Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri"

Transkript

1 uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ 10 ASIM 2017

2 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki geçe sürei 1/λ ortalamalı, birimleri hizmet sürelerii ise 1/µ ortalamalı üstel dağılıma sahip olduğu düşüülmektedir. Bu kuyruk sistemide servis kaalı olup, kapasitei N gibi solu birim ile sıırladırıldığı, birimleri kayağıı da sosuz olduğu düşüülmektedir. Bu tür kapasiteli sistemlerde, N +1. veya daha soraki birimler sistemde hizmet görmede ayrılırlar. Böyle bir sıra bekleme sistemii "t" aıda gözlediğimizi düşüelim."t" zamaıda, bu sistemde > 0 sayıda birim müşteri) buluması olasılığı P t) ile ilgileeceğiz. Buu içi M/M/1/ / sistemii taıtırke elde edile eşitlik 7) yi kullaacağız. Sistemde birim olması olayı, aşağıdaki 4 durum ile açıklaabilir: 1. 0 durumu 0 λp 0 + µp 1 P 1 P 0 59) 2. [1, 1 durumu 0 λ + µ)p + λp )µP +1 60) 3. [, N 1 durumu 0 λ + µ)p + λp 1 + µp +1 61) 95

3 4. N durumu 0 µp N + λp N 1 62) Şimdi, 59), 60) ve 61) deklemleri dikkate alıırsa, yielemeli adımlar ile P! P 0, 0, 1, 2,, 63) ifadesi elde edilir. 61) ve 62) deklemleride ise P! P 0, + 1, + 2,, N 64) elde edilir. Şimdi P 0 ifadesii e olduğuu bulalım; P 1 olduğu düşücesi ile, 1 P + [ 1 P [ 1 [ 1 P 0! + N! + N!! + 1! [ 1 [ 1 P 0! ) ) N +1 1! + 1! 1 ) N ! +! 65) biçimide elde edilir. **NOT: Bu kuyruk sistemide 1 olabilir. Artık, M/M//N/ sistemii karakteristiklerii bulabiliriz. 96

4 6.1 M/M//N/ sistemi içi kuyrukta olması beklee birim sayısı Bu sistemde kuyruk oluşabilmesi içi bir birimi hizmet alırke, sisteme giriş yapa birimleri belirli bir düzeek ile dizilmeleri gerekir, yai +1 durumuda sistemde kuyruk oluşur. Bua göre, L q +1 P 0 +1! P 0 +1! P 0 +1! ) P 0 )! )P P 0! +1 N ) 1 P 0 +1 d N r )! dr r ) r r N +1 d 1 r dr r 1 N + 1)r N + N )r N +1 ) 1 r) 2 r P 0 +1 )N 1 N + 1) + N ) ) 2 1)! [ P ) ) P N N ) N + 1) N ) ) N +1) 66) eşitliği elde edilir. 97

5 6.2 M/M//N/ sistemi içi serviste olması beklee birim sayısı Bu sistemde, 1 durumuda sistemde hep birim hizmet görüyor olacaktır. > durumuda ise birim hizmet görüyor olacaktır. Bua göre, L servis P + P +1 [ [! + N +1 1)! +! 1 [! +! 1 [! + +1! 1 [! + +1! N! +1 ) 1 ) ) N 1 ) N + ) N +1 ) ) N +1 1 [ 1 ) ) ) N +1! ) N 1!! [ 1 P 0! + 1 ) ) N +1 N P 0 1)! }{{}}! {{ N } P 1 N 67) [1 P N şeklide elde edilir. 98

6 6.3 M/M//N/ sistemi içi sistemde olması beklee birim sayısı Bu sistemde 0, 1, 2, N durumu göz öüe alıarak bir beklee değer buluacaktır. L P + P +1 [! +! [ +1 1)! +! 1 [! +! N +1 1 [! + N! 1 [ 1 [ )! [ 1 P 0 [ 1 P 0 + ) ) ) N + )!! + +1 N ) ) ) N +! 1)! ) N +1 1 N + 1)! + + N ) ) 2 1)! 1 ) ) N! N + 1) ) N +1) ) N ) N +1) + N ) ) 2 1)!! + 1 ) ) N +1 +P 0 1)! ) 2 1)! }{{} 1 ) N N ) + 1) N ) P 0 ) 2! [ P N + 1) N ) ) P N ) 2 68) 99

7 Ayı souca, kuyrukta olması beklee birim sayısı ile serviste olması beklee birim sayısıı toplamıı elde ederek ulaşabiliriz: L L q + L servis [ ) L P ) P N N ) N + 1) + [1 P N 6.4 M/M//N/ sistemi içi birim başıa kuyrukta geçe beklee süre Sistem dolu olduğuda, yai sistemde N birim olduğuda, hizmet içi gele birimler geri dömektedir. Dolayısı ile, λ hızı kadar geliş olsa da etki olarak hizmet alamayaları dikkate almamak gerekir. Geliş hızıı sistemi boş kalması olasılığı ile çarparsak etkili geliş hızıı elde edebiliriz: λ eff λ1 P N ). Bu durumda, λ λ eff farkı hizmeti almada geri döe ortalama birim sayısıdır. Little kauu, kararlı bir sistemde kuyrukta veya sistemde ola ortalama birim sayısı ile kuyrukta veya sistemde birim başıa beklee süre arasıda bir ilişki olduğuu söyler. Bu ilişki şöyle taımlaır: W q L q λ eff 1 [ ) [ P 1 + P N N ) N + 1) 69) µ ) 2 1 PN 100

8 6.5 M/M//N/ sistemi içi birim başıa serviste geçe beklee süre Little kaularıa göre birim başıa serviste geçe ortalama süre W servis L servis λ eff [1 P N λ [1 P N 1 µ 70) şeklide elde edilir. 6.6 M/M//N/ sistemi içi birim başıa sistemde geçe beklee süre Bezer biçimde, Little kaularıa göre birim başıa sistemde geçe ortalama süre W L λ eff L λ eff 1 [ ) [ P 1 + P N N ) N + 1) + 1 µ ) 2 1 PN µ [ P ) 1 + ) 2 + P N N + ) N + 1) 1 µ ) 2 [ 1 PN 71) Öte yada, L L q + L servis olduğu hatırlaırsa, W W q + W servis eşitliği elde edilir. ararlı sistemler içi 0, t gibi bir zama aralığıda, sisteme giriş yapa ortalama birim sayısı ile sistemde hizmet alıp çıkış yapa ortalama birim sayısıı degede olduğu bilimektedir doğum-ölüm süreçleri gibi). A rastgele değişkei ile sisteme 0, t zama aralığıda giriş yapa birimleri sayısıı, D rastgele değişkei ile sistemde 0, t zama 101

9 aralığıda hizmet alıp çıka birimleri sayısıı gösterelim. Bu durumda, ve E[A λt [P 0 + P 1 + P P N 2 + P N 1 }{{} 1 P N E[D µt [1P 1 + 2P 2 + 3P )P 1 + P + P +1 + P P N }{{} L servis biçimide elde edilirler. Dege durumu göz öüe alıırsa E[A E[D L servis λ eff µ eff [1 P N serviste olması beklee birim sayısı elde edilebilir. Örek 6.1. Bir masaj saloua saatte 5 müşteri gelmektedir. Bu saloda 3 ayrı masöz görevlerii icra etmektedirler. Ortalama hizmet süresi 25 dakika sürmektedir ve bekleme salouda ise 3 koltuk vardır. Gele müşteri salodaki koltuklar dolu ise beklemeyip gitmektedirler. Bua göre, a) Sistemdeki saatlik ortalama müşteri sayısıı buluuz. b) uyrukta bekleye ortalama müşteri sayısıı buluuz. c) uyrukta geçe ortalama süreyi buluuz d) Sistemdeki bir müşterii harcadığı ortalama zamaı hesaplayıız. e) Bir saatlik zama dilimi içeriside hizmet göremeye ortalama müşteri sayısıı buluuz. f) E fazla iki masözü boş kalması olasılığıı hesaplayıız. g) Herhagi bir müşterii hizmet görememesi olasılığıı hesaplayıız. 102

10 Çözüm: M/M/3N 6 kapasiteli sistemdir. a) λ µ P ! + 1! ) ) N +1 1 ) ! ) ! ) ) ) ) 1 3 L q )P P ! ) ) 3 ) ) [ 25 3 ) ) 3 L servis λ µ [1 P N 5 [1 P 6 5 [ 1 P06 3! / [ ) 25 ) L L q + L servis b) L q c) W q L q saat veya 5.61 dakika λ eff d) W

11 e) λ λ eff λp f) P 1 + P 2 + P ! ) ) [ g) P 6 N N! P 0 25/) ! 104

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 0 KASIM 207 8. HAFTA.7 M/M//N/ sistemi için Bekleme zamanının dağılımı ( ) T j rastgele değişkeni j. birimin

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 0 KASIM 207 0. HAFTA 5.7 M/M/K/ / sistemi için Bekleme süresinin dağılımı j ( ) T j rastgele değişkeni j. birimin

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 5. HAFTA 2.7 M/M/1/ / sistemi için Bekleme zamanının dağılımı ( ) 1 T j rastgele değişkeni j. birimin

Detaylı

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ AKT MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ KESİKLİ RASLANTI DEĞİŞKENLERİ & KESİKLİ DAĞILIMLAR. X aşağıdaki olasılık foksiyoua sahip kesikli bir r.d. olsu. Bua göre;. ; x =.. ; x =. 4. ; x =. 5 p X

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1. 06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 14. HAFTA 8 Tek kanallı, Sonsuz Kapasiteli, Servis Süreleri Keyfi Dağılımlı Kuyruk Sistemi M/G/1/

Detaylı

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi 4.2. Pozitif Foksiyoları İtegrali SOU : f ), M +, A) kümeside bulua foksiyoları mooto arta dizisi ve h.h.h. f = f ise f dµ = f dµ gerçekleir. Gösteriiz Bu teorem Mooto yakısaklık teoremide yakısaklık yerie

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Ders 6: Sürekli Olasılık Dağılımları

Ders 6: Sürekli Olasılık Dağılımları Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ

KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ II DOĞUM-ÖLÜM SÜRECİ DERS NOTLARI DOĞUM-ÖLÜM SÜRECİ Kuyruk sistemindeki t zamanındaki müşteri sayısını kuyruk sisteminin

Detaylı

Tek Bir Sistem için Çıktı Analizi

Tek Bir Sistem için Çıktı Analizi Tek Bir Sistem içi Çıktı Aalizi Bezetim ile üretile verile icelemesie Çıktı Aalizi deir. Çıktı Aalizi, bir sistemi performasıı tahmi etmek veya iki veya daha fazla alteratif sistem tasarımıı karşılaştırmaktır.

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

BEKLEME HATTI MODELLERİ

BEKLEME HATTI MODELLERİ BEKLEME HATTI MODELLERİ Günlük yaşamımızda, kuyrukta bekleyen insanlar ve araçlar ile her zaman karşılaşırız. Bunlar arasında Maça gitmek için bilet kuyruğu, Sinema kuyruğu, Hastanelerdeki hasta kuyruğu,

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 ..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğreciler, Matematik ilköğretimde üiversiteye kadar çoğu öğrecii korkulu rüyası olmuştur. Bua karşılık, istediğiiz üiversitede okuyabilmeiz büyük ölçüde YGS ve LYS sıavlarıda matematik testide

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK AKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAKİNA ELEMANLARI LABORATUARI DENEY ÖYÜ DENEY I VİDALARDA OTOBLOKAJ DENEY II SÜRTÜNME KATSAYISININ BELİRLENMESİ DERSİN

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN İSTATİSTİK ANABİLİM DALI ANKARA 2009 Her hakkı saklıdır ÖZET Doktora Tezi

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

OLASILIK DAĞILIŞLARI. Ek 1. Moment Türeten Fonksiyon

OLASILIK DAĞILIŞLARI. Ek 1. Moment Türeten Fonksiyon 6 OLASILIK DAĞILIŞLARI 6.. Kesikli Olasılık Dağılışları 6.. Kesikli Uıform Dağılışı 6... Beroulli Dağılışı 6..3. Biom Dağılışı 6..4. Hyer-Geometrik Olasılık Dağılışı ( İadesiz Örekleme ) 6..5. Geometrik

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

3. KUYRUK TEORİSİNE GİRİŞ ve Ulaşım Mühendisliğinde Uygulamaları

3. KUYRUK TEORİSİNE GİRİŞ ve Ulaşım Mühendisliğinde Uygulamaları 3. KUYRUK TEORİSİNE GİRİŞ ve Ulaşım Mühendisliğinde Uygulamaları Kuyruk (bekleme hattı- bekleme sırası - bekleme kuyruğu) teorisi, bekleme hattının matematiksel modellerini oluşturarak kuyruk uzunluğu,

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

2.2. Fonksiyon Serileri

2.2. Fonksiyon Serileri 2.2. Foksiyo Serileri Taım.. Herhagi bir ( u (x reel (gerçel değerli foksiyo dizisi verilsi. Bu m foksiyo dizisii tüm terimlerii toplamıa, yai u m (x + u m+ (x + u m+2 (x + u m+3 (x + + u m+ (x + = k=m

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Meti OLGUN Akara Üiversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiği temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2 Ayrı Sistemler Eletri&Eletroi Mü. Böl. İşaret İşleme Uygulamaları Deey 2 Prof. Dr. Aydı Aa Dr. Erol Öe Baatti Karaaya Koray Sistemleri Özellileri 1. Doğrusallı Liearity: y a ay Ölçeleme scalig, a armaşı

Detaylı

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

ISL 418 Finansal Vakalar Analizi

ISL 418 Finansal Vakalar Analizi 23.3.218 2. HAFTA ISL 18 Fiasal Vakalar Aalizi Paraı Zama Değeri Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım ve fiasma kararlarıda rasyoelliği yakalamak

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

SÜREKLİ DÜZGÜN DAĞILIM

SÜREKLİ DÜZGÜN DAĞILIM SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.

Detaylı

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI 7 ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI 7.. Niçi Örekleme Yapılır 7.. Olasılıklı Örekleme 7... Basit Şas Öreklemesi 7... Tabakalı Örekleme 7... Küme Öreklemesi 7..4. Sistematik Örekleme 7.. Olasılıklı Olmaya

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi Makie Elemaları II Prof. Dr. Akgü ALSARAN Temel bilgiler ve örekler Güç ve hareket iletimi İçerik Güç ve Hareket İletimi Redüktör Vites kutusu Örek 2 Giriş 3 Bir eerjiyi, mekaik eerjiye döüştürmek içi

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE

NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ WIND ENERGY POTENTIAL OF NIGDE PROVINCE Niğde Üiersitesi Mühedislik Bilimleri Dergisi, Cilt 1, Sayı, (1), 37-47 NİĞDE İLİ RÜZGAR ENERJİSİ POTANSİYELİ Uğur YILDIRIM 1,* Yauz GAZİBEY, Afşi GÜNGÖR 1 1 Makie Mühedisliği Bölümü, Mühedislik Fakültesi,

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

SİSTEMLERİN ZAMAN CEVABI

SİSTEMLERİN ZAMAN CEVABI DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici

Detaylı

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu

Kuyruk Sistemlerinin Benzetimi. KUYRUK & BEKLEME HATTI SİSTEMLERİ Genel nüfus Bekleme hattı Sunucu Kuyruk Sistemlerinin Benzetimi KUYRUK & BEKLEME HATTI SİSTEMLERİ Dr. Mehmet AKSARAYLI Genel nüfus Bekleme hattı Sunucu Genel nüfus Kuyruğa giriş ve hizmetlerin yapısı Sistemin kapasitesi Kuyruk disiplini

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK

Kırsal Kalkınma için IPARD Programı ndan Sektöre BÜYÜK DESTEK KAPAK KONUSU Kırsal Kalkıma içi IPARD Programı da Sektöre BÜYÜK DESTEK Kırsal Kalkıma (IPARD) Programı Kırmızı Et Üretimi ve Et Ürülerii İşlemesi ve Pazarlaması alalarıda gerçekleştirilecek yatırımları

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

BÖLÜM XIII. FOURİER SERİLERİ VE FOURİER TRANSFORMU Periyodik fonksiyon

BÖLÜM XIII. FOURİER SERİLERİ VE FOURİER TRANSFORMU Periyodik fonksiyon Devre erisi Ders Ntu BÖLÜM XIII FOURİER SERİLERİ VE FOURİER RANSFORMU Periydik fksiy f( t) f( t ),,,... ve periyt. f ( t )- f( t - ) f( t + ) - f( t + )... Pratikte birçk elektriksel kayak periydik dalga

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı