Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans"

Transkript

1 Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1

2 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman

3 EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır. Her hata term varyansı bağımsız değşkenlern verlen değerlerne göre s ye eşt aynı (sabt) br değerdr. Bu nedenle eşt varyansa sabt varyans da denr. Var Var u X Var u E u s =1,,3, N =Eşt varyans u X Var u E u s =Farklı varyans

4 X değşkennn değer arttıkça Y nn şartlı varyansı sabt değl veya eşt değldr. Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım modellernde. Sektör modellernde. Ücret modellernde. Deneme - Yanılma modellernde.

5 Farklı Varyansın Ortaya Çıkardığı Sonuçlar Katsayı tahmnclerne etks.(ekky uygulandığında farklı varyans varsa t ve F testler doğru olmayan anlamsız katsayı tahmnler verecektr. Standart hatalar olduğundan daha büyük çıkacaktır, elde edlen güven aralıklarına güvenlemeyecektr. Tahmncler doğrusal ve sapmasızdırlar, ancak etkn ve eny tahmnc olma yan mnmum varyanslı olma özellğn kaybederler. EKKY varyans formüller kullanılamayacaktır. 5

6 Parametre Tahmnclernn Özellkler 1. Sapmasızlık Anakütle regresyon model Y X 0 1 Sapma neden le nn beklenen değer sıfırdan farklı se. Y X o 1 6

7 Parametre Tahmnclernn Özellkler 1. Sapmasızlık X X 1 1 X X X X E( 1) 1 E 1 X X Y X Y 0 1X 0 1 E( 0) E 0 1X 1X = X E( ) E( )X = 0 1X 1X 7 = 0

8 Parametre Tahmnclernn Özellkler. Etknlk Y X 0 1 Modelde sabt varyans varsayımının geçerl olmaması durumunda parametre tahmncler 0 * ve 1 * olsun. 0 * ve 1 * ın varyanslarınn doğrusal sapmasız tahmn yöntem le belrlenmes: Doğrusallık şartı gereğ: n * 1 ay 1 8

9 . Etknlk * 1 n beklenen değer ve varyansı: * E 1 E ay )Y E(Y ) = a X 0 1 = a a X * 1 Var E a Y E a Y =E a Y E(Y ) 0 1 )E( ) s ) E(, ) 0 j Var * 1 E a =E a Eaa j j j Var a s 9 * 1

10 3. Tutarlılık plm 1 1 X X X X, nn tutarlı tahmncsdr. plm plm 1 1 Cov X 0 X X X X CovX,, X X X X n n X X 0 10

11 3. Tutarlılık 0 plm1 1 plm X X 11

12 Farklı Varyansın Belrlenmes Grafk Yöntemle. Sıra Korelasyonu test le. Goldfeld-Quandt test le. Breusch Pagan test le. Glejser Test le. Whte test le. Lagrange çarpanları test le Ramsey Reset test le Park test le. 1

13 Grafk Yöntem

14 E Grafk Yöntem YIL

15 Grafk Yöntem

16 Sıra Korelasyonu Test 1.Aşama H 0 : r = 0 H 1 : r 0.Aşama a =? s.d.=? 3.Aşama t hes r s n 1 r s? t tab =? d rs 1 6 n(n 1)? 4.Aşama t hes > t tab H 0 hpotez reddedleblr 16

17 Sıra Korelasyonu Test Y X e X s e s d d Mutlak değerl olarak bulundukları yer tbaryle küçükten büyüğe sıra numarası verlr d=x-e d =11

18 Sıra Korelasyonu Test 1 6 d n(n 1) rs (10 1) 1 = Aşama H 0 : r = 0 H 1 : r 0.Aşama a = 0.05 s.d.= 8 3.Aşama t hes (0.31) t tab =.306 = Aşama t hes < t tab H 0 hpotez reddedlemez. 18

19 Goldfeld-Quandt Test Büyük örneklere uygulanan br F testdr. Bu test s nn farklı varyansının bağımsız değşkenlerden br le poztf lşkl olduğunu varsayar. s s. X s X le poztf (aynı yönde) lşkldr ve s farklı varyansı X n kares le orantılıdır. Yan X değerler arttıkça s değer de artmaktadır.

20 Goldfeld-Quandt Test Y = b 1 + b X + b 3 X b k X k + u Y X s X 3... X k I.Alt Örnek n 1 Çıkarılan Gözlemler Y I = b 11 + b 1 X + b 31 X b k1 X k + u e 1 =? n(1/6) < c < n(1/3) II.Alt Örnek n Y II = b 1 + b X + b 3 X b k X k + u e =? 0

21 Goldfeld-Quandt Test 1.Aşama H 0 : Eşt Varyans H 1 : Farklı Varyans.Aşama a =? 3.Aşama 4.Aşama f f e e Fhes 1 F hes > F tab (n c k) 1?? F tab =? X bağımsız değşkennn değerler küçükyen büyüğe doğru lgl Y bağımlı değşkennn değerler de taşınarak sıralanır. Ortadan c kadar gözlem çıkarılır. H 0 hpotez reddedleblr 1

22 Yıl Tasarruf Gelr

23 Tasarruf 1654 Gelr Gelr bağımsız değşkenne göre tasarrufu da sıralıyoruz.

24 n 1 Tasarrfuf Gelr n Tasarrfuf Gelr Gelre göre sırandı. Ortadan 31/4=8 veya 9 gözlem çıkarılacak. İk alt grup oluşturuldu.

25 S X 1 e 1 (189.4) (0.015) S X (709.8) (0.0) e

26 f 1 =f =(n-c-k)/=9 sd de F tab =3.18 F test e e

27 Goldfeld-Quandt Test lnmaas = b 1 + b Yıl + b 3 Yıl Dependent Varable: lnmaas Included observatons: Varable Coeffcent Std. Error t-statstc Prob. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regresson Akake nfo crteron Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

28 Goldfeld-Quandt Test 1.alt örnek sonuçları: Dependent Varable: lnmaas Sample: 1 75 Included observatons: 75 Varable Coeffcent Std. Error t-statstc Prob. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regresson Akake nfo crteron Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

29 Goldfeld-Quandt Test.Altörnek Sonuçları: Dependent Varable: lnmaas Sample: 148 Included observatons: 75 Varable Coeffcent Std. Error t-statstc Prob. C Yıl Yıl R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regresson Akake nfo crteron Sum squared resd Schwarz crteron Log lkelhood F-statstc Durbn-Watson stat Prob(F-statstc)

30 Goldfeld-Quandt Test 1.Aşama.Aşama H 0 : Eşt Varyans H 1 : Farklı Varyans a = 0.05 ( 7.3) f f 1.43<F tab < Aşama e e Fhes 1? = Aşama F hes > F tab H 0 hpotez reddedleblr 30

31 Breusch Pagan Test Y = b 1 + b X + b 3 X b k X k +u (1) 1.Aşama (1) Nolu denklem EKKY le tahmn edlp. e 1. e...e n örnek hata termler hesaplanır. Bu e lerden hareketle e s hesaplanır. n.aşama p e s 3.Aşama p = a 1 + a Z + a 3 Z a m Z m +v () RBD =? 31

32 4.Aşama Breusch Pagan Test p = a 1 + a Z + a 3 Z a m Z m +v () 1 (RBD) m 1 m: () nolu denklemdek parametre sayısı 5.Aşama H 0 : a = a 3 =..=a m = 0 (Eşt varyans) H 1 : En az br sıfırdan farklıdır. (Farklı varyans) hes tab H 0 reddedlr. 3

33 Breusch Pagan Test Yıllar GSMH IT et Yıllar GSMH IT et IT: İthalat IT GSMH e

34 Breusch Pagan Test 1.Aşama.Aşama e s n 0 p e s p p

35 Breusch Pagan Test 3.Aşama p GSMH e R RBD = Aşama 1 (RBD).95 m 1 1, Aşama H 0 : a = a 3 =..=a m = 0 (Eşt varyans) H 1 : En az br sıfırdan farklıdır. (Farklı varyans) H 0 reddedlemez. hes tab 35

36 Glejser Farklı Varyans Test 1.Aşama: Y le X (veya X ler) arasındak lşk tahmn edlerek, lgl örnek hata termler e ler bulunur..aşama: s le lşkl olduğu düşünülen bağımsız değşken çn aşağıdak modeller denenmektedr. e a ax v e a a X v e a ax v 1 e a a v X 1 e a a v X e a a X v 36

37 Glejser Farklı Varyans Test 3.Aşama: Korelasyon katsayısı ve a ların standat hata değerlerne göre en uyun model seçlp H 0 : a = 0 H 1 : a 0 test edlr. 4.Aşama: H 0 kabul edlrse eşt varyans gerçeklemştr sonucuna varılır. 37

38 Glejser Farklı Varyans Test 1.Aşama: Yıllar GSMH IT et Yıllar GSMH IT et IT: İthalat IT GSMH e

39 Glejser Farklı Varyans Test.Aşama: e GSMH t (0.5795) (1.315) prob (0.5694) (0.058) 3.Aşama: H 0 : a = 0 H 1 : a 0 4.Aşama: prob = > 0.05 H 0 reddedlemez. Eşt varyans gerçekleşmştr. 39

40 Whte Test Y = b 1 + b X + b 3 X 3 + u Whte Test çn yardımcı regresyon: u = a 1 + a X + a 3 X 3 + a 4 X + a 5 X 3 + a 6 X X 3 + v R y =? Whte Test Aşamaları: 1.Aşama H 0 : a = a 3 = a 4 = a 5 = a 6 =0 H 1 : a lern en az br tanes anlamlıdır.aşama a =? s.d.= k-1 tab=? 3.Aşama W= n.r y =? 4.Aşama W > tab H 0 hpotez reddedleblr 40

41 Whte Test lnmaaş = yıl yıl Whte Test çn yardımcı regresyon: e = Yıl Yıl Yıl Yıl 4 R y = Aşama H 0 : a = a 3 = a 4 = a 5 =0 ; H 1 : a lern en az br tanes anlamlıdır.aşama a = 0.05 s.d.=5-1=4 tab= Aşama W= n.r y = (0.0901)= Aşama W > tab H 0 hpotez reddedleblr 41

42 Lagrange Çarpanları(LM) Test Y = b 1 + b X + b 3 X 3 + u LM test çn yardımcı regresyon: e a * b Ŷ v LM Test Aşamaları: 1.Aşama H 0 : b = 0 H 1 : b0.aşama a =? s.d.= 1 * R y =? tab=? 3.Aşama LM= n.r y =? 4.Aşama LM > tab H 0 hpotez reddedleblr 4

43 Lagrange Çarpanları(LM) Test lnmaaş = yıl yıl LM Test çn yardımcı regresyon: e = (lnmaas-tah) R y = Aşama H 0 : b = 0 H 1 : b0.aşama a = 0.05 s.d.=1 tab= Aşama LM= n.r y = (0.0537)= Aşama LM > tab H 0 hpotez reddedleblr 43

44 Ramsey Reset Test Y = b 1 + b X + b 3 X b k X k + u 1.Aşama: Ramsey Reset test çn yardımcı regresyon: e a a Y v 1 ˆ.Aşama: H 0 : a = 0 (Eşt Varyans) H 1 : a 0 (Farklı Varyans) Hpotezler a hata payı le t tablosundan bulunacak değer le karşılaştırılır. 3.Aşama: t hes > t tab H 0 reddedlr. 44

45 Ramsey Reset Test 1.Aşama: IT GSMH e Yˆ t (1.17) (0.514) prob (0.74) (0.613).Aşama: H 0 : a = 0 (Eşt Varyans) H 1 : a 0 (Farklı Varyans) 45

46 Ramsey Reset Test 3.Aşama: t tab = t n-k,a = t 0-, 0.05 = Aşama: t hesap = < t tab =.101 H o reddedlemez 46

47 Park Test s s Xe v ln s lns ln X v s blnmedğnden bunun yerne hata kareler toplamı e kullanılır. ln e lns lnx v lns a ln e a lnx v 47

