TIKIZ ŞEKİL BETİMLEYİCİLERİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TIKIZ ŞEKİL BETİMLEYİCİLERİ"

Transkript

1 TIIZ ŞEİL BETİMLEYİCİLERİ Nfiz ARICA ve Ftoş YARMAN-VURAL Bildiri onusu : İMGE İŞLEME Sorumlu Yzr : Ftoş T. YARMAN-VURAL Adres : Bilgisyr Mühendisliği Bölümü Ort Doğu Teknik Üniversitesi 653 Eskişehir Yolu - ANARA Telefon : Fx : 3 59 Epost :

2 TIIZ ŞEİL BETİMLEYİCİLERİ.Giriş Nfiz ARICA ve Ftoş YARMAN-VURAL ODTÜ Bilgisyr Mühendisliği Bölümü Şekil betimleyicileri, bilgisyrl görme, imge nlizi uygulmlrınd olduğu gibi içerik tbnlı imge sklm ve sorgulm işemlerinde sıklıkl kullnılır. Bir nesnenin şekli verildiğinde veritbnınd mevcut nesneleri benzerliklerine göre en ykındn uzğ sırlmk için öncelikle iki boyutlu şekil bilgisinin sunumunun ypılmsı, dh sonr d herhngi iki sunum rsınd uzklığın ölçülmesi gerekir. Bu çlışmd, dh önce ynı yzrlr trfındn geliştirilen kerteriz tbnlı şekil sunum yöntemi [] kullnılrk iki boyutlu şekil bilgisi tek boyutlu fonksiyon dönüştürülmüş, elde edilen sunumdn tıkız öznitelik vektörü çıkrmk mcıyl Fourier Dönüşümlerinden fydlnılmıştır. Tek boyutlu şekil sunumundn öznitelik çıkrm işleminde iki değişik yöntem kullnılmıştır. Bunlrdn birincisinde, Fourier dönüşümü sonucund frekns bölgesine geçilerek öznitelik vektörü doğrudn bu bölgeden çıkrılmıştır. Söz konusu öznitelik vektörü, normlize edilmiş en düşük frekns değerlerinin ktsyılrı ile güç spektrumunun momentlerinden oluşturulmktdır. Fourier betimleyicileri ile elde edilen öznitelik vektörleri rsındki uzklık doğrudn Öklid (Eucliden) uzklık ölçümü ile hesplnmktdır. İkinci yöntem ise Fourier dönüşümü kullnrk lçk geçiren filtre ile uzy bölgesinde tek boyutlu şekil sunumunun örneklenmesini sğlr. Bu metod ile doğrudn uzy bölgesinde örnekleme ypmk yerine örnekler dh kıllı bir şekilde seçilmekte ve dolyısıyl şekil dh tıkız bir öznitelik vektörüyle betimlenmektedir. Bu yöntemde öznitelik vektörlerinin uzklığı ise esnek eşleştirme ile hesplnır. Önerilen şekil sunum yöntemi şeklin sınır bilgisinden fydlnrk şekli, insn görsel sistemiyle uyumlu tek boyutlu bir fonksiyonl ifde etmektedir. Bu çlışmd önerilen şekil betimleme yöntemleri, MPEG 7 Şekil Deneyleri (Core Experiments Shpe ) veri seti kullnılrk test edilmiş ve MPEG 7 Stndrdı için önerilmiş litertürdeki diğer yöntemlerle mukyese edilmiştir. Ypıln deneylerde Fourier betimleyicileri kullnrk geliştirilen yöntemin litertürdeki diğer çlışmlrın büyük bir kısmındn dh iyi sonuç verdiği yrıc uzklık hesbının sdece Öklid uzklık ölçümü ile ypılmsı nedeniyle büyük bir sürt kznıldığı görülmüştür. Önerilen ikinci yöntemde ise MPEG 7 veri seti üzerinde şu n kdr litertürdeki en iyi sonuçlr elde edilmiştir.. erteriz Tbnlı Şekil Sunumu Bir şekil sınırı Γ = { p,...,p N }, sırlı noktlr kümesi ile gösterilebilir. Burd N nokt syısını gösterir ve p i =p i+n dir. Algoritm bir sınır noktsını p i işlerken, söz konusu noktdn k uzklıkt önceki ve sonrki noktlrın oluşturduğu vektor setinden (kerteriz seti) fydlnır (şekil ). L ( p() i ) = { V,V } () i+ k i k Burd (V i+k ) ile (V i-k ), p i noktsını p i+k ve p i-k noktlrıyl birleştiren ileri ve geri vektörleri ifde etmektedir. p i noktsının ncı komşuluk sistemi ise şöyle tnımlnır. p( i ± ) η ( p( i )) p( i ), i =...N, =...N / ( ) Her bir komşuluk sistemi için bir vektor çifti bulunmktdır. Şekil değişik komşuluk sistemlerindeki pikselleri göstermektedir.

3 Şekil. ) p i noktsı için ileri ve geri vektörler b) omşuluk sistemi Her vektörün yptığı çı; y θ = tn i + l, l = ± k V i + l x i + l p i noktsı için k uzunluğundki ileri ve geri vektörler rsındki çı (kerteriz çısı) ise ( θ ) C (i) = θ V i k Vi + k ( 3 ) (4) şeklinde hesplnır. Bu çlışmd her bir p i noktsı için η komşuluk sistemindeki C, (i) değerinin, şekli çeşitli ölçeklerde oluşturn olsılıksl bir işlemin çıktısı olrk değerlendirilmiştir. Dolyısıyl C, (i) rstgele değişken (rndom vrible) ve P k (C, (i)) olsılıksl yoğunluk fonksiyonu (probbility density function) olrk lınmıştır. Sonuç olrk kerteriz çısı C, (i) rstgele değişkeninin momentleri şöyle ifde edilebilir. Ε m [ C ( i )] = C m P ( C ( i )) m =,,,3,... Burd momentler p i noktsındki vector çılrının isttistiksel dvrnışını göstermektedir. Sonuçt her bir sınır noktsı kerteriz çılrı momentlerinden oluşn bir vektörle betimlenebilir. Şeklin bütününe bkıldığınd her bir kerteriz çısı momenti tek boyutlu fonksiyon olrk şekli betimlemiş olur (Şekil ). Γ ( i ) = [ Ε [ C ( i )], Ε [ C ( i )],...] ( 6 ) ( 5 ) Şekil. İki boyutlu şekil bilgisinin tek boyutlu fonksiyonlrl sunumu.

4 3. Şekil Betimleyicilerinin Çıkrılmsı İki boyutlu şekil bilgisi tek boyutlu fonksiyonl ifde edildikten sonr, şekli betimleyecek öznitelik vektörünün çıkrılmsı gerekmektedir. Bu çlışmd, elde edilen sunumdn tıkız öznitelik vektörü çıkrmk mcıyl Fourier Dönüşümleri kullnılmıştır. Betimleme işleminde iki değişik yöntem geliştirilmiştir. Bunlrdn birincisi, doğrudn Fourier betimleyicileri kullnılmsı, ikincisi ise lçk geçiren filtre ile tek boyutlu şekil sunumunun örneklenmesidir. 3.. Fourier Betimleyicileri Tek boyutlu bir fonksiyon Γ(i) olrk tnımlnn bir şekilde, yrık Fourier dönüşümü n N i= = Γ ( i )exp( jπ i / N ) N (7 ) ile ifde edilir. Dh sonr ktsyılr n n=,,, N, şeklin Fourier betimleyicilerinin çıkrılmsınd kullnılır. Fourier dönüşümü tek boyutlu fonksiyond ikinin üzeri ( n ) syıd örnek lınrk Hızlı Fourier Dönüşümü (FFT) lgoritmsıyl verimli bir şekilde ypılbilir. Bşlngıç noktsın değişimsizlik, fz bilgisini dikkte lmyıp sdece genlik bilgisini kullnrk sğlnır. Ölçek değişimsizliği ise ktsyı genliklerinin DC bileşene ( ) bölünerek normlize edilmesiyle sğlnır. Bu çlışmd, Fourier dönüşümü sonucund elde edilen en düşük frekns ship T ktsyı genliği ile tüm güç spektrumunun birinci ve ikinci momentleri öznitelik vektörünü oluşturmktdır. F = T [ m,m, f, f,..., f ] = m,m,,,... ( 8 ) T Burd m ve m frekns bölgesinde güç spektrumu mometlerini, i ise Fourier ktsyılrını göstermektedir. Her bir kerteriz çısı moment fonksiyonu (C m (i)) için yrı yrı Fourier betimleyicileri çıkrılrk birleştirilir ve tüm şeklin öznitelik vektörü elde edilmiş olur. İki şekil rsındki benzerlik, şekillerin Fourier betimleyicileri rsınd Öklid uzklık ölçümü yöntemiyle hesplnır. 3.. Alçk Geçiren Filtre ile Örnekleme erteriz çısı moment fonksiyonund betimleme çıkrmnın en bsit yolu fonksiyon üzerinde eşit rlıklrl örnekleme ypmktır. Anck bu yöntemde örnekleme syısı zldıkç şeklin önemli görsel prçlrın it bilgi kybolmktdır. Bu sebeple, örnek noktlrın dh kıllı bir şekilde seçilmesi ve dolyısıyl şeklin dh tıkız bir öznitelik vektörüyle betimlenmesi mcıyl yine Fourier dönüşümlerinden fydlnılır. Fourier dönüşümü sonucund, en düşük frekns ship T ktsyı hricindeki diğer ktsyılr kırpılır. Sdece T ktsyı kullnılrk ters Fourier dönüşümü uygulnır. Tekrr uzy bölgesine geçildiğinde elimizde T uzunluğund vektör klmış olur. Sonuçt; tek boyutlu fonksiyon T örnekle betimlenir. Anck bu sefer elde edilen örnek noktlrı şeklin önemli görsel prçlrını d temsil etmiş olcktır. Sdece, lçk geçiren filtre uygulndığı için kerteriz çısı moment fonksiyonund yumuştm işlemi ypılmış olcktır. Bu yöntemde şekil benzerliği, iki şekil rsındki uzklığı minimize eden vector elemnlrının optiml eşleşmesi bulunrk hesplnır. Bunun için esnek eşleşme lgoritmsı kullnılmktdır.

5 4. Deneyler Geliştirilen şekil betimleyicileri MPEG-7 stndrtlrının belirlenmesinde kullnıln (Shpe Core Experiments ) test şekillerinde denenmiştir. Deneylerde, önerilen şekil betimleme yöntemleri litertürdeki diğer çlışmlrl mukyese edilmiştir. Söz konusu mukyese ynı veri seti üzeinde elde edilen bşrı ornlrı bzınd ypılmıştır. Fourier betimleyicileri litertürdeki yöntemler rsınd en iyi dördüncü sıryı lmktdır. Alçk geçiren filtre yöntemiyle örnekleme yöntemi ise diğer tüm çlışmlrı geride bırkmıştır. Ayrıntılı deney sonuçlrı mklede nltılcktır. Refernslr : [] Nfiz Arıc, Ftoş T. Yrmn-Vurl BAS: A Perceptul Shpe Descriptor Bsed On The Bem Angle Sttistics Pttern recognition Letters, vol:4/9- pp (to pper)

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILAN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ

BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILAN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILAN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ Sinn ALTIN 1, Özgür ANIL 2, M. Emin KARA 3 1 İnşt Müh. Böl. Prof. Dr., Gzi Üniversitesi, Mltepe, Ankr, Türkiye, 06570

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ

3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ 3N MOBİL HABERLEŞME HİZMETLERİNDE HİZMET KALİTESİ ÖLÇÜTLERİNİN ELDE EDİLMESİNE İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Aç, Kps, Dynk, Tnılr ve Kısltlr Aç MADDE 1 (1) Bu Tebliğin cı, IMT 2000/UMTS Altypılrının Kurulsı

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8 BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8 BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL ÇERÇEVELĐ, DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL MERKEZĐ ÇAPRAZ PERDELĐ ÇELĐK ENDÜSTRĐ BĐNASININ TASARIMI

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2002 : 8 : 1 : 42-51 BSD

Detaylı

Şekil 13.1 Genel Sistem Görünüşü 13/1

Şekil 13.1 Genel Sistem Görünüşü 13/1 ÖRNEK 13: BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL ÇERÇEVELERDEN DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL MERKEZĐ ÇELĐK ÇAPRAZLI PERDELERDEN OLUŞAN TEK KATLI ÇELĐK ENDÜSTRĐ BĐNASI 13.1 Sistem Üç boyutlu genel

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pmukkle Univ Muh Bilim Derg, 22(2), -5, 26 Pmukkle Üniversitesi Mühendislik Bilimleri Dergisi Pmukkle University Journl of Engineering Sciences Türkçe ses tnım sistemlerinde dil modeli boyutunun doğruluk

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

MAK 1005 Bilgisayar Programlamaya Giriş. Diziler. Prof. Dr. Necmettin Kaya

MAK 1005 Bilgisayar Programlamaya Giriş. Diziler. Prof. Dr. Necmettin Kaya MAK 1005 Bilgisyr Progrmlmy Giriş Diziler Prof. Dr. Necmettin Ky DİZİ: Bir değişken içinde birden fzl ynı tip veriyi sklmk için kullnıln veri tipidir. Dizi elemnlrı indis numrsı (sır no) ile çğrılıp işlenirler.

Detaylı

Harita Dik Koordinat Sistemi

Harita Dik Koordinat Sistemi Hrit Dik Koordint Sistemi Noktlrın ir düzlem içinde irirlerine göre konumlrını elirlemek için, iririni dik çı ltınd kesen iki doğru kullnılır. Bun dik koordint sistemi denir. + X (sis) Açı üyütme Yönü

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

BASİT HARMONİK HAREKETTE DEĞİŞEN SAYISAL VERİLERİN İNCELENMESİ

BASİT HARMONİK HAREKETTE DEĞİŞEN SAYISAL VERİLERİN İNCELENMESİ BASİT HARMONİK HAREKETTE DEĞİŞEN SAYISAL VERİLERİN İNCELENMESİ Seher Küçüközkn 1, Sibel Bulut 2, Gülsemin Şhin 3 1 Aşçı Bekirliköyü İÖO, Pozntı, Adn 2 Cumhuriyet YİBO, Kht, Adıymn 3 Akmeşe YİBO, Koceli

Detaylı

İnşaat Sektörüne Özgü İş Güvenliği Yönetim Sisteminin Aksiyomatik Tasarım İlkeleriyle Oluşturulması

İnşaat Sektörüne Özgü İş Güvenliği Yönetim Sisteminin Aksiyomatik Tasarım İlkeleriyle Oluşturulması İnşt Sektörüne Özgü İş Güvenliği Yönetim Sisteminin Aksiyomtik Tsrım İlkeleriyle Oluşturulmsı Öğr. Gr. Mert UZUN (mertuzunn@gmil.com) Doç. Dr. Selçuk ÇEBİ (scebi@yildiz.edu.tr) İçindekiler Amç Yöntem Bulgulr

Detaylı

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz.

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz. ELEKTRİK-ELEKTRONİK DERSİ VİZE SORU ÖRNEKLERİ Şekiller üzerindeki renkli işretlemeler soruy değil çözüme ittir: Mviler ilk şmd sgri bğımsız denklem çözmek için ypıln tnımlrı, Kırmızılr sonrki şmd güç dengesi

Detaylı

*Corresponding Author Tel.:+90-332-223 19 42; fax:+90-332-241 06 35 E-mail:fyildiz@selcuk.edu.tr

*Corresponding Author Tel.:+90-332-223 19 42; fax:+90-332-241 06 35 E-mail:fyildiz@selcuk.edu.tr Selçuk Üniversitesi ISSN 130/6178 Journl of Technicl-Online Volume 10, Number:1-011 Cilt 10, Syı:1-011 ÇAPRAZ İLİŞKİ METODUYLA İRİS TANIMA Ferruh YILDIZ,*, Nurdn Akhn BAYKAN b Selçuk Üniversitesi, Hrit

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya

SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI. Saim KOÇAK. S. Ü. Mühendislik - Mimarlık Fakültesi Makina Mühendisliği Bölümü, Kampüs Konya TEKNOLOJİ, (00), Syı -, 9-5 TEKNOLOJİ SANTRİFÜJ KOMPRESÖR ÇARKININ ÖN TASARIMI Sim KOÇAK S. Ü. Mühendislik - Mimrlık Fkültesi Mkin Mühendisliği Bölümü, Kmpüs Kony ÖZET Sntrifüj kompresörü çrkınd ön tsrımın

Detaylı

Demiryolu Titreşimlerinin Konfora Etkisinin Örnek Hatlarda İncelenmesi *

Demiryolu Titreşimlerinin Konfora Etkisinin Örnek Hatlarda İncelenmesi * KISA BİLDİRİ İMO Teknik Dergi, 009 4811-4815, Yzı 314, Kıs Bildiri Demiryolu Titreşimlerinin Konfor Etkisinin Örnek Htlrd İncelenmesi * Zübeyde ÖZTÜRK* Turgut ÖZTÜRK** Hluk EROL*** Veysel ARLI**** ÖZ

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ

TEST 16-1 KONU DÜZLEM AYNA. Çözümlerİ ÇÖZÜMLERİ OU 6 Ü Çözümler. TST 6-,7 ÇÖÜR,6 5. Bir cismin görüntüsünün nerede görüneceğini bkn kişinin bulunduğu yer belirlemez. nin görüntüsü nolu noktd olduğu için her iki gözlemci ynı yerde görür. V 3,5 6. 7 kez

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

DEĞİŞİK UYGULAMALARIN ÇİLEK AKENLERİNİN ÇİMLENMESİ ÜZERİNE ETKİLERİ

DEĞİŞİK UYGULAMALARIN ÇİLEK AKENLERİNİN ÇİMLENMESİ ÜZERİNE ETKİLERİ Btı Akdeniz Trımsl Arştırm Enstitüsü Derim Dergisi, 2009,26(2):1-10 ISSN 1300-3496 DEĞİŞİK UYGULAMALARIN ÇİLEK AKENLERİNİN ÇİMLENMESİ ÜZERİNE ETKİLERİ Nfiye ADAK Mustf PEKMEZCİ Hmide GÜBBÜK Akdeniz Üniversitesi

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Sayı Kümeleri ve Koordinatlar

Sayı Kümeleri ve Koordinatlar DERS 1 Sı Kümeleri ve Koordintlr 1.1 Kümeler. Mtemtiğin temel kvrmlrındn biri küme kvrmıdır. Okuucunun küme kvrmın bncı olmıp kümelerle ilgili temel işlemleri bildiğini kbul edioruz. Bununl berber kümelerle

Detaylı

İntegralin Uygulamaları

İntegralin Uygulamaları Bölüm İntegrlin Uygulmlrı. Aln f ve g, [, b] rlığındki her x için f(x) g(x) eşitsizliğini sğlyn sürekli fonksiyonlr olmk üzere y = f(x), y = g(x) eğrileri, x = ve x = b düşey doğrulrı rsındki S bölgesini

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü

TEST 17-1 KONU KÜRESEL AYNALAR. Çözümlerİ ÇÖZÜMLERİ 6. K Çukur aynada cisim merkezin dışında ise görüntü OU 17 ÜRS R - - - - Çözümler S 17-1 ÇÖÜR 5. α 1. - - - - ve ynlış çizilmiş olup doğru çizimleri yukrıd verilmiştir.. sü ise doğru çizilmiştir. Cevp: Odk nin sğınddır. den çizilen doğru normldir. Bundn

Detaylı

GERÇEK DEPREM KAYITLARININ TASARIM SPEKTRUMLARINA UYGUN OLARAK ZAMAN VE FREKANS TANIM ALANLARINDA ÖLÇEKLEME YÖNTEMLERİNİN KARŞILAŞTIRILMASI

GERÇEK DEPREM KAYITLARININ TASARIM SPEKTRUMLARINA UYGUN OLARAK ZAMAN VE FREKANS TANIM ALANLARINDA ÖLÇEKLