İstatistik ve Olasılık

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İstatistik ve Olasılık"

Transkript

1 İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ

2 Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri merkezileştiği oktaı değeri edir? Dağılımı değişkelik durumu e ölçüdedir? soruları cevaplaabilmesi içi dağılımı karakterize ede bazı değerleri hesaplaması gerekir. Bu amaçla veri grubua ilişki yer ve dağılma ölçüleride yararlaılır. Merkezi Eğilim Ölçüleri Aritmetik Ortalama Ağırlıklı (Tartılı) Ortalama Geometrik Ortalama Harmoik Ortalama Medya (Ortaca) Mod (Tepe Değeri) Dağılım (Değişim) Ölçüleri Değişim Geişliği Varyas Stadart Sapma Varyasyo Katsayısı

3 Aritmetik Ortalama Dağılımı yerii belirlemeside kullaılır. Tek başıa ortalama terimide aritmetik ortalama alaşılır. Basit aritmetik ortalama herhagi bir kou ile ilgili gözlemleri toplamıı toplam gözlem sayısıa bölümü ile buluur. X 1, X 2, X 3,..., X gözlee örek değerlerii göstermek üzere aritmetik ortalama: X X X X... X X i i

4 Aritmetik Ortalama Aritmetik ortalamaı iki öemli özelliği vardır: 1. Verileri, aritmetik ortalamada sapmalarıı toplamı sıfıra eşittir. i1 X i i1 ( Xi X) 0 Xi X 0 Xi 0 i1 i1 i1 2. Verileri, aritmetik ortalamada sapmalarıı kareleri toplamı miimumdur. Herhagi bir değeri a ile gösterirsek ifade aşağıdaki gibi yazılabilir. i1 2 ( X X) ( X a) i i1 i 2

5 Ağırlıklı Ortalama Bazı durumlarda verileri aritmetik ortalaması souç hakkıda pek fazla açıklayıcı bilgi taşımaz. Öreği farklı krediye sahip dersler almış ola bir öğrecii başarı ortalaması hesaplaırke aritmetik ortalama ile alamsız souçlar buluur. Böylesi durumlarda verileri gözlee frekasları ile çarpılıp toplaması ve elde edile değeri toplam frekasa bölümesi ile bulua değer kullaılır. Bu işleme ağırlıklı ortalama deir. Xi gözlee i. veri, Wi i. verii gözlee ağırlığı (frekası) olmak üzere ağırlıklı ortalama: X i 1 W X i1 i W i i

6 Ağırlıklı Ortalama Örek 1: Bir öğrecii almış olduğu derslere ilişki krediler ve otlar aşağıda verilmiştir. Ders Matematik Kimya Makia Bilgisi Tekik Resim Ölçme Tekiği Kredi Not Öğrecii başarı otuu; a) Aritmetik ortalama yötemiyle hesaplayıız. b) Ağırlıklı ortalama yötemiyle hesaplayıız. c) Hagi yötemi soucu kullaılmalıdır? Nede?

7 Ağırlıklı Ortalama Çözüm 1: a) X b) X 6* 54 4* 50 2* 54 5* 51 3* c) Gözlee değerleri (öğrecii otlarıı) frekasları (kredileri) farklı olduğuda ağırlıklı ortalama kullaılmalıdır.

8 Geometrik Ortalama Özellikle eşit zama aralığı ile değişe oraları ortalamasıı hesaplamasıda (öreği, üfus artışı, faiz gibi olaylarda ortalama artış hızıı hesaplayabilmek içi) geometrik ortalama kullaılır. Geometrik ortalama: GO X1 * X2 * X3*...* X Örek 2: Akaryakıt fiyatlarıda ardışık 3 yıldaki fiyat artışı %15, %20 ve %24 olarak gerçekleşmiştir. Ortalama artış oraıı hesaplayıız. Çözüm 2: GO 3 15* 20* 24 %

9 Harmoik Ortalama Verileri terslerii ortalamasıı tersi harmoik ortalamayı verir. HO X X X i1 X 1 2 Ora şeklide türetilmiş verilerde, ora elde edilirke, d/t, eğer pay (d) sabit payda (t) değişke ise oraları ortalaması harmoik ortalama ile hesaplaır. Buu tersi durumda ise aritmetik ortalama kullaılır. Öreği, hız=yol/zama veya fiyat=para/mal şeklide ifade edile olaylarda; zamaı değişke gidile yolu sabit, alıa mal miktarıı değişke paraı sabit olması halide harmoik ortalama kullaılır. i

10 Harmoik Ortalama Örek 3: Bir sürücü 200 km lik yolu 2 saatte gitmiş ve 4 saatte dömüştür. Bu yolculukta sürücüü ortalama hızıı hesaplayıız. Çözüm 3: Hız=yol/zama Gidiş hızı=200/2=100km/s Döüş hızı=200/4=50km/s HO km / s Üç ortalama arasıda: AO GO HO ilişkisi vardır. Bütü değerleri ayı olması halide ilişki eşitlik halide gerçekleşir.

11 Medya (Ortaca) Verileri küçükte büyüğe veya büyükte küçüğe sıralaması halide ortaya düşe değer (veri sayısı tek ise) veya ortaya düşe iki değer çiftii ortalaması (veri sayısı çift ise) medya olarak adladırılır. veri sayısıı göstermek üzere; Grupladırılmış verilerde (frekas tablosuda) medya hesabı: Medya L N F b 2 * c F med L: Medya sııfıı alt sıırı N: Toplam gözlem sayısı c: Sııf aralığı (geişliği) F med : Medya sııfıı frekası F b : Medya sııfıda öceki sııfları frekas toplamı Medya ortalamaya azara uç değerlerde etkilemez veya çok az etkileir ve daha az işlem yükü getirir. Sayıla bu yararlarıa karşı ortalama gibi aalitik bir değere sahip değildir. Medyaı stadart sapması ortalamaıkide büyüktür

12 Mod (Tepe Değeri) Verileri içide e çok tekrarlaa (frekası e büyük ola) değer mod olarak adladırılır. Grupladırılmış verilerde (frekas tablosuda) mod hesabı aşağıdaki formül yardımıyla yapılmaktadır. L: Mod sııfıı alt sıırı d1: Mod sııfı frekası ile bir öceki sııf frekası arasıdaki fark d2: Mod sııfı frekası ile bir soraki sııfı frekası arasıdaki fark c: Sııf aralığı (geişliği) Mod L d d1 d 1 2 * c Frekası e yüksek olduğu sııf mod sııfı olarak adladırılır. Mod değerii alamlı olabilmesi içi gözlem sayısıı çok fazla olması gerekir. Baze veri gurubuu birde fazla modu olabilir. Bu durum, ilgili aakütlei birkaç alt grupta meyda geldiğii gösterir. mod veri grubudaki uç değerlerde etkilemez.

13 Mod (Tepe Değeri) Örek 4: Aşağıdaki verileri moduu ve medyaıı belirleyiiz Çözüm 3: Verileri küçükte büyüğe sıralayalım. 1.değer 2.değer 3.değer 4.değer 5.değer 6.değer 7.değer 8.değer 9.değer 10.değer Veri grubuda e çok tekrarlaa değer 100 olduğu içi Mod=100 Veri sayısı =10 çift

14 Örek Malzeme testide elde edile veriler aşağıdaki gibi sııfladırılmıştır. Sııf Sıırları Sııf Değeri Frekas Mod ve Medyaı hesaplayıız.

15 Dağılım Ölçüleri Yer (merkezi eğilim) ölçüleri tek başıa dağılımı karakterize etmez. Verileri yer ölçüleride uzaklık durumlarıı, yai değişkeliklerii belirtmek içi diğer bazı ölçüleri kullaılması gerekir. Verileri değişkelik durumuu ve dağılım şeklii belirlemek içi kullaıla ölçülere dağılım ölçüleri deir. İki veri grubu ortalamasıı eşit olması dağılımlarıı ayı olmasıı gerektirmez. Dağılım şeklii ve değişkeliğii karşılaştırılması dağılım ölçüleri ile belirleir. Dağılım (Değişim) Ölçüleri Değişim Geişliği Varyas Stadart Sapma Varyasyo Katsayısı

16 Değişim Geişliği Değişkeliği e basit ölçüsüdür.

17 Varyas Verileri ortalamasıda sapmalarıı büyüklüğü dağılımı değişkeliğii göstere iyi bir ölçüdür. Yaygı olarak kullaıla bu değişkelik ölçüsü varyastır. Varyası büyüklüğü veri grubudaki değişkeliği fazlalığıı ve veri grubuu dağılımıı yayvalığıı gösterir. Varyas, değişim geişliğide daha hassas bir ölçüdür. Öte yada, varyası birimi olmadığıda bazı durumlarda verileri elde edildiği birime sahip bir ölçü kullaılması daha uygu olmaktadır. Böyle bir ölçü varyası karekökü ola stadart sapmadır.

18 Stadart Sapma Dağılım ölçüsüü fiziksel alamı ola bir büyüklük şeklide ifade etmek içi varyası karekökü alıır ve bua stadart sapma deir. Örek stadart sapmasıı ve varyasıı paydasıda bulua -1 ifadesi serbestlik derecesi olarak adladırılır.

19 Varyasyo Katsayısı Verileri değişkeliğii kedi ortalamalarıa orala ifade etmek içi kullaıla bir ölçüdür. Değişim Katsayısı olarak da adladırılır. Ortalamaları birbiride farklı ola aakütleleri değişkeliklerii karşılaştırılmasıda değişim katsayısı ölçüsü kullaılmalıdır. Değişim katsayısıı büyüklüğü arttıkça isteile değerde uzaklaşıldığı söyleebilir

20 Örek Örek 5: Bir üretim hattıda kg olarak alıa ağırlık ölçümleri olarak belirlediğie göre verileri değişim geişliğii, varyasıı, stadart sapmasıı ve değişim katsayısıı hesaplayıız. Çözüm 5: DG=50-30=20 X _ ( ) ( )... ( ) 10 1 S S DK * 100 %

21 Çarpıklık ve Basıklık Çarpıklık Normal dağılımda simetrikliği bozulma derecesi çarpıklık olarak ifade edilir. Dağılım sağa doğru uzu kuyruklu ise sağa çarpık, sola doğru uzu kuyruklu ise sola çarpık olarak adladırılır. Çarpıklık katsayısı : 3 ( X ) i1 i 3 3 m 3 3 Hesap souda bulua katsayıya göre dağılımı yorumu aşağıdaki gibi yapılır:

22 Çarpıklık ve Basıklık Basıklık Normal dağılım eğrisii sivrilik ya da basıklık derecesi 4 ( X ) i1 i 4 4 m 4 4 Hesap souda bulua katsayıya göre dağılımı yorumu aşağıdaki gibi yapılır:

23 Kartiller Bir seriyi küçükte büyüğe sıraladığıda 4 eşit parçaya böle değere kartil deir. Dataları 25% i Q 1 de az Dataları 50% si Q 2 de az: Medya Dataları 75% i Q 3 de az

24 Kartiller SINIFLANDIRILMIŞ VERİLER İÇİN: Q 1 = L Q1 + f 4 f i f Q1 c Q 2 = L Q2 + Q 3 = L Q3 + 3 f 4 f i f Q3 c f 2 f i f Q2 c

25 Kartiller:Örek Alumiyum-Lityum alaşımıı bası dayaımı ile ilgili yapıla 80 deeyi souçları aşağıda verilmiştir Verileri sııfladırıp kartilleri hesaplayıız.

26 Box ve Whisker Grafiği Kutu Grafiği verileri merkezi, yayılımı şeklii ve üç değerlerii gösterir. Bu grafikte; Miimum değeri First kartili, Medyaı 3.Kartili Maksimum değeri gösterir.

27 Box ve Whisker Grafiği

28 Comparative Box Plots Descriptive Statistics Comparative box plots of a quality idex at three maufacturig plats. Commet: Plat 2 has too much variability. Plats 2 & 3 eed to raise their quality idex performace. Atatürk Uiversity

29 Gelecek dersi kousu Olasılık..

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR SAÜ. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. ORTALAMANIN TANIMI VE FAYDALARI. HASSAS ORTALAMALAR.1. Aritmetik Ortalama.. Kareli Ortalama..

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasan. ÇOMÜ, Fef, Coğrafya Bölümü, Çanakkale

COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasan. ÇOMÜ, Fef, Coğrafya Bölümü, Çanakkale COĞRAFYADA Olasılık ve Đstatistik Ders Notları Doç. Dr. Hasa ÇOMÜ, Fef, Coğrafya Bölümü, Çaakkale e-posta:tatli@comu.edu.tr 1 Giriş Doğa bilimleri ve/veya sosyal olaylarda karşılaştığımız problemleri birçoğuda,

Detaylı

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ

ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ ORMAN ENVANTERİ VE MEŞCERE ÖLÇÜMÜ Ormaı e öemli bölümüü, kapitali büyük kısmıı oluştura, ağaç serveti oluşturmaktadır. Ormada ağaç serveti deilice, var ola hacim ve buu faizi durumuda ola hacim artımı

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

İSTATİSTİKSEL FORMÜLLER VE TABLOLAR

İSTATİSTİKSEL FORMÜLLER VE TABLOLAR BAŞKENT ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İSTATİSTİKSEL FORMÜLLER VE TABLOLAR Yayıa Hazırlayalar: Kürşad Demirutku, MS N. Ca Okay, BA Ayşegül Yama F. Efe Kıvaç Bahar Muratoğlu Zuhal Yeiçeri,

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Genel Kimya ve 4. Şubeler

Genel Kimya ve 4. Şubeler Geel Kimya 101 3. ve 4. Şubeler Dr. Oza Karaltı E-mail : okaralti@etu.edu.tr Ofis: 112-2 https://sites.google.com/site/etukim101 6. Gazlar Gazları fiziksel davraışlarıı 4 özellik belirler. Sıcaklık (K),

Detaylı