48 Park Test 1.Aşama: ln e a lnx v.aşama: H 0 : = 0 (Eşt Varyans) H 0 : 0 (Farklı Varyans) 3.Aşama: t hes > t tab H 0 reddedlr. 48

49 Park Test 1.Aşama: ln e ln X t (-.867) (.869) prob (0.010) (0.0107).Aşama: H 0 : = 0 (Eşt Varyans) H 0 : 0 (Farklı Varyans) 3.Aşama: t tab = t 18, 0.01 =.878???????? t hes < t tab H 0 reddedlemez. 49

50 UYGULAMA: 3 alenn yıllık gıda harcamaları (Y) ve aylık ortalama gelrler (X) aşağıda verlmştr. Ale Sayısı Y X u Ale Sayısı Y X u

51 UYGULAMA: Y = X + model çn sabt varyans varsayımının geçerl olup olmadığını Grafk Yöntemle. Sıra Korelasyonu test le. Goldfeld-Quandt test le. Breusch Pagan test le. Glejser Test le. Whte test le. Lagrange çarpanları test le Ramsey Reset test le Park test le. 51

52 Grafk Yöntem 5

53 Sıra Korelasyonu Test 1.Aşama H 0 : r = 0 H 1 : r 0.Aşama a = 0.05 s.d.=? 3.Aşama t hes r s n 1 r s? t tab =? d rs 1 6 n(n 1)? 4.Aşama t hes > t tab H 0 hpotez reddedleblr 53

54 Sıra Korelasyonu Test 1 6 d n(n 1) r s (3 1) 1.Aşama H 0 : r = 0 H 1 : r 0.Aşama a = 0.05 s.d.= 30 t tab =.04 t hes (0.3347) = Aşama t hes < t tab H 0 hpotez reddedlemez. 54

55 Goldfeld-Quandt Test c = 3 / 5 = gözlem atılacak. ( gözlemler) 13 gözlemden oluşan k grup çn modeller gözlemler çn Y = X e gözlemler çn Y = X e

56 1.Aşama Goldfeld-Quandt Test H 0 : Eşt Varyans H 1 : Farklı Varyans.Aşama a = Aşama e F e hes 1 (3 6 *) f1 f 11 F tab =.8 4.Aşama F hes > F tab H 0 hpotez reddedleblr 56

57 Breusch Pagan Test Y X e Aşama e s n Aşama p e s 57

58 Breusch Pagan Test 3.Aşama p X e R RBD = Aşama 1 (RBD) 6.56 m 1 1, Aşama H 0 : a = a 3 =..=a m = 0 (Eşt varyans) H 1 : En az br sıfırdan farklıdır. (Farklı varyans) H 0 reddedleblr. hes tab 58

59 Glejser Farklı Varyans Test 1.Aşama: e X t (.0565) (.599).Aşama: H 0 : a = 0 H 1 : a 0 3.Aşama: a = 0.05 n k = 3 =30 t tab =.04 4.Aşama: t hes > t tab H 0 reddedleblr. Eşt varyans gerçekleşmemştr. 59

60 Y X Whte Test Whte Test çn yardımcı regresyon: e = X X R y = Aşama H 0 : a = a 3 = 0 ; H 1 : a lern en az br tanes anlamlıdır.aşama a = 0.05 s.d.=3-1= tab= Aşama W= n.r y = 3(0.96) = Aşama W > tab H 0 hpotez reddedleblr 60

61 Lagrange Çarpanları(LM) Test Y X LM Test çn yardımcı regresyon: e Y R y = Aşama H 0 : b = 0 H 1 : b0.aşama a = 0.05 s.d.=-1=1 tab= Aşama LM= n.r y = 3(0.01) = Aşama LM > tab H 0 hpotez reddedleblr 61

62 Ramsey Reset Test 1.Aşama: Y X e Yˆ t (0.51) (.753) prob (0.605) (0.009).Aşama: H 0 : a = 0 (Eşt Varyans) H 1 : a 0 (Farklı Varyans) 3.Aşama: t hes > t tab H 0 reddedlr. 6

63 Ramsey Reset Test 3.Aşama: t tab = t n-k,a = t 3-, 0.05 =.04 4.Aşama: t hesap =.753 > t tab =.04 H 0 reddedleblr. 63

64 Park Test 1.Aşama: ln e ln X t (-1.765) (1.3113) prob (0.088) (0.1997).Aşama: H 0 : = 0 (Eşt Varyans) H 0 : 0 (Farklı Varyans) 3.Aşama: t tab = t 3-=30, 0.05 =.04 t hes < t tab H 0 reddedlemez. 64

65 FARKLI VARYANSI ORTADAN KALDIRMA s YOLLARI Farklı varyans durumunda EKKY tahmncler etknlk özellklern kaybettklernden güvenlr değldrler. Bu sebeple farklı varyans ortadan kaldırılmadan EKKY uygulanmamalıdır. Y lern (veya u lern) farklı varyansları s nn blnp blnmemesne göre farklı varyansı kaldıran k yol vardır: nn BİLİNMESİ HALİ s nn BİLİNMEMESİ HALİ

66 nn BİLİNMESİ HALİ s Y = b 1 + b X + u s 1 u X b 1 b Y s s s s u E 1 u E s s 1 1 s s * * * * * 1 Y b b X u Genelleştrlmş EKKY(GEKKY)

67 Genelleştrlmş EKKY(GEKKY) Sabt term yoktur. İk tane bağımsız değşken vardır. Y s b 1 1 s b X s u s

68 Genelleştrlmş EKKY(GEKKY) * * * * * 1 Y b b X e e * e s * * 1 e Y b b X mn * * * * * e s Y s b1 1 s b X s w 1s * * 1 w e w Y b b X

69 Genelleştrlmş EKKY(GEKKY) w e b 0 * 1 w e b 0 * * * 1 w e b w Y b b X 1 * 1 * * 1 w e b w Y b b X X * * * 1 w Y b w b w X * * * * 1 b Y b X * * 1 w X Y b w X b w X b w wxy wx wy w wx wx * Y * w Y w X * w X w

70 EKKY ve GEKKY Arasındak Fark EKKY e Y b b X 1 mn GEKKY * * we w Y b1 bx w 1s mn

71 s nn BİLİNMEMESİ HALİ 1.HAL: LOGARİTMİK DÖNÜŞÜMLER Y b1 bx u lny lnb1 b lnx v.hal: Eu Y b1 bx u s s X Y X b 1 X b X 1 X u X 1 b 1 1 X b v 1 E v E u X 1 X E u s X s X

72 s nn BİLİNMEMESİ HALİ 3.HAL: Eu s s X Y b1 bx u Y X b 1 X b X 1 X u X 1 b1 1 X b X v s E v E u X 1 X E u 1 X X s

73 s nn BİLİNMEMESİ HALİ E u s s a a X 4.HAL: E u s 0 1 s f (X) f X a a X a a X Y b1 bx u 0 1 a a X bölünür

74 s nn BİLİNMEMESİ HALİ E u s s E Y 5.HAL: Y b1 bx u Y E Y b E Y b X E Y u E Y 1 b 1 EY b X EY v 1

75 UYGULAMA: 3 alenn yıllık gıda harcamaları (Y) ve aylık ortalama gelrler (X) aşağıda verlmştr. Ale Sayısı Y X u Ale Sayısı Y X u

76 1.HAL: LOGARİTMİK DÖNÜŞÜMLER ln Y ln X t (1.5691) (8.1077) prob (0.171) (0.0000) ln e ln Y R R Aşama H 0 : b = 0 H 1 : b 0.Aşama a = 0.05 s.d.=-1=1 tab= Aşama LM= n.r y = 3(0.0178) = Aşama LM < tab H 0 hpotez reddedlemez.

77 .HAL: Eu s s X Y X X t (5.151) (8.109) prob (0.000) (0.000) e Y R R Aşama H 0 : b = 0 H 1 : b 0.Aşama a = 0.05 s.d.=-1=1 tab= Aşama LM= n.r y = 3(0.0509) = Aşama LM < tab H 0 hpotez reddedlemez.

78 3.HAL: Eu s s X Y X.46 1 X X t (-4.686) (15.337) prob (0.001) (0.000) R e Y 1.Aşama H 0 : b = 0 H 1 : b 0 R Aşama a = 0.05 s.d.=-1=1 tab= Aşama LM= n.r y = 3(0.365) = Aşama LM > tab H 0 hpotez reddedleblr.

79 E u s s E Y 5.HAL: 1 1 Y EY E Y X E Y t (5.630) (7.4167) prob (0.0000) (0.0000) R e Y R Aşama H 0 : b = 0 H 1 : b 0.Aşama a = 0.05 s.d.=-1=1 tab= Aşama LM= n.r y = 3(0.090) = Aşama LM < tab H 0 hpotez reddedlemez.

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yılları arasında Y gayri safi milli hasıla, M Para Arazı (M) ve r faiz oranı verileri aşağıda verilmiştir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatası taşıyıp taşımadığını Ramsey

Detaylı

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat

Sorunun varlığı durumunda hata terimi varyans-kovaryans matrisi Var, Cov(u) = E(uu') = σ 2 I n şeklinde yazılamıyor fakat 8. DEĞİŞEN VARYANS SORUNU (HETEROSCEDASTICITY) 8.. Değşen Varyans Sorunu Nedr? Matrslerle yan Y = β u Y = β β β 3 3 β k k u, = n genel doğrusal modeln ele alalım. Hata term çn yapılan varsayımlardan brs

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Korelasyon analizi. Korelasyon analizinin niteliği. Sınava hazırlanma süresi ile sınavdan alınan başarı arasında ilişki var mıdır?

Korelasyon analizi. Korelasyon analizinin niteliği. Sınava hazırlanma süresi ile sınavdan alınan başarı arasında ilişki var mıdır? Korelasyon analz Korelasyon analz Sınava hazırlanma süres le sınavdan alınan başarı arasında lşk var mıdır? q N sayıda öğrencnn sınava hazırlanma süreler le sınavdan aldıkları puanlar tespt edlr. Reklam

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU.HAL: Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi = b+ b2di + b3xi + ui E(Y Di =,X i) = b + b3xi E(Y Di

Detaylı

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar.

En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile

Detaylı

Tahmin Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

Tahmin Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model Tahmn Sorunu Yrd. Doç. Dr. A. Talha YALTA Ekonometr 1 Ders Notları Sürüm 2,0 (Ekm 2011) Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

Bölüm 4. Tahmin Sorunu. 4.1 Sıradan En Küçük Kareler Yöntemi. Sıradan En Küçük Kareler Yöntemi

Bölüm 4. Tahmin Sorunu. 4.1 Sıradan En Küçük Kareler Yöntemi. Sıradan En Küçük Kareler Yöntemi Bölüm 4 İk Değşkenl Bağlanım Model - Tahmn Sorunu 4.1 Sıradan En Küçük Kareler Yöntem Sıradan En Küçük Kareler Yöntem Bağlanım çözümlemesnde amaç, örneklem bağlanım şlev (ÖBİ) temel alınarak anakütle bağlanım

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR:

T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR: T.C. TRAKYA ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ GENEL EKONOMİK SORUNLAR TÜFE NİN İŞSİZLİK ÜZERİNE ETKİSİ HAZIRLAYANLAR: 2120703360 KÜBRA İNAN 2120703321 EDA ZEYNEP KAYA EDİRNE

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yllar arasnda Y gayri safi milli hasla, M Para Araz (M) ve r faiz oran verileri a#a$da verilmi#tir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatas ta#yp ta#mad$n Ramsey RESET testi

Detaylı

EKONOMETRİ I E-VİEWS UYGULAMALI VE ÇÖZÜMLÜ SORULAR

EKONOMETRİ I E-VİEWS UYGULAMALI VE ÇÖZÜMLÜ SORULAR EKONOMETRİ I E-VİEWS UYGULAMALI VE ÇÖZÜMLÜ SORULAR HATİCE ÖZKOÇ HANİFİ VAN ÖZKOÇ VAN 1 1980-2002 dönemine ait tavuk eti talebini incelemek amacıyla aşağıdaki değişkenler elde edilmiştir. Y: Kişi başına

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Kukla Değişken Nedir?

Kukla Değişken Nedir? Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

İyi Bir Modelin Özellikleri

İyi Bir Modelin Özellikleri İyi Bir Modelin Özellikleri 1. Basitlik. Belirlenmişlik 3. R ölçüsü 4. Teorik tutarlılık 5. Tahmin Gücü 1 Model Tanımlanması Araştırmada kullanılan modelin tanımlamasının doğru olduğu kabul edilmektedir..

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Savaş OKUR PARAMETRİK VE PARAMETRİK OLMAYAN BASİT DOĞRUSAL REGRESYON ANALİZ YÖNTEMLERİNİN KARŞILAŞTIRMALI OLARAK İNCELENMESİ ZOOTEKNİ ANABİLİM

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ANOVA. CRD (Completely Randomized Design)

ANOVA. CRD (Completely Randomized Design) ANOVA CRD (Completely Randomzed Desgn) Örne Problem: Kalte le blgnn, ortalama olara, br urumun üç farlı şehrde çalışanları tarafından eşt olara algılanıp algılanmadığını test etme amacıyla, bu üç şehrde

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ

YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Özet YARIPARAMETRİK KISMİ DOĞRUSAL PANEL VERİ MODELLERİYLE ULUSLAR ARASI GÖÇ Atıf EVREN *1 Elf TUNA ** Yarı parametrk panel ver modeller parametrk ve parametrk olmayan modeller br araya getren; br kısmı

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini Ekonomeri ve İsaisik Sayı:4 006-1-8 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ Whie ın Heeroskedisie Tuarlı Kovaryans Marisi Tahmini Yoluyla Heeroskedasie Alında Model Tahmini

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ

TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ TURİZM SEKTÖRÜNDE TALEP TAHMİN MODELLEMESİ *Prof. Dr. Münevver TURANLI, Arş. Gör. Elif GÜNEREN 1.Giriş Turizm sektörü; bir yandan ülkeler için önemli bir gelir kaynağı olması, diğer yandan uluslararası

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u 1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

REGRESYON ANALİZİ BÖLÜM 1-2

REGRESYON ANALİZİ BÖLÜM 1-2 REGRESYON ANALİZİ BÖLÜM 1- Yayın Tarh: 17-08-008 REGRESYON ANALİZİ NEDİR? MODELLEME 1. GİRİŞ İstatstk blmnn temel lg alanlarından br: br şans değşkennn davranışının br model kullanılarak tahmnlenmesdr.

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri

Mut Orman İşletmesinde Karaçam, Sedir ve Kızılçam Ağaç Türleri İçin Dip Çap Göğüs Çapı İlişkileri Süleyman Demrel Ünverstes, Fen Blmler Ensttüsü, 9-3,(5)- Mut Orman İşletmesnde Karaçam, Sedr ve Kızılçam Ağaç Türler İçn Dp Çap Göğüs Çapı İlşkler R.ÖZÇELİK 1 Süleyman Demrel Ünverstes Orman Fakültes Orman

Detaylı

OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression

OLS Klasik Varsayımlar. Çoklu Regresyon. Çoklu Regresyon Modellemesi. Çoklu Regresyon Modeli. Multiple Regression OLS Klasik Varsayımlar Çoklu Regresyon Multiple Regression. Lineer regresyon modeli. E(e i )=, ortalama hata sıfırdır. E(X i e i )=, bağımsız değişkenlerle hatalar arasında korelasyon mevcut değildir 4.

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

Türkiye de Süt Ürünleri Tüketim Harcamalarına Etki Eden Faktörlerin Analizi: Çoklu Heckman Örneklem Seçicilik Sistem Yaklaşımı

Türkiye de Süt Ürünleri Tüketim Harcamalarına Etki Eden Faktörlerin Analizi: Çoklu Heckman Örneklem Seçicilik Sistem Yaklaşımı Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2

KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ. Dr. Ali Rıza AKTAŞ 1 Dr. Selim Adem HATIRLI 2 Journal of Yasar Unversty 2010 3294-3319 KENTSEL ALANDA ET TALEP ANALİZİ: BATI AKDENİZ BÖLGESİ ÖRNEĞİ Dr. Al Rıza AKTAŞ 1 Dr. Selm Adem HATIRLI 2 ÖZET Bu çalışmada, Batı Akdenz Bölges kent merkezlernde

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

EKONOMETRİDE BİLGİSAYAR UYGULAMLARI EVİEWS UYGULAMA SORULARI VE CEVAPLARI

EKONOMETRİDE BİLGİSAYAR UYGULAMLARI EVİEWS UYGULAMA SORULARI VE CEVAPLARI EKONOMETRİDE BİLGİSAYAR UYGULAMLARI EVİEWS UYGULAMA SORULARI VE CEVAPLARI Aşağıdaki verileri EVIEWS paket programına aktarınız. Veri setini tanımladıktan sonra aşağıda istenen soruları bu verileri kullanarak

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı)

= P 1.Q 1 + P 2.Q P n.q n (Ürün Değeri Yaklaşımı) A.1. Mll Gelr Hesaplamaları ve Bazı Temel Kavramlar 1 Gayr Saf Yurtç Hâsıla (GSYİH GDP): Br ekonomde belrl br dönemde yerleşklern o ülkede ekonomk faalyetler sonucunda elde ettkler gelrlern toplamıdır.

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

ÖĞRENCİ SEÇME SINAVI NA HAZIRLANAN ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ (OLTU ANADOLU LİSESİ ÖĞRENCİLERİ İÇİN BİR UYGULAMA)

ÖĞRENCİ SEÇME SINAVI NA HAZIRLANAN ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ (OLTU ANADOLU LİSESİ ÖĞRENCİLERİ İÇİN BİR UYGULAMA) ÖĞRENCİ SEÇME SINAVI NA HAZIRLANAN ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ (OLTU ANADOLU LİSESİ ÖĞRENCİLERİ İÇİN BİR UYGULAMA) Hüseyin ÖZER Adem DEMİR Özet: Bu çalışmanın temel amacı,

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

BETONARME YAPI TASARIMI

BETONARME YAPI TASARIMI BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 008 GENEL BİLGİ 18 Mart 007 ve 18 Mart 008 tarhler arasında ülkemzde kaydedlen deprem etknlkler Kaynak: http://www.koer.boun.edu.tr/ssmo/map/tr/oneyear.html

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Türkiye de Bölgeler Arası Gelir Yakınsaması: Rassal Katsayılı Panel Veri Analizi Uygulaması

Türkiye de Bölgeler Arası Gelir Yakınsaması: Rassal Katsayılı Panel Veri Analizi Uygulaması Busness and Economcs Research Journal Volume 2. Number 1. 2011 pp. 143-151 ISSN: 1309-2448 www.berjournal.com Türkye de Bölgeler Arası Gelr Yakınsaması: Rassal Katsayılı Panel Ver Analz Uygulaması Fatma

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA 1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

12. HAFTA (RİSK VE GETİRİ) Prof. Dr. Yıldırım B. ÖNAL

12. HAFTA (RİSK VE GETİRİ) Prof. Dr. Yıldırım B. ÖNAL 12. HAFTA (RİSK VE GETİRİ) Prof. Dr. Yıldırım B. ÖNAL GETİRİ VE RİSK SUNUM İÇERİĞİ MENKUL KIYMETLERDE GETİRİ VE RİSK YATIRIM YAPILIRKEN GÖZ ÖNÜNDE BULUNDURULAN ETMENLER BEKLENEN GETİRİ VARYANS STANDART

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Ch. 2: Basit Regresyon Modeli

Ch. 2: Basit Regresyon Modeli Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı