Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:"

Transkript

1 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki döemde aaparaya eklemiyordu. Bileşik faiz hesabı ise, uzu vadeli(1 yılda çok) kredi işlemleride uygulaa bir metottur. Bu hesaplamada sermaye sabit kalmaz. Yai her döem souda hesaplaa faiz tutarı o döem başıda yatırıla aaparaya ekleerek bir soraki döeme ait aapara oluşturulur. Yai bir döemi baliğ değeri bir soraki döemi aaparasıdır. Böylelikle her döem elde edilecek faiz tutarı basit faizdeki gibi ayı olmayıp artarak gider. Çükü her döem elde edile faiz tutarıa, bir soraki döem de faiz işletilmektedir. Bileşik faiz uygulamasıyla, yapıla yatırım her türlü oluşabilecek riske karşı basit faize göre daha çok garati altıa alımış olur. Bileşik faiz hesaplaması belirli döemler(aylık, 2 aylık, 3 aylık, 4 aylık, 6 aylık, gibi) itibariyle yapılıyor ise bua kesikli bileşik faiz hesaplaması, çok küçük zama aralıklarıyla sürekli veya alık olarak hesaplaıyor ise bua da sürekli veya alık bileşik faiz hesaplaması deir. Bileşik faiz hesaplamalarıda kullaıla semboller basit faizdeki ile ayıdır. Temel formüller ise şöyledir: *Aaparaı kesikli bileşik faiz hesaplaması ile döem souda ulaşacağı toplam miktar(baliğ): A=a(1+t) *Aaparaı sürekli veya alık bileşik faiz hesaplaması ile döem souda ulaşacağı toplam miktar: A=a.e.t, e=2,718281

2 2 Bu kısımda çözülecek bazı sorularda matematikteki logaritma kavramıı bilimesi gerektiğide, kısaca logaritma işlemii ve öemli özelliklerii hatırlayalım: Örek 10: Yıllık %20 faiz oraı üzeride bakaya yatırıla 1000 TL i, 3. yıl souda ulaşacağı değeri basit ve bileşik faiz hesaplama yötemleriyle hesaplayarak karşılaştırıız. çözüm: t=0,20 a=1000 TL =3 yıl A=? Basit faiz hesaplama yötemi ile: A=a(1+t) 1000(1 3.0,20) A 1 A TL Bileşik faiz hesaplama yötemi ile: A a(1 t) A (1 0,20) 3 A TL A1 2 A TL fark, 3 yıl içeriside faizi kazadırdığı faizdir. Yai, aapara faizii dışıda faizi faizidir. Örek 11: Bir yatırımcı TL sii yıllık %30 faiz oraı üzeride 5 yıl içi bileşik faize yatırmıştır. Yatırımcıı vade souda elie geçecek para e kadardır? çözüm: a=28500 TL =5 yıl t=0,30 A=? A=a(1+t) A 28500(1 0,3) 5 =28500(1,3) 5 =105818,505 TL buluur.

3 3 Örek : Bir miktar para yıllık %25 faiz oraı ile bileşik faiz işlemi gördüğüde 2 yıl sora faizi ile birlikte 5625 TL ye ulaştığıa göre bakada işlem göre aapara kaç TL dir? çözüm: t=0,25 =2 yıl A=5625 TL a=? A=a(1+t) 5625 a(1 0,25) a (1,25) TL buluur. Örek 13: Yıllık %50 bileşik faiz vere bir bakaya yatırıla belli miktar para, kaç yıl sora 10 katıa ulaşır?(log 1,5=0,176) çözüm: t=0,50 A=10a =? A=a(1+t) 10a a(1 0,5) 10 (1,5) So bulduğumuz eşitlikte, üs olarak yer ala değerii bulmak içi eşitliği her iki tarafıa logaritma foksiyouu uygulayalım: log 10=log(1,5) log log(1,5) 1.0, ,7 yıl buluur. 0,176

4 4 Örek 14: Bakaya yatırıla TL, 4 yılda bileşik faiz uygulaarak TL ye ulaşıyor. Bua göre bakaı uyguladığı yıllık faiz oraı edir? çözüm: a=30000 TL =4 yıl A= TL t=? A=a(1+t) (1 t) 4 (1 t) t=2 t=1 %100 faiz oraı buluur. DÖNEMSEL FAİZLENDİRME: Döemsel faizledirme, bir devrede(1 yıl olabilir) sabit aapara içi birde fazla eşit aralıklarla faiz hesaplaması yapılması işlemidir. Bakalar tarafıda daha öceki yıllarda tasarruf mevduatlarıa uygulamakla birlikte güümüzde daha çok, özellikle orta ve küçük ölçekli işletmeleri desteklemek amacı ile yatırımcılara verile uzu vadeli, düşük faizli kredileri faizledirilmeside kullaılmaktadır. Vade uzu, faiz düşük olduğuda ve ayrıca işletme riskli görülüyorsa, bakalar verdikleri kredii faiz ödemelerii döemsel olarak almak isterler. Bakalar, kısa vadeli baka kredilerii döemsel olarak ödemeside müşteriyi desteklemek ve ödemeleri cazip hale getirmek içi efektif faiz oraıı kullamayı tercih etmektedirler. Ayrıca döemsel faizledirme, para ve sermaye piyasaları kapsamıda ola kurum ve kuruluşlarca da kullaılmaktadır. Öreği, tahvil(=devlet ve şirketler tarafıda çıkarıla faizli borç seedi) sahiplerie yapıla ödemeler de döemseldir. Faiz ödemelerii döemleri ve faiz oraları tahviller üzeride yazılıdır. Faiz ödemeleri belirli eşit aralıklarla yapılır. Tahvili vadesi dolduğuda tahvil sahibie aapara da ödeir. Tahvilleri faiz ödemeleri döemsel faizledirme işlemlerie güzel bir örektir. Acak tahvilleri çeşitleri buluduğuda ve farklı ödeme yötemleri olduğuda burada bu kısımlarıyla

5 5 ilgilemeyeceğiz. Biz sadece dersimizde kullaacağımız kısmıa ve özellikle de 1 yıl içide 3, 4, 6 ay gibi aralıklarla yapıla faiz ödemelerie değieceğiz. Not 2: Bu kısımda yapacağımız işlemler içi şu şekilde bir özet bilgi verebiliriz: Bileşik faiz hesabıyla ilgili problemlerde eğer faizledirme devresi, 1 yılda daha kısa bir süre veya süreleri içeriyorsa ve faiz oraı yıllık olarak verilmiş ise; t faiz oraı ve döem sayısı düzeleerek birbirie uygu hale getirilmelidir. Örek 15: Bir şirket TL sii her 3 ayda bir faizledirmek üzere yıllık %56 faiz oraı üzeride 2 yıllığıa bakaya yatırıyor. Bua göre 2 yılı souda şirketi elie geçecek toplam para miktarı e kadardır? çözüm: a=60000 TL A=? 3 ayda bir faizledirme olduğuda, 1 yıldaki döem sayısı: 4 tür. Para bakada 3 2 yıl kalacağı içi: Faizledirme döem sayısı: =2.4=8 olur. 1 yıldaki döem sayısı 4 olduğuda, yıllık faiz oraı 4 e bölüerek döemlik faiz oraı buluur. 0,56 Döemlik Faiz Oraı: t = % 14 4 A=a(1+t) A 60000(1 0,14) 8 = 60000(1,14) ,19 TL buluur.

6 6 Örek 16: Bir tasarruf sahibi 3 yıl vadeli mekul kıymet almıştır. Mekul kıymet üzeride faiz ödemelerii 6 ayda bir yapılacağı ve faiz oraıı %72 olduğu belirtilmiştir. Vade souda tasarruf sahibii aapara ile birlikte elie geçecek miktar TL olduğua göre tasarruf sahibii mekul kıymete bağladığı aaparası e kadardır? çözüm: =2.3=6 0,72 t= % 36 2 A= TL a=? A=a(1+t) a(1 0,36) a 6 (1,36) a 24654,21 TL buluur. Örek 17: TL yıllık % faiz oraı üzeride 5 yıl süre ile: a)1 er yıllık b)6 şar aylık c)3 er aylık d)1 er aylık e)1 er gülük f) alık döemler kullaılarak bileşik faize verilirse kaç TL ye ulaşır? çözüm: a=10000 TL, t=0,, =5 yıl, A=? t 0, a) A a(1 t) 5 5 A 10000(1 0,)

7 7 =10000(1,) ,42 TL 0, t 0,06 b) 2 A a(1 t) A 10000(1 0,06) (1,06) ,48 TL 0, t 0,03 c) 4 A a(1 t) A 10000(1 0,03) 20 =10000(1,03) ,11 TL d) 0, t 0, A a(1 t) A 10000(1 0,01) 60 =10000(1,01) ,97 TL 0, t 0,00033 e) 360 A a(1 t) A 10000(1 0,00033) 1800

8 8 =10000(1,00033) ,41 TL t 0, f) A ae 5 t A e 5.0, =10000.e 0, ,19 TL buluur. TEORİK FAİZ: Bu kouda söz sahibi ola bazı teorik yaklaşımcılar; faiz tutarı, ister gerçek ister pratik(ticarî) faiz metotlarıa göre hesaplamış olsu, her iki metodu da hatalı olduğuu ileri sürmektedirler. Olara göre t faiz oraıı katıldığı bir oratı yoluyla a kapitali içi süresie göre hesaplaa faiz tutarı ola F i devre souda ele geçmesi gerekir. Oysa, uygulamada faiz tutarı ola F, a kapitali ile birlikte sürei souda tahsil edilmektedir. Olara göre söz kousu hataı ortada kalkması içi, kapital sahibi sürei souda kapitalii geri alarak, faiz tutarıı alabilmek içi devre souu beklemelidir. Faiz tutarı kapitalle birlikte alııca kapitali kullaa kişi, olması gerekede daha fazla faiz ödemek zoruda kalmaktadır. Bu durumu daha alaşılır kılmak içi bir sayısal örek verelim: Bir kapital sahibi 1000 TL ola aaparasıı, %20 faiz oraı üzeride 1 yıllığıa faize vermiş olsu. Bu durumda: 1000 TL i 1 yıllık faiz tutarı: F= ,20=200 TL elde edilir. Kapital sahibi 1000 TL sii 1 yıllığıa bir defada faize vermek yerie 6 aylık sürelere göre iki defada da faize verebilirdi. Bu durumda:

9 , TL i ilk 6 aylık faiz tutarı: F= 100TL İlk 6 ay souda aaparaı ulaştığı değer: =1100 TL , TL i soraki 6 aylık faiz tutarı: F= 110TL 1 yıl souda elde edilecek faiz tutarları toplamı: =210 TL olur. Halbuki faiz tutarı sürei souda değil de, devre souda alımış olsaydı, 1000 TL i %20 de bir yıl süreyle faize verildiği durumda elde edilecek faiz tutarı ile 6 şar aylık süreleri değerledirerek 1 yıllığıa verilmesi durumuda elde edilecek faiz tutarı ayı olacak, farklı bir souç ortaya çıkmayacaktı.(süre bitimide faiz tutarı alıamayacağı içi aapara ayı biçimde kullaılmış olacağıda.) Faiz tutarıı devrei souda değil de, sürei souda alıması edeiyle ortaya çıka fark, pratik veya gerçek faizi hatasıı göstermektedir. Bu hata, süre souda hesaplaa faiz tutarıı devre soua kadar ola faizie eşittir. Hataı giderilmesi içi süresie göre hesaplaa faiz tutarıda F i devre soua kadar ola faizii düşülmesi veya F i devre souda ele geçmesi gerekir. Söz kousu hataya yol açmada hesaplaa faize teorik faiz deir. Teorik Faiz= F ' =F F.(1 ).t F ' =at at(1 )t F ' =at1 (1 )t Örek 18:30000 TL i %15 te 8 aylık teorik faiz tutarı kaç TL dir? çözüm: at. 1 (1 ).t F ' =

10 10 ' ,15 8 F 1 1.0,15 F ' =2850 TL buluur. PRATİK FAİZ İLE GERÇEK FAİZ ARASINDAKİ FARK: Devre yıl olarak seçilir ve süre gü birimide ifade edilirse, pratik faiz tutarı ve gerçek faiz tutarı arasıda bir fark olduğu görülür. Bu fark(d 1 ): Pratik Faiz Formülü: F 1 at 360 Gerçek Faiz Formülü: F 2 at 365 olarak alıırsa: d 1 = F1 F2 at 360 at 365 d 5at şeklidedir. Örek 19: TL i yıllık %5 te, 6 aylık pratik ve teorik faiz tutarları arasıdaki fark kaç TL dir? çözüm: d 2 =F F ' d F F F(1 )t 2 d 2 = F(1 )t

11 ,05 6 d 2 = (1 )0, 05=30 TL olarak buluur. Aapara(a) ve faiz oraı(t) sabit kalmak üzere, 1 yılda az ola her türlü süreye() karşılık buluacak e büyük fark 30 TL dir., 6 ayda(yarım devrede) uzaklaştıkça, d 2 küçülür. NOMİNAL FAİZ ORANI VE EFEKTİF FAİZ ORANI: Eflasyo, paraı alım gücüü düşmesi olarak taımlaabilir. Bakaları krediler içi belirli vadelere göre açıkladıkları faiz oraları omial faiz oralarıdır. Nomial faiz oraıa göre elde edilecek faiz tutarıı eflasyou etkisi dışıda kala kısmı da reel faiz oraıı belirler. Öreği, paramızı bakaya 1 yıl süre ile %40 faiz oraı üzeride mevduat hesabıa yatırmış olsak, paramızı %40 ı 1 yıl souda alacağımız omial faiz tutarıdır. Varsayalım ki, bir yılı souda yıllık eflasyo %40 seviyeside gerçekleşmiş olsu. Bu durumda reel kazacımız sıfır olur. Yai reel faiz oraı %0 dır. Bakalar faiz oralarıı yıllık olarak belirlemektedir. Öreği; 1 aylık mevduata %60 faiz oraı belirlemiş ise aylık mevduata verile gerçek faiz; %60:=%5 olur. 3 aylık mevduata %36 faiz oraı belirlemiş ise 3 aylık mevduata verile faiz, 1 yılda 4 tae 3 aylık döem olduğuda; %36:4=%9 olur. 6 aylık mevduata %48 faiz oraı belirlemiş ise 6 aylık mevduata verile faiz, 1 yılda 2 tae 6 aylık döem olduğuda; %48:2=%24

12 olur. Bu öreklerde kulladığımız yıllık %60, %36 ve %48 faiz oraları, yıllık omial faiz oralarıdır. Efektif faiz oraı(e.f.o) ise; aylık, 3 aylık, 4 aylık, 6 aylık döemlerle faize yatırıla paraı yıllık bileşik olarak getiri oraıdır. Öreği; aylık mevduata yıllık %84 omial faiz oraı belirlemiş ise efektif faiz oraı şu şekilde buluur: Aylık faiz getirisi: %84:=%7(döemlik faiz oraı) Her ay %7 faiz oraı ile aylık bileşik getirisi: (1 0, 07) 1 1, 25 %5 olur. Bazı bakalar, durumuu riskli gördükleri işletmeler kedileride kredi almak istedikleride, bu işletmeleri belli miktar paralarıı bakada bırakmalarıı (bir güvece olarak) zorulu kılarlar. Bu durumda, işletmei reel alamda kullaabileceği kredi miktarı, bakaı işletmeye açmış olduğu, görüe kredi miktarıda daha küçüktür. Bakaları krediler içi belirli vadelere göre açıkladıkları omial faiz oraları, işletmei eğer bakada alıkoulmuş bir miktar parası varsa düşebilecektir. Bu durumda E.F.O, omial faiz oraıda daha düşük olacaktır. Fakat bakaları cari hesap sözleşmelerie göre, her üç ayda bir gerçekleştirdikleri faizleri almaları ya da aa borca eklemeleri, bakaları yıllık efektif faiz oralarıı, açıklaa oraları üstüe çıkarmaktadır. Bakalarda E.F.O, faiz ödeme döemlerii 1 yılda kısa olması durumuda: Yıllık Döem Sayısı E.F.O = 1+Yıllık Nomial Faiz Ora 1 Yıllık Döem Sayısı veya Yıllık Döem Sayısı E.F.O = 1+Döemlik Faiz Oraı 1

13 13 formülleri ile hesaplaır. Örek 20: 6 aylık mevduatı faiz oraı %60 olduğua göre 6 ayda mevduata verile yıllık efektif faiz oraı edir? çözüm: Yıllık Döem Sayısı= 2 6 Bir yılda 2 tae 6 aylık döem olduğuda: 0,60 Döemlik Faiz Oraı= % 30 dur. Burada: 2 Yıllık Döem Sayısı E.F.O = 1+Döemlik Faiz Oraı 1 = (1+0,30) 2 1 = 0,69 O halde, 6 ayda mevduata verile yıllık efektif faiz oraı %69 olarak buluur. Örek 21: 3 aylık mevduatı faiz oraı %40 olduğua göre 3 ayda mevduata verile yıllık E.F.O e kadardır? çözüm: Yıllık Döem Sayısı= 4 3 Bir yılda 4 tae 3 aylık döem olduğuda:

14 14 0,40 Döemlik Faiz Oraı= % 10 dur. Burada: 4 Yıllık Döem Sayısı E.F.O = 1+Döemlik Faiz Oraı 1 =(1+0,10) 4 1 =0,4641 0, 46 %46 buluur.

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

Faiz, parası kullanılan kişi veya kurum için bir kazanç iken, parayı kullanan kişi veya kurum için bir masraftır.

Faiz, parası kullanılan kişi veya kurum için bir kazanç iken, parayı kullanan kişi veya kurum için bir masraftır. 1 FAİZ HESAPLARI: Başkalarına ilişkin bir paranın, belirli bir süre için, bir işte kullanılması karşılığında para sahibine verilen ücrete faiz tutarı veya kısaca faiz denir. Dolayısıyla faiz, kullanılan

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009 http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 SORU - 1 31.12.2009 itibariyle, AIC Şirketi'nin çıkarılmış sermayesi 750.000.000 TL olup şirket sermayesini temsil eden

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Zaman tercihinden dolayı paranın zaman değeri her zaman söz konusudur. Parayı şimdi yada gelecekte almanın tercihi hangisi daha avantajlı ise ona

Zaman tercihinden dolayı paranın zaman değeri her zaman söz konusudur. Parayı şimdi yada gelecekte almanın tercihi hangisi daha avantajlı ise ona Zaman tercihinden dolayı paranın zaman değeri her zaman söz konusudur. Parayı şimdi yada gelecekte almanın tercihi hangisi daha avantajlı ise ona göre yapılır. Bugün paranızı harcamayıp gelecekte harcamak

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL.

TEMEL BANKACILIK HİZMETLERİ TALEP ve BİLGİ FORMU TAHSİLAT PERİYODU 15,-TL. 3 er aylık. 5 TL Talep başına 5 TL. İşlem Başına 5-TL. TEMEL BANKACILIK HİZMEERİ TALEP ve BİLGİ FORMU ÜRÜNÜN /TANIMI : Katılım Fou (/Yabacı Para) Süresi (Vadesi) : Süresiz TAHSİL EDİLECEK ÜCRET, MASRAF VE KOMİSYON; Özel Cari Hesap İşletim Ücreti Hesap Özeti

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto

Finans Matematiği. Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Finans Matematiği Paranın zaman değeri Faiz kavramı Gelecek ve Şimdiki Değer Anüiteler İskonto Paranın Zaman Değeri Finansın temel prensibi Elimizde bugün bulunan 1000 YTL bundan bir yıl sonra elimize

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... Tahvil Değerleme. İşletme Finansının Temelleri

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... Tahvil Değerleme. İşletme Finansının Temelleri İşletme Finansının Temelleri Bölüm 4 Tahvil Değerleme İşlenecek Konular Tahvil Piyasası Faiz Oranları ve Tahvil Fiyatları Cari Getiri ve Vadeye Kadar Getiri Tahvil Getiri Oranları Getiri Eğrisi Şirket

Detaylı

Tüm hakları SEGEM tarafına aittir. İzinsiz kopyalanamaz veya çoğaltılamaz.

Tüm hakları SEGEM tarafına aittir. İzinsiz kopyalanamaz veya çoğaltılamaz. FİNANSAL MATEMATİK SINAV SORULARI WEB SORU 1 Bir banka kredi kartı gecikmelerinde yıllık %14,5 faiz oranı ile aylık faizlendirme tahakkuk etmektedir. Bu tahakkukta bankanın yıllık etkin faiz oranı (%)

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... 3/21/2013. Tahvil Değerleme. İşletme Finansının Temelleri

Bölüm 4. Tahviller. Tahvil Fiyatlaması BD = + + + ... 3/21/2013. Tahvil Değerleme. İşletme Finansının Temelleri İşletme Finansının Temelleri Bölüm 4 Tahvil Değerleme İşlenecek Konular Tahvil Piyasası Faiz Oranları ve Tahvil Fiyatları Cari Getiri ve Vadeye Kadar Getiri Tahvil Getiri Oranları Getiri Eğrisi Şirket

Detaylı

Güncellenmiş Faiz Dersi

Güncellenmiş Faiz Dersi Güncellenmiş Faiz Dersi Faiz Nedir Nasıl Hesaplanır? Faiz Nedir? Piyasa açısından bakarsak faizi, tasarruf sahibinin, tasarrufunu, ihtiyacı olana belirli süre için kullandırmasının karşılığı olarak aldığı

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

FİNANSMAN MATEMATİĞİ

FİNANSMAN MATEMATİĞİ FİNANSMAN MATEMATİĞİ Serbest piyasa ekonomisinde, sermayeyi borç alan borç aldığı sermayenin kirasını (faizini) öder. Yatırımcı açısından faiz yatırdığı paranın geliridir. Başlangıçta yatırılan para ise

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

FİNANSAL HESAPLAMALAR

FİNANSAL HESAPLAMALAR FİNANSAL HESAPLAMALAR Finansal değerlendirmelerin tutarlı ve karşılaştırmalı olabilmesinin yanı sıra kullanılan kaynakların maliyet, yapılan yatırımların alternatif getiri analizlerini yapabilmek amacıyla;

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır.

1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır. Örnekler 1) Bir kişi her ay 8000 lira taksit almak üzere 35 ay aylık % 7 bileşik faizle bir buzdolabı almıştır. a) Buzdolabı 35 ay sonra alınacak olsa kaç liraya alınabilir? b) Buzdolabının bugünkü peşin

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

2017/2. Dönem Yeminli Mali Müşavirlik Sınavı Finansal Yönetim 4 Temmuz 2017 Salı (Sınav Süresi 2 Saat)

2017/2. Dönem Yeminli Mali Müşavirlik Sınavı Finansal Yönetim 4 Temmuz 2017 Salı (Sınav Süresi 2 Saat) 2017/2. Dönem Yeminli Mali Müşavirlik Sınavı Finansal Yönetim Temmuz 2017 Salı 18.00 (Sınav Süresi 2 Saat) SORULAR Soru 1 : (20 Puan) Bir işletmenin; faiz ve vergi öncesi kârlarındaki % oranındaki bir

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Treçevski Aeta Gatsovska Naditsa İvaovska İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF III İKTİSAT - HUKUK VE TİCARET MESLEĞİ TİCARET VE PAZARLAMA TEKNİSYENİ Deetleyeler:

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

TAHVİL DEĞERLEMESİ. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Tahvil Değerlemesi

TAHVİL DEĞERLEMESİ. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Tahvil Değerlemesi TAHVİL DEĞERLEMESİ 1 Giriş İşlenecek ana başlıkları sıralarsak: Tahvillerin özellikleri Tahvilin piyasa fiyatının hesaplanması Tahvillerde fiyat ve piyasa faizi ilişkisi Vadeye kadarki getirinin hesaplanması

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK KAPAK KONUSU Kırsal Kalkıma içi IPARD Programı da Sektöre BÜYÜK DESTEK Kırsal Kalkıma (IPARD) Programı Kırmızı Et Üretimi ve Et Ürülerii İşlemesi ve Pazarlaması alalarıda gerçekleştirilecek yatırımları

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Günlük Bülten. 31 Ocak 2013. Turizm gelirleri 2012 yılında %1.8 arttı. HSBC Takipteki Şirketler 4Ç 2012 Finansal Tahminleri

Günlük Bülten. 31 Ocak 2013. Turizm gelirleri 2012 yılında %1.8 arttı. HSBC Takipteki Şirketler 4Ç 2012 Finansal Tahminleri 31 Ocak 2013 Perşembe Gülük Bülte İMKB verileri İMKB 100 78,982.9 Piyasa Değeri-TÜM ($m) 315,056.7 Halka Açık Piyasa Değeri-TÜM ($m) 90,359.1 Gülük İşlem Hacmi-TÜM ($m) 2,603.21 Turizm gelirleri 2012 yılıda

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

BÖLÜM 1 BASİT İÇ FAİZ

BÖLÜM 1 BASİT İÇ FAİZ BÖLÜM 1 BASİT İÇ FAİZ 1-) Ne kadar para 100 günde aylık %3 faiz oranından 200 TL faiz getirir? 2-) Yıllık %40 faiz üzerinden 9 ayda 500 TL faiz getiren anapara kaç TL dir? 3-) Bir anapara aylık yüzde kaç

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur.

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur. 1 KAPİTAL OLUŞTURULMASI Kapital oluşturulması, bir kredi kurumuna belli tarihlerde, belli miktarlarda yatırılan paralarla, belli bir süre sonunda belli büyüklükte bir para meydana getirme işlemidir. Küçük

Detaylı

FİNANSAL MATEMATİK. Oğuzhan ın 10 yıllık dönem müddetince yaptığı toplam ödeme aşağıdaki seçeneklerden hangisinde verilmektedir?

FİNANSAL MATEMATİK. Oğuzhan ın 10 yıllık dönem müddetince yaptığı toplam ödeme aşağıdaki seçeneklerden hangisinde verilmektedir? FİNANSAL MATEMATİK SORU 1 Oğuzhan 10 yıl süreli 10.000 TL lik yıllık %9 efektif faiz ile bir borç almaktadır. Her yılın sonunda, borca ilişkin faizi ve %8 efektif faiz lik borç ödeme fonuna ilişkin ana

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s - 18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte

Detaylı

İçindekiler I. BÖLÜM GAYRİMENKUL DEĞERLEMESİ. 1. KAVRAM ve TERİMLER... 1

İçindekiler I. BÖLÜM GAYRİMENKUL DEĞERLEMESİ. 1. KAVRAM ve TERİMLER... 1 İçindekiler I. BÖLÜM GAYRİMENKUL DEĞERLEMESİ 1. KAVRAM ve TERİMLER... 1 2. GAYRİMENKULDE DEĞERLEME KAVRAMI... 11 2.1. DEĞERLEMEYE İLİŞKİN EKONOMİK KAVRAMLAR... 11 2.2. DEĞER KAVRAMI ve ÇEŞİTLERİ... 12

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ 7 Ağustos 011 CUMARTESİ Resmî Gazete Sayı : 8038 TEBLİĞ Bilgi Tekolojileri ve ĠletiĢim Kurumuda: SABĠT TELEFON HĠZMETĠNE ĠLĠġKĠN HĠZMET KALĠTESĠ TEBLĠĞĠ BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayaak ve Taımlar Amaç

Detaylı

102 BANKALAR HESABI TL MEVDUAT 642. FAİZ GELİRİ

102 BANKALAR HESABI TL MEVDUAT 642. FAİZ GELİRİ 102 BANKALAR HESABI TL MEVDUAT 642. FAİZ GELİRİ DÖNEM İÇİ X işletmesi 01.02.2014 tarihinde A Bankasında 100 000 TL lik 6 ay vadeli %12 faiz oranlı vadeli mevduat hesabı açtırmıştır. İKİ DÖNEM ARASI tarihinde

Detaylı

FİNANSAL MATEMATİK SINAV SORULARI WEB EKİM 2017

FİNANSAL MATEMATİK SINAV SORULARI WEB EKİM 2017 FİNANSAL MATEMATİK SINAV SORULARI WEB EKİM 2017 SORU 1: Şu anda 25 yaşında olan bir sigortalı, 65 yaşına dek her üç yılın sonunda 4.000 TL büyüklüğünde ödemeler yapacağı özel bir yatırım fonu almayı planlamaktadır.

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Paranın Zaman Değeri Problemleri. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Paranın Zaman Değeri Problemleri

Paranın Zaman Değeri Problemleri. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Paranın Zaman Değeri Problemleri Bahar, 2016-2017 1 8. Getiri hesaplama Önünüze bugün yatıracağınız 4.000 TL karşılığında size 8 yıl sonunda 10.000 TL getirecek bir yatırım imkanı geliyor. Bu yatırımın yıllık getirisi ne kadardır? Cevap:%12,14

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Joural of Research i Educatio ad Teachig OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Yard.Doç.Dr. Tüli Malkoç Marmara Üiversitesi

Detaylı

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ ZKÜ Sosyal Bilimler Dergisi, Cilt 3, Sayı 5, 2007, ss. 7-87. TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ Doç.Dr. Gülsüm AKALIN Marmara Üiversitesi İİBF İktisat Bölümü gulsum@marmara.edu.tr Öğr.Gör.

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

1. Vize Sınavına Hazırlık Soruları. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Hazırlık Soruları

1. Vize Sınavına Hazırlık Soruları. Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Hazırlık Soruları 1. Vize Sınavına Hazırlık Soruları Bahar, 2016-2017 1 1.Aylık $800 tutarında kredi ödemelerini önümüzdeki 30 yıl boyunca yapabileceğinizi düşünüyorsunuz. Nominal faiz oranı % 24 dür. Eğer toplam birikiminiz

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

TĐCARĐ MMATEMATĐK - 5. Basit Faiz

TĐCARĐ MMATEMATĐK - 5. Basit Faiz 5.3.ÇÖZÜMLÜ ÖRNEKLER: TĐCARĐ MMATEMATĐK - 5. Basit Faiz Örnek 5.3.1:Bir adam 75.000 YTL sini yıllık %60 faiz oranı üzerinden 5 aylığına bir bankaya yatırıyor.vade sonunda adamın elde edeceği faiz tutarını

Detaylı

Günlük Bülten. 06 Şubat 2013. TÜFE bazlı reel efektif döviz kuru endeksi Ocak ayında 120.16'ya yükseldi

Günlük Bülten. 06 Şubat 2013. TÜFE bazlı reel efektif döviz kuru endeksi Ocak ayında 120.16'ya yükseldi 06 Şubat 2013 Çarşamba Gülük Bülte İMKB verileri İMKB 100 80,309.9 Piyasa Değeri-TÜM ($m) 321,722.1 Halka Açık Piyasa Değeri-TÜM ($m) 92,241.7 Gülük İşlem Hacmi-TÜM ($m) 1,673.26 Yurtdışı piyasalar Borsalar

Detaylı

Tahvil Yatırımında Risk Anapara ve Faizin Ödenmeme Riski

Tahvil Yatırımında Risk Anapara ve Faizin Ödenmeme Riski Tahvil Değerleme Tahvil Yatırımında Risk Anapara ve Faizin Ödenmeme Riski Tahvili çıkaran kuruluş, vadesinde anapara ve faizi ödeyeceğini taahhüt etmesine rağmen finansal durumunda ortaya çıkabilecek bir

Detaylı

TEOG 2016 FEN SORULARI FACEBOOK GRUBU

TEOG 2016 FEN SORULARI FACEBOOK GRUBU 1) Calıları kedilerie bezeye yei bireyler meydaa getirmesie üreme deir. Calılarda eşeyli ve eşeysiz olmak üzere iki çeşit üreme görülür. Hücrei yapısıda bulua kalıtsal madde, üreme olayıı e temel kavramıdır.

Detaylı

BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI. Hayat ve Emeklilik Satış Departmanı 2013

BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI. Hayat ve Emeklilik Satış Departmanı 2013 BİREYSEL EMEKLİLİK PLAN VE FON AÇIKLAMALARI 1 Bireysel Emeklilik - Türkiye 30.06.2011 itibarı ile emeklilik fonlarının türe göre pazar payları Türe Göre Pazar Payı (%) Kamu İç Borçlanma (TL) Dengeli (Esnek

Detaylı