak Öbekleştirilmesi. EMG Signal Analysis Using K-Means Clustering KSÜ Mühendslk Blmler Dergs, (), 9 5 KSU Journal of Engneerng Scences, (), 9 EMG İşaretlernn K-Ortalama Algortması Kullanılarak Öbekleştrlmes Mücahd Günay, Ahmet ALKA, KSÜ Mühendslk-Mmarlık Fakültes Elektrk-Elektronk

Detaylı

Konveks Sınıf Modelleri Kullanarak Dijital İmgelerdeki Nesne Görüntülerinin Konumlarının Bulunması. Proje No: 109E279

Konveks Sınıf Modelleri Kullanarak Dijital İmgelerdeki Nesne Görüntülerinin Konumlarının Bulunması. Proje No: 109E279 Konveks Sınıf Modeller Kullanarak Djtal İmgelerdek Nesne Görüntülernn Konumlarının Bulunması Proje No: 109E279 Doç. Dr. Hakan Çevkalp Hüseyn Gündüz Musa Aydın Güvenç Usanmaz Onur Akyüz ŞUBAT 2013 ESKİŞEHİR

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

TEKLİF MEKTUBU SAĞLIK BAKANLIĞI_. '.. m

TEKLİF MEKTUBU SAĞLIK BAKANLIĞI_. '.. m SAĞLIK BAKANLIĞI TC Kayıt No: 133709 TURKIYE KAMU HASTANELERI KURUMU ı TRABZON ILI KAMU HASTANELERI BIRLIGI GENEL SEKRETERLIGI Kanun Eğtm Araştırma Hastanes TEKLİF MEKTUBU Sayı : 23618724 12.10.2015 Konu

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

Polinom Filtresi ile Görüntü Stabilizasyonu

Polinom Filtresi ile Görüntü Stabilizasyonu Polno Fltres le Görüntü Stablzasonu Fata Özbek, Sarp Ertürk Kocael Ünverstes Elektronk ve ab. Müendslğ Bölüü İzt, Kocael fozbek@kou.edu.tr, serturk@kou.edu.tr Özetçe Bu bldrde vdeo görüntü dznnde steneen

Detaylı

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm Resm Gazetenn 29.12.2012 tarh ve 28512 sayılı le yayınlanmıştır. TEİAŞ Türkye Elektrk İletm Anonm Şrket Bu Doküman

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi 01.01.2015 tarh ve 29223 sayılı Resm Gazetede yayımlanmıştır. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem

Detaylı

EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATILI RESMİ GAZETEDE YAYINLANMIŞTIR.

EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATILI RESMİ GAZETEDE YAYINLANMIŞTIR. EK-1 01 OCAK 2014 TARİHLİ VE 28869 SATL RESMİ GAETEDE YAYNLANMŞTR. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Destek Vektör Makineleri ile Yaramaz Elektronik Postaların Filtrelenmesi Spam e-mail Filtering Using Support Vector Machine

Destek Vektör Makineleri ile Yaramaz Elektronik Postaların Filtrelenmesi Spam e-mail Filtering Using Support Vector Machine Destek Vektör Makneler le Yaramaz Elektronk Postaların Fltrelenmes Spam e-mal Flterng Usng Support Vector Machne E. U. Küçükslle ve N. Ateş Süleman Demrel Ünverstes, Isparta/urke, ecrkucukslle@sdu.edu.tr

Detaylı

Genetik Algoritma ile İki Boyutlu Şekil Yerleştirme ÖZET

Genetik Algoritma ile İki Boyutlu Şekil Yerleştirme ÖZET Genetk Algortma le İk Boyutlu Şekl Yerleştrme Metn Özşahn 1 ve Mustafa Oral 2 1) Çukurova Ünverstes Fen Blmler Ensttüsü Endüstr Mühendslğ Bölümü, Adana, Turkey 2 Çukurova Ünverstes Blgsayar Mühendslğ Bölümü,

Detaylı

Türkiyede ki ĠĢ Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini

Türkiyede ki ĠĢ Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini Türkyede k ĠĢ Kazalarının Yapay Snr Ağları le 2025 Yılına Kadar Tahmn Hüseyn Ceylan ve Murat Avan Kırıkkale Meslek Yüksekokulu, Kırıkkale Ünverstes, Kırıkkale, 71450 Türkye. Kaman Meslek Yüksekokulu, Ah

Detaylı

TEİAŞ Türkiye Elektrik İletim Anonim Şirketi. İletim Sistemi Sistem Kullanım ve Sistem İşletim Tarifelerini Hesaplama ve Uygulama Yöntem Bildirimi

TEİAŞ Türkiye Elektrik İletim Anonim Şirketi. İletim Sistemi Sistem Kullanım ve Sistem İşletim Tarifelerini Hesaplama ve Uygulama Yöntem Bildirimi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm EK-1 TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama

Detaylı

Sinirsel Bulanık Sistemler İle Trafik Gürültüsünün Tahmini

Sinirsel Bulanık Sistemler İle Trafik Gürültüsünün Tahmini Snrsel Bulanık Sstemler İle Trafk Gürültüsünün Tahmn Ahmet Tortum Yrd. Doç. Dr.,Atatürk Ünverstes,Mühendslk Fakültes,İnşaat Bölümü,Erzurum E-posta : atortum@ataun.edu.tr Yasn Çodur Arş.Gör., Atatürk Ünverstes,Mühendslk

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI

BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI Emre Kouncu İstanbul Teknk Ünverstes Elektrk Mühendslğ ekouncu@kouncurobotc.com Osman Celan İstanbul Teknk Ünverstes Elektronk

Detaylı

Okullarda Coğrafi Bilgi Sistem Destekli Öğrenci Kayıt Otomasyon Sistemi Uygulaması: Trabzon Kenti Örneği

Okullarda Coğrafi Bilgi Sistem Destekli Öğrenci Kayıt Otomasyon Sistemi Uygulaması: Trabzon Kenti Örneği Okullarda Coğraf Blg Sstem Destekl Öğrenc Kayıt Otomasyon Sstem Uygulaması: Trabzon Kent Örneğ Volkan YILDIRIM 1, Recep NİŞANCI 2, Selçuk REİS 3 Özet Ülkemzde öğrenc veller le okul darecler, öğrenc kayıt

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

Servis Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanizması Tasarımı ve Kontrolü

Servis Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanizması Tasarımı ve Kontrolü Servs Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanzması Tasarımı ve Kontrolü Neşe Topuz, Hüseyn Burak Kurt, Pınar Boyraz, Chat Bora Yğt Makna Mühendslğ Bölümü İstanbul Teknk Ünverstes İnönü Cd. No:65,

Detaylı

PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ

PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ PARMAKİZİ RESİMLERİNİN YAPAY SİNİR AĞLARI İLE TEMİZLENMESİ VE İYİLEŞTİRİLMESİ Necla ÖZKAYA Şeref SAĞIROĞLU Blgsayar Mühendslğ Bölümü, Mühendslk Fakültes, Ercyes Ünverstes, 38039, Talas, Kayser Gaz Ünverstes,

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME (JOB SHOP SCHEDULING WITH KRILL HERD ALGORITHM) İlker GÖLCÜK

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Cemal HANİLÇİ YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI BURSA-2007 T.C. ULUDAĞ ÜNİVERSİTESİ

Detaylı

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi *

K-Ortalamalar Yöntemi ile Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelerin Belirlenmesi * İMO Teknk Derg, 2012 6037-6050, Yazı 383 K-Ortalamalar Yöntem le Yıllık Yağışların Sınıflandırılması ve Homojen Bölgelern Belrlenmes * Mahmut FIAT* Fath DİKBAŞ** Abdullah Cem KOÇ*** Mahmud GÜGÖ**** ÖZ

Detaylı

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Araştırma Makaleler TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Dr., Dokuz Eylül Ünverstes, İİBF İşletme Bölümü erhan.demrel@deu.edu.tr ÖZET Ekonomk faalyetlern

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ. SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ

MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ. SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ MOBİPA MOBİLYA TEKSTİL İNŞAAT NAKLİYE PETROL ÜRÜNLERİ SÜPERMARKET VE TuRİzM SANAYİ VE TİcARET ANONİM ŞİRKETİ 2011-2012-2013 MALİ yılına İLİşKİN YÖNETİM KURULU FAALİYET RAPORU ("Şrket") 01012011-31 ı22013

Detaylı

SİLİS DUMANI KATKILI BETONLARIN ÇARPMA DAYANIMININ YAPAY SİNİR AĞI İLE BELİRLENMESİ

SİLİS DUMANI KATKILI BETONLARIN ÇARPMA DAYANIMININ YAPAY SİNİR AĞI İLE BELİRLENMESİ ISSN:1306-3111 e-journal of New World Scences Academy 2008, Volume: 3, Number: 1 Artcle Number: A0046 NATURAL AND APPLIED SCIENCES CIVIL ENGINEERING Receved: June 2007 Accepted: December 2007 2008 www.newwsa.com

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ YAPILARI EERJİ ESASLI TASARIMI İÇİ BİR HESAP YÖTEMİ Araş. Gör. Onur MERTER Araş. Gör. Özgür BOZDAĞ Prof. Dr. Mustafa DÜZGÜ Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Fen Blmler Ensttüsü

Detaylı

BETONARME YAPI TASARIMI

BETONARME YAPI TASARIMI BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 008 GENEL BİLGİ 18 Mart 007 ve 18 Mart 008 tarhler arasında ülkemzde kaydedlen deprem etknlkler Kaynak: http://www.koer.boun.edu.tr/ssmo/map/tr/oneyear.html

Detaylı

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ders Kodu Teork Uygulama Lab. Ulusal Kred Öğretm planındak AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ön Koşullar : Grafk İletşm I ve II, Tasarım Stüdyosu I, II, III derslern almış ve başarmış

Detaylı

Sınır özniteliklerinin belirlenmesi ve adaptasyonu algoritması ve konsensüs karar verici yapılarda kullanımı

Sınır özniteliklerinin belirlenmesi ve adaptasyonu algoritması ve konsensüs karar verici yapılarda kullanımı Sınır özntelklernn belrlenmes ve adaptasyonu algortması ve konsensüs karar verc yapılarda kullanımı N. Gökhan KASAPOĞLU *, Okan K. ERSOY 2 İTÜ Elektronk ve Haberleşme Mühendslğ Bölümü, 34469 Maslak, İstanbul

Detaylı

ORTA GERİLİM ENERJİ DAĞITIM TALİ HATLARINDA ARIZA ANALİZİ

ORTA GERİLİM ENERJİ DAĞITIM TALİ HATLARINDA ARIZA ANALİZİ ORTA GERİLİM ENERJİ DAĞTM TALİ HATLARNDA ARZA ANALİZİ Yılmaz ASLAN Şebnem TÜRE 2,2 Dumlupınar Ünverstes Mühendslk Fak., Elektrk-Elektronk Müh. Bölümü, 4300, Kütahya e-posta: yaslan@dumlupnar.edu.tr 2 e-posta:

Detaylı

UYDU GÖRÜNTÜLERİNDEN KENTSEL AYRINTILARIN NESNE-TABANLI SINIFLANDIRMA YÖNTEMİYLE BELİRLENMESİ VE CBS ORTAMINDA BÜTÜNLEŞTİRİLMESİ

UYDU GÖRÜNTÜLERİNDEN KENTSEL AYRINTILARIN NESNE-TABANLI SINIFLANDIRMA YÖNTEMİYLE BELİRLENMESİ VE CBS ORTAMINDA BÜTÜNLEŞTİRİLMESİ YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ UYDU GÖRÜNTÜLERİNDEN KENTSEL AYRINTILARIN NESNE-TABANLI SINIFLANDIRMA YÖNTEMİYLE BELİRLENMESİ VE CBS ORTAMINDA BÜTÜNLEŞTİRİLMESİ Jeodez ve Fotogrametr

Detaylı

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON EVRİMEL ALGORİTMA İLE INIRLANDIRMALI DİNAMİK OPTİMİZAYON Ş. BALKU, R. BERBER Ankara Ünvetes Mühendslk Fakültes, Kmya Mühendslğ Bölümü Tandoğan, 06100 Ankara ÖZET Aktf çamur proses atıksu arıtımında kullanılan

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

DOĞRUSAL OLMAYAN DİZGELER İÇİN MODEL TEMELLİ ARIZA BULMA-YALITIMI VE ROBOT MANİPÜLATÖRLERE UYGULANMASI

DOĞRUSAL OLMAYAN DİZGELER İÇİN MODEL TEMELLİ ARIZA BULMA-YALITIMI VE ROBOT MANİPÜLATÖRLERE UYGULANMASI Gaz Ünv. Müh. Mm. Fak. Der. J. Fac. Eng. Arch. Gaz Unv. Clt 4, No, 79-94, 009 Vol 4, No, 79-94, 009 DOĞRUSAL OLMAYAN DİZGELER İÇİN MODEL TEMELLİ ARIZA BULMA-YALITIMI VE ROBOT MANİPÜLATÖRLERE UYGULANMASI

Detaylı

TELESKOPLAR AZ Destekli

TELESKOPLAR AZ Destekli TLSKOPLAR AZ Destekl Kullanma talmatları No. 1 F B C G B I c j h 1%1^ 1& No. 1a C 1& D 1$ G h No. 1b c d Z 1) 1# C D 1@ 2@ No. 1c 1$ No. 4 1$ 1! No. 1d No. 2 No. 3 J 2) 1) 2! 1% 1& 1^ I Aksesuarlar modele

Detaylı

TOPSIS Metodu Kullanılarak Kesici Takım Malzemesi Seçimi

TOPSIS Metodu Kullanılarak Kesici Takım Malzemesi Seçimi Makne Teknolojler Elektronk Dergs Clt: 9, No: 3, 2012 (35-42) Electronc Journal of Machne Technologes Vol: 9, No: 3, 2012 (35-42) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn:1304-4141 Makale

Detaylı

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi

Tuğla Duvardaki ve Tesisattaki Isı Kaybının Yapay Sinir Ağları İle Belirlenmesi Fırat Ünv. Fen ve Müh. Bl. Der. Scence and Eng. J of Fırat Unv. 18 (1), 133-141, 2006 18 (1), 133-141, 2006 Tuğla Duvardak ve Tessattak Isı Kaybının Yapay Snr Ağları İle Belrlenmes Ömer KELEŞOĞLU ve Adem

Detaylı

T.C. KEÇiÖREN BELEDİYE BAŞKANLIGI Mali Hizmetler Müdürlüğü BAŞKANLIK MAKAMINA

T.C. KEÇiÖREN BELEDİYE BAŞKANLIGI Mali Hizmetler Müdürlüğü BAŞKANLIK MAKAMINA l!l KEÇÖREN BELEDİYE BAŞKANLIGI KEÇöREN BELeDYES SA YI : M.06.6.KEç.O-31/2009KONU: Yetk Devr bo f.!200fd 6.1. BAŞKANLIK MAKAMINA Blndğ üzere O 1.01.2006 tarhnden tbaren tüm yerel yönetmlerde 31.12.2005

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

OTOMATİK PARMAKİZİ TANIMA SİSTEMLERİNDE ÖZELLİK NOKTALARININ TESPİTİNDE YAPAY SİNİR AĞLARININ KULLANILMASI

OTOMATİK PARMAKİZİ TANIMA SİSTEMLERİNDE ÖZELLİK NOKTALARININ TESPİTİNDE YAPAY SİNİR AĞLARININ KULLANILMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 007 : 13 : 1 : 911

Detaylı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı

Sera İklimlendirme Kontrolü İçin Etkin Bir Gömülü Sistem Tasarımı Sera İklmlendrme Kontrolü İçn Etkn Br Gömülü Sstem Tasarımı Nurullah Öztürk, Selçuk Ökdem, Serkan Öztürk Ercyes Ünverstes, Blgsayar Mühendslğ Bölümü, Kayser ozturk.nurullah@yahoo.com.tr,okdem@ercyes.edu.tr,

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

BİRLEŞİK DALGACIK-SİNİR AĞI MODELİ YAKLAŞIMI İLE ELEKTRİK GÜÇ SİSTEMLERİNDE ARIZA SINIFLAMA

BİRLEŞİK DALGACIK-SİNİR AĞI MODELİ YAKLAŞIMI İLE ELEKTRİK GÜÇ SİSTEMLERİNDE ARIZA SINIFLAMA BİRLEŞİK DALGACIK-SİNİR AĞI MODELİ YAKLAŞIMI İLE ELEKTRİK GÜÇ SİSTEMLERİNDE ARIZA SINIFLAMA Oben DAĞ Canbolat UÇAK, Elektrk-Elektronk Mühendslğ Bölümü Mühendslk-Mmarlk Fakültes Yedtepe Ünverstes,, Erenköy,

Detaylı

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİL İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : 5- TRİSTÖR VE TRİYAK

Detaylı

ESM-1510 DIN Ray Montajlý Sýcaklýk Kontrol Cihazý. ESM-1510 DIN Ray Montajlý Dijital, ON / OFF Sýcaklýk Kontrol Cihazý

ESM-1510 DIN Ray Montajlý Sýcaklýk Kontrol Cihazý. ESM-1510 DIN Ray Montajlý Dijital, ON / OFF Sýcaklýk Kontrol Cihazý ESM-1510 DIN Ray Montajlý Sýcaklýk Kontrol Chazý ESM-1510 DIN Ray Montajlý Djtal, ON / OFF Sýcaklýk Kontrol Chazý - 3 Djt Göstergel - TC Grþ veya, J tp Termokupl Grþ veya, K tp Termokupl Grþ veya, 2 Tell

Detaylı