(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6."

Transkript

1 Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit alamıda olduğuu hatırlayıız. Problem 3.1 Eğer f ve g, L 1 (R) içide, yai gerçel sayılar üzeride Lebesgue itegralleebilir foksiyolarsa aşağıdakileri gösteriiz. (1) Eğer f(x) 0 ise f 0 dır. (2) Eğer f(x) g(x) ise f g dır. (3) Eğer f karmaşık değerli bir foksiyo ise gerçel kısmı Ref Lebesgue ölçülebilirdir ve Ref f (4) Geel karmaşık değerli bir foksiyo içi (6.30) f f gösteriiz.(ipucu: Kayaklara bakabilirsiiz ama geellikle yapıla şey θ [0, 2π] almak ve e iθ f = e iθ f kullaarak, öceki eşitsizliği g = e iθ f de kullamaktır. (5) İtegral (6.31) : L 1 (R) C sürekli ve doğrusaldır. Çözüm. (1) f gerçel ve f, f ye mutlak yakısaya basamak foksiyoları mutlak toplaabilir bir serisi (sadece komplex-değerli dizimiz var ise (3) i kullaıız.) ise (8.14) g 1 = f 1, g j = f j f j 1, f 1 dizisii f ye h.h. mutlak yakısaya yakısadığıı biliyoruz. Burada f + = 1 2 ( f + f) = f, eğer f 0 ise, 1 2 f j ve 1 2 g j ile elde edile serii h.h. limitidir: (8.15) h = 1 2 g k( = 2k 1 içi) ve h = f k ( = 2k içi) 4

2 Böylece f + Lebesgue itegralleebilirdir. Üstelik (8.16) f + = lim k 2k h k = lim k k ( f j + j=1 k f j ) olduğuu biliyoruz. Burada her terim egatif olmaya basamak foksiyoudur ve dolayısıyla f + 0 dır. (2) Öceki soucu itegralleebilir g f ye uygulayarak (8.17) g f = (g f) 0 elde edilir. (3) Ilk kuralı, f kompleks değerli ve f ye h.h. yakısaya basamak foksiyoları mutlak toplaabilir bir serisi ise (8.19) h 3k 2 = Ref k, h 3k 1 = Imf k, ve h 3k = Imf k olarak taımlayalım. Basamak foksiyoları serisi mutlak toplaabilirdir ve (8.19) h (x) < f (x) < h (x) = Ref dır. Böylece Ref itegralleebilirdir. +Ref f olduğuda (8.20) + Ref f Ref f. j=1 (4) Kompleks f içi öerildiği gibi yapılır.z C yi z = 1 ve z if f [0, ) olacak biçimde seçelim. Böyle bir seçim kompleks sayıları özelliğide yapılabilir. Itegrali doğrusallığıda (8.21) f = (zf) = Re(zf) zref f f = z f f. (Burada geçe ikici eşitlik itegrali gerçel kısmııı itegralie eşit olmasıda elde edilir.) 5

3 (5) h.h. f = g ise f = g olduğuda (8.22) I : L 1 (R) C, I([f]) = f ı doğrusal olduğuu biliyoruz. Doğrusal foksiyou sürekli olması ile sıırlı olması dek olduğuda ve (8.23) I([f]) = f f = [f] L 1 olduğuda I süreklidir. (Burada f L 1 (R) i yerie [f] yazılması doğru fakat daha sora f yazılacak). (6) L 1 (R) ı dualii bir elemai olarak I ı ormu edir? Cevap 1-emi olmaız içi kaıtlayabilirsiiz. Problem 3.2 I R bir aralık ((, a) ya da (a, ) dahil) ise bir f : I C foksiyou Lebesgue itegralleebilir olmasıı (8.24) f : I C, f = fχ R\I olarak taımlaa foksiyou Lebesgue itegrallebilir olması olarak taımlayabiliriz. f ı itegralii (8.25) f = f I olarak taımlarız. (1) I üzeride bu alamda taımlaa itegrali doğrusal olduğuu gösteriiz. Bu tür foksiyoları kümesii L 1 (I) ile gösterelim. (2) f, I üzeride itegralleebilir ise f i de itegralleebilir olduğuu gösteriiz. (3) f, I da itegralleebilir ve f = 0 ise h.h. f = 0, yai ölçümü sıfır ola bir E I içi, her x I \ E ike f(x) = 0, olduğuu gösteriiz. (4) Daha öceki soruda taımlaa alamda h.h. sıfır foksiyou vektör uzayı olduğuu gösteriiz. Bu uzayı N ile gösterelim. (5) I f ı L1 = L 1 (I) \ N (I) de bir orm taımladığıı kaıtlayıız. (6) f L 1 (R) ise (8.26) g : I C, g = fχ I olarak taımlaa foksiyou L 1 (R) de ve dolayısıyla f ı I da itegralleebilir olduğuu kaıtlayıız. 6

4 (7) Yukarıda taımlaa I ya kısıtlama döüşümü (8.27) L 1 (R) L 1 (I) örte ve sürekli doğrusal foksiyou taımlar. (Buları h.h.h eşitlik modülüe göre itegralleebilir foksiyoları bölüm uzaylarıı var olduğuu ot ediiz.) Çözüm: (1) f ve g foksiyoları I üzeride itegralleebilir ve h = f + g ise h = f + g olduğu taımdadır. Dolayısıyla L 1 (R) ı doğrusallığıda f + g foksiyou I da itegralleebilirdir. Bezer biçimde eğer f itegralleebilir ise herhagi bir sabit c içi h = cf olmak üzere h = cf foksiyou itegralleebilirdir. Böylece L 1 (I) doğrusal bir uzaydır. (2) Yie taımda h = f ise h = f. Burada f ı I da itegralleebilir olmasıda f L 1 (R) elde edilir. Bilgilerimizde de f L 1 (R). Böylece h = f ise h L 1 (R), dolayısıyla f L 1 (I) elde edilir. (3) f L 1 (I) ve f = 0 ise I R f = 0 dır ve burada da ölçümü sıfır ola bir E R içi R \ E kümeside f = 0 elde edilir. Şimdi E I = E I E kümesii ölçümü de sıfırdır (sıfır ölçümlü bir kümei altkümesi olduğuda) ve f, E I kümesii dışıda sıfırdır. (4) f ve g lar sıfırimsı foksiyolar ise (ölçümü sıfır ola bir küme dışıda sıfır değerli alamıda, bu kümelere sırasıyla E f I ve E g I diyelim. Yai E f ve E g leri ölçümleri sıfır ve her a I E f ve b I E g içi f(a) = 0, g(b) = 0.) f + g foksiyou I (E f E g ) üzeride sıfırdır. E f E g kümesii ölçümü sıfır olduğuda f + g sıfırdır. Ayı şey, c ve d sabit olmak üzere cf + dg foksiyoları içide doğrudur, dolayısıyla N (I) bir doğrusal uzaydır. (5) f, g N 1 (I) olmak üzere g i sıfır olduğu yerde f + g f foksiyou sıfır olduğuda f + g f N (I) dır. Burada aşağıdaki eşitlik elde edilir. (8.28) f + g = f f, g N (I). Burada da I (8.29) [f] I = I I f 7

5 foksiyou deklik sııfıda ayı olduğuda L 1 (I) = L 1 (R) \ N (I) üzeride iyi taımlı bir foksiyodur. Burada R üzerideki ayı özellikleride dolayı bu foksiyou orm özellikleri sağladığı görülür. (6) f L 1 (R) ve (8.26) daki gibi I ya kısıtlaış olarak taımlası. g L 1 (R) olarak taımlası. R de, f, f ye yakısaya basamak foksiyoları mutlak toplaabilir serisi ise mutlak yakısaktır. Burada I, I ı souç oktasıı eklemesi (varsa) ve sağ uç oktasıı çıkartılmasıyla (var ise) elde edile aralık olmak üzere (8.30) g = f χ R \ I serisii ele alalım. Burada g bir basamak foksiyoudur (bu iye I ya gereksiimiz olduğuu açıklar).üstelik g f ve dolayısıyla g mutlak toplaabilir ve I ı dışıda g ye yakısar ve I içideki her oktada mutlak yakısaktır (bu durumda f de olduğu gibi). Bu g i itegralleebilir olduğuu gösterir ve f, g de e az iki oktada farklı olduğuda, itegralleebilir ve dolayısıyla taım gereği f, I da itegralleebilirdir. (7) Öcelikle foksiyo olduğuu kotrol etmeliyiz. f N (R) olduğuda (8.26) da verile g kesilikle N (I) dadır. I ya kısıtlamaı L 1 (R) de L 1 (I) ye bir doğrusal foksiyo olduğuda (8.27) yi taımlar-görütü sadece f i deklik sııfıa bağlıdır. Bu foksiyou doğrusal olduğu açık olduğuda örte olduğuu göstermeliyiz. g L 1 (R) ise bu I ı dışıda 0 olacak biçimde geişletilebilir ve bu geişletilmiş foksiyo L 1 (I) ı bir elemaıdır ve bu foksiyo sııfıı (8.27) altıdaki izi [g] dir. (8) Problem 3.3 Bir öcekii devamıdır. (1) I = [a, b) ve f L 1 (I) ise her a x < b içi f i I x = [x, b) ye kısıtlaışı L 1 (I x ) de olduğuu gösteriiz. (2) (8.31) F (x) = f : [a, b) C I x ı sürekli olduğuu gösteriiz. (3) x 1 cos( 1 ) foksiyouu (0, 1] de Lebesgue itegralleebilir olmadığıı x kaıtlayıız (yukarıda gösterdiği şeyi düşü). Çözüm. (1) Az öceki soruda elde edilir. f L 1 ([a, b)) ve f, f i temsili ise f ı aralığı dışıda sıfır olarak geişletilmesiyle elde edile foksiyo L 1 (R) ı içide kalır. L 1 (R)ı elemaı olarak bu f seçimie bağlı değildir ve 8

6 (8.27) L 1 ([x, b)) ı bir elemaı olarak [x, b) ye kısıtlaışı verir ve doğrusal foksiyoudur. (2) Bir öceki sorudaki tartışmayı kullaarak, eğer f, f (f i temsili) ye yakısaya mutlak toplaabilir bir seri ise ki-yakısama mutlak yakısama ise her a x b içi (8.32) f = χ([a, x))f, f = χ([x, b))f burada χ([a, b)), aralığı karakteristik foksiyoudur ve baze χ [a,b) ile gösterilir. Burada f ı fχ([a, b)) ye ve f ı f χ([a, b)) ye yakısadığı görülür, yakısama mutlak yakısamadır. Böylece (8.33) f = fχ([x, b)) = f, f = fχ([a, x)) = f. [x,b) [a,x) Şimdi basamak foksiyoları içi f = f + f olduğuu biliyoruz, dolayısıyla (8.34) f = f + f. [a,b) [a,b) Böylece [a, b) da taımlı her foksiyo içi (8.35) lim f = 0 x a [a,x) olduğuu göstermek yeterlidir. Bu aşağıdaki geel eşitsizliğı kullaarak (8.36) f f + f [a,x) [a,x) ve basamak foksiyoları mutlak toplaabilir dizii taımlamasıyla görülebilir. N i yeterice büyük seçilmesiyle x de bağımsız olarak so toplam küçük yapılabilir. Diğer tarafta N yi sabit tutarak x a içi, basamak foksiyoları taımıda itegral sıfıra gider. Bu (8.36) yı kaıtlar ve böylece F ı sürekliliğii kaıtlar. (3) (0, 1] aralığıda x 1 cos( 1 ) Lebesgue itegralleebilir olsaydı (aralıkta x taımlıdır), bu foksiyo sıfırda taımlaarak, öreği 0 da 0, alıarak [0, 1) aralığıda itegralleebilir olurdu. Ayı şey mutlak değeri içide doğru olurdu ve Riema itegral (8.37) lim x cos( 1 x ) dx =. 0 1 t 9 N [a,b) [a,x) N

7 Bu limitleri bir foksiyou olarak itegralleri sürekliliği ile çelişr. Problem 3.4 [Zor ama deemeli] f L 1 (R) verilsi. (1) Her t R içi (8.38) f t (x) = f(x t) : R C döüşümlerii L 1 (R) ı elemaları olduğuu gösteriiz. (2) (8.39) lim f t f = 0 t 0 olduğuu gösteriiz. Bua itegralleebilir foksiyolar içi değer sürekliliği deir. Y.G: Verilecek! (3) Her f L 1 (R) içi (8.40) R L 1 (R), t [f t ] (bu bir eğridir ) foksiyou sürekli olduğuu çıkartıız. Çözüm: (1) f, f ye yakısaya-mutlak yakısaya basamak foksiyoları mutlak toplaabilir serisi ise f (. t) her t R içi f(. t) ye yakısar. Böylece her f(x t) Lebesgue itegralleebilir yai L 1 (R) ı elemaıdır. (2) f, f ye yukarıda olduğu gibi yakısaya bir seri ise (8.41) f f olduğuu biliyoruz. Ilk terimleri toplayabiliriz ve tekrar seriye başlayabiliriz ve burada her içi (8.42) f + f N >N elde edilir. Buu f (. t) f (.) ye uygulayarak (8.43) f t f f (. t) f (.) + N >N f (. t) f (.) 10

8 buluur. Burada ikici toplam 2 >N f ile sıırlıdır. Verile δ > 0 içi, mutlak yakısamada dolayı, bu toplamı δ ile sıırlı olabilecek yeterice büyük 2 N seçebiliriz. Dolayısıyla problem t yeterice küçük ise (8.44) f (. t) f (.) δ 2 N eşitsizliğii kaıtlamaya idirgeir. Üstelik bu basamak foksiyoları solu toplamıdır. Dolayısıyla her bir bileşke içi, yai bir sabit c içi, 2 c t ile sıırlı bir [a, b) aralığıdaki karakteristik foksiyou c katı içi aşağıdakii göstermek yeterlidir. t 0 içi. (8.45) g(. t) g(.) 0, (3) f t eğrisi içi (8.46) R L 1 (R), t f t f t+s = (f t ) s dir ve yukarıdaki tartışmayı her s içi (8.47) lim f t f s = 0 lim [f t ] [f s ] t s t s L 1 ifadesii göstermek içi uygulayabiliriz. Bu (8.46) daki foksiyou sürekli olduğuu kaıtlar. Problem 3.5 So alıştırmalarda bir kompakt aralık üzeride taımlı bir foksiyou aralık dışıda sıfır değeri alacak biçimde geişletilmesiyle elde edile foksiyou Lebesgue itegralleebilir olduğu gösterilmişti. Buu ve basamak foksiyoları L 1 (R) da yoğu olduğuu kullaarak R da taımlı ve bir kompakt kümei dışıda sıfır ola sürekli foksiyoları doğrusal uzayıi L 1 (R) de yoğu olduğuu gösteriiz. Çözüm. Basamak foksiyoları (aslıda basamak foksiyoları deklik sııfları) L 1 (R) da yoğu olduğuda her basamak foksiyou, L 1 e göre, bir kompakt küme dışıda sıfır değeri ala sürekli foksiyoları bir limiti olduğuu göstermek yeterlidir. Dolayısıyla bir [a, b) aralığıı karakteristik foksiyou içi kaıtı vermek yeterlidir ve sora sabitlerle çarpma ve ekleme yapılabilir. g dizisi (8.48) g = (x a + 1 )χ [a 1,a] + (b + 1 x)χ [b,a+ 1 ] 11

9 olarak taımlası. g leri sürekli olduğu açık ve bir kompakt küme dışıda sıfırdır. 1 b+ 1 (8.49) g χ([a, b)) = g + g 1 olduğuda L 1 (R de [g ] [χ([a, b)) elde edilir. Bu kompakt dayaaklı sürekli foksiyoları L 1 (R) da yoğu olduğuu kaıtlar. Problem 3.6 g : R C foksiyou sürekli ve sıırlı ve f R ise gf R ve (8.50) gf sup g R f olduğuu gösteriiz. (2) G C([0, 1] [0, 1]) bir sürekli foksiyo C(K) ile bir kompakt metrik uzayı üzeride taımlı sürekli foksiyoları gösteriyoruz. Öceki tartışmalarda L 1 ([0, 1]) i taımladık. Birici kısmı kullaarak f L 1 ([0, 1]) ise her x [0, 1] içi (8.51) F (x) = G(x.)f(.) C ı iyi taımlı olduğuu gösteriiz. (3) f L 1 ([0, 1]) ise F ı [0, 1] de sürekli foksiyo olduğuu gösteriiz. (4) (8.51) L 1 ([0, 1]) C([0, 1]), f F ı sürekli foksiyoları Baach uzayıa, [0, 1] deki supremum ormua göre, sıırlı (yai sürekli) doğrusal foksiyo olduğuu kaıtlayıız. Çözüm: (1) Öcelikle [0, 1] dışıda f = 0 olduğuu varsayalım. Alıştırmalardaki souçlarda birii uygulayarak her R içi [0, 1) de g g düzgü yakısayacak biçimde basamak foksiyoları bir g dizisi vardır. Biralt diziye geçerek sup [ 1,1] g (x) g 1 < 2 olcak biçimde ayarlayabiliriz. f, f ye h.h. yakısaya basamak foksiyoları bir dizisi ise yukarıda tartışıldığı gibi f i f χ([ 1, 1]) ile değistirebiliriz ve hala ayı soucu elde ederiz. Böylece g leri düzgü yakısamasıda (8.53) g (x) [0,1] a 1 f k (x) g(x)f(x) R de h.h. k=1 Dolayısıyla h 1 = g 1 f 1, h (x) = g (x) k=1 f k(x) g 1 (x) 1 k=1 f k(x) olarak taımlarız. Basamak foksiyoları bu serisi gf(x) e heme heme heryerde 12 b

10 yakısar ve (8.54) h A f (x) +2 k< f k (x), h A f +2 f < olduğuda mutlak toplaabilirdir.burada A bir g içi bir sıır ve de bağımsızdır. [0, 1) dışıda f = 0 varsayımı altıda gf L 1 (R) olduğuu gösterir ve (8.55) gf sup g f elde edilir. Bu tartışmayı p Z olmak üzere f i [p, p+1) aralığıa kısıtlaışı ola f p foksiyoua uygulayabiliriz. gf, mutlak toplaabilir gf p serisii h.h.h limitidir, (8.56) gf p sup g f < p [p,p+1) p olduğuda (8.55) sağlaır. Böylece gf L 1 (R) ve (8.57) gf sup g f. (2) f L 1 ([0, 1]) ve temsili f ise G(x,.)f (.) L 1 ([0, 1]) dolayısıyla (8.58) F (x) = G(x,.)f(.) C [0,1] iyi taımlıdır-f ı seçimide bağımsız olduğuda, f bir sıfır foksiyouyla değiştirilirse, f bir sıfır foksiyouyla değiştirilebilir. (3) S = [0, 1] [0, 1] kompakt metrik uzayııda taımlı sürekli bir foksiyo düzgü sürekli olduğuda verile δ > 0 içi aşağıdaki özellikte bir ɛ > 0 vardır: (8.59) x x < ɛ sup G(x, y) G(x, y) < δ. y [0,1] Böylece F C([0, 1]), [0, 1] aralığıda süreklidir. Üstelik f F foksiyou doğrusaldır ve (8.61) sup F sup G f, [0,1] S [0,1] 13

11 bu I : L 1 ([0, 1]) C([0, 1]), F (f)(x) = G(x,.)f(.) doğrusal foksiyouu sürekli ya da sıırlı olması içi yeterli ve I(f) sup sup G f L 1 dır. 14

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz. MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, gdemir2@yahoo.com.tr 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s - 18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

Bu bölümde birkaç yak nsak dizi örne i daha görece iz.

Bu bölümde birkaç yak nsak dizi örne i daha görece iz. 19B. Yak sak Gerçel Dizi Örekleri Bu bölümde birkaç yak sak dizi öre i daha görece iz. Verdi imiz örekleri her biri hem kedi bafl a hem de kulla la yötem aç s da öemlidir. Örek 19B.1. lim 1/ = 1. Ka t:

Detaylı

MATEMATİK ANABİLİM DALI

MATEMATİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Serka ÖKTEN -NORMLU UZAYLAR MATEMATİK ANABİLİM DALI ADANA, 00 ÖZ YÜKSEK LİSANS TEZİ -NORMLU UZAYLAR Serka ÖKTEN ÇUKUROVA ÜNİVERSİTESİ FEN

Detaylı

KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ. Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ. Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 009 ANKARA Muhib ABULOHA tarafıda hazırlaa KONİK METRİK UZAYLAR

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ -CEBİRLERİNİN İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER ESRA ULUOCAK DOKTORA TEZİ MATEMATİK ANABİLİM DALI MATEMATİK

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU.

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU. T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Yüksek Lisas Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU Elif SERİN Tez Daışmaı Yrd. Doç. Dr.Abdullah SÖNMEZOĞLU Yozgat 202

Detaylı

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz GAMA FONKSİYONU H. Turgay Kaptaoğlu A. Taım Gama foksiyou, < < değerleri içi Euler itegrali dediğimiz Γ( = t e t dt itegrali ile taımlaır. Öce bu ifadei e demek olduğuu alamaya çalışalım. bir gerçel sayı

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI AĞIRLIKLI LORENTZ UZAYLARINDA TRİGONOMETRİK YAKLAŞIM

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI AĞIRLIKLI LORENTZ UZAYLARINDA TRİGONOMETRİK YAKLAŞIM T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI AĞIRLIKLI LORENTZ UZAYLARINDA TRİGONOMETRİK YAKLAŞIM YÜKSEK LİSANS TEZİ AHMET HAMDİ AVŞAR BALIKESİR, HAZİRAN - 2016 T.C. BALIKESİR

Detaylı

MÖBİUS İNVERSİYON FORMÜLÜ, GENELLEŞTİRİLMELERİ VE UYGULAMALARI. Mehmet YILDIZ YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MÖBİUS İNVERSİYON FORMÜLÜ, GENELLEŞTİRİLMELERİ VE UYGULAMALARI. Mehmet YILDIZ YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÖBİUS İNVERSİYON FORMÜLÜ, GENELLEŞTİRİLMELERİ VE UYGULAMALARI Mehmet YILDIZ YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 200 ANKARA ii Mehmet YILDIZ tarafıda hazırlaa MÖBİUS

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

h)

h) ĐZMĐR FEN LĐSESĐ TÜMEVARIM-DĐZĐLER-SERĐLER ÇALIŞMA SORULARI TÜME VARIM:. Aşağıdaki ifadelerde geel bir kural çıkarabilir misiiz? a) p()= ++4 poliomuda değişkeie 0,,,, değerleri verdiğimizde elde edile

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

T.C. FEN BİLİMLERİ ENSTİTÜSÜ YILDIZ TEKNİK ÜNİVERSİTESİ AĞIRLIKLI VE DEĞİŞKEN ÜSLÜ LEBESGUE UZAYINDA HARDY OPERATÖRÜNÜN KOMPAKTLIĞI LÜTFİ AKIN

T.C. FEN BİLİMLERİ ENSTİTÜSÜ YILDIZ TEKNİK ÜNİVERSİTESİ AĞIRLIKLI VE DEĞİŞKEN ÜSLÜ LEBESGUE UZAYINDA HARDY OPERATÖRÜNÜN KOMPAKTLIĞI LÜTFİ AKIN T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AĞIRLIKLI VE DEĞİŞKEN ÜSLÜ LEBESGUE UZAYINDA HARDY OPERATÖRÜNÜN KOMPAKTLIĞI LÜTFİ AKIN DOKTORA TEZİ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DANIŞMAN

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER

TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER TOPLAMSAL ARİTMETİK YARI GRUPLAR ÜZERİNDE ANALİTİK İŞLEMLER ERDENER KAYA MERSİN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANA BİLİM DALI YÜKSEK LİSANS TEZİ MERSİN HAZİRAN 7 TOPLAMSAL ARİTMETİK YARI

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ

KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ Bu bildiri 2-22 Mart 204 tarihleride düzelee Üretim Ekoomisi Kogreside suulmuştur. KLAN OYUNLARI TEMELLİ ÜRETİM YAPISININ TSURUMI GENİŞLEMESİ ve BULANIK SHAPLEY DEĞERLERİ Murat BEŞER muratbeser @ yahoo.com

Detaylı

PEANO UZAYLARI VE HAHN-MAZURKIEWICZ TEOREMİ ÜZERİNE

PEANO UZAYLARI VE HAHN-MAZURKIEWICZ TEOREMİ ÜZERİNE SAÜ Fe Edebiyat Dergisi (-) Z.GÜNEY ve M.ÖZKOÇ PEANO UZAYLAR VE HAHN-MAZURKEWCZ TEOREMİ ÜZERİNE Zekeriya GÜNEY, Murad ÖZKOÇ Muğla Üiversitesi Eğitim Fakültesi Ortaöğretim Fe ve Matematik Alalar Eğitimi

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

x A şeklinde gösterilir. Aksi durum ise x A olarak

x A şeklinde gösterilir. Aksi durum ise x A olarak BÖLÜM I OLSILIK Küme teorisi, matematiği geliştirilmesi ve öğretimide gittikçe daha fazla yararlaıla koularda biridir. yrıca olasılıkla ilgili birici bölümü temel aracıdır. Bu kısımda amaç, olasılık kousuda

Detaylı

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere

... SERİLER Tanım: 2 3 toplamı kaçtır? Çözüm: serisinde 10. kısmi terimler. Ör: bir reel sayı dizisi olmak üzere SERİLER Tım: bir reel syı dizisi olm üzere...... 3 toplmı SERİ deir. gerçel syısı serii geel terimi deir. S 3... toplmı SERİNİN N. KISMİ (PARÇA) TOPLAMI deir. S dizisie SERİNİN N. KISMİ TOPLAMLAR DİZİSİ

Detaylı

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI GAUSS BALANS VE GAUSS KOBALANS SAYILARI ÜZERİNE YÜKSEK LİSANS TEZİ MUSTAFA YILMAZ DENİZLİ, TEMMUZ - 07 T.C. PAMUKKALE ÜNİVERSİTESİ

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İSTATİSTİKSEL YAKINSAK ALT DİZİLER. Tuğba YURDAKADİM MATEMATİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İSTATİSTİKSEL YAKINSAK ALT DİZİLER. Tuğba YURDAKADİM MATEMATİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İSTATİSTİKSEL YAKINSAK ALT DİZİLER Tuğba YURDAKADİM MATEMATİK ANABİLİM DALI ANKARA 200 Her hakkı saklıdır ÖZET Yüksek Lisas Tezi ISTAT IST

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

ÇİN KALAN TEOREMİ. Chinese Remainder Theorem A.KILIÇ & V.SERT Ç ANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

ÇİN KALAN TEOREMİ. Chinese Remainder Theorem A.KILIÇ & V.SERT Ç ANAKKALE ONSEKİZ MART ÜNİVERSİTESİ Chiese Remaider Theorem A.KILIÇ & V.SERT 2012 Ç ANAKKALE ONSEKİZ MART ÜNİVERSİTESİ İçidekiler Sayfa o Semboller 2 Ösöz 3 Öbilgiler 4 Geel Halkalar içi Çi Kala Teoremi 7 Çi Kala Teoremii Tamsayılar Halkasıa

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

1. TEMEL KAVRAMLAR Derleyen: Osman EKİZ ( )

1. TEMEL KAVRAMLAR Derleyen: Osman EKİZ ( ) . TEMEL KAVRAMLAR Derleye: Osma EKİZ Bu çalışmaı temelii Jiri Herma, Rada Kucera, Jaromir Simsa., Elemetary Problems ad Theorems i Algebra ad Number Theory isimli kitap oluşturmaktadır. İlgili bölümü çevirisi

Detaylı

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B . +? + + işlemii soucu aşağıdakilerde xy } y 5,x 4 5x 4y Ç 6y +7x 6.5+7.4 58 cm Yaıt:C hagisie eşittir? A) 7 B) 4 C) 7 4 D) 7 7 E ) 7 4. Aşağıda alaları verile dairelerde hagisii alaı sayıca çevresie eşittir?

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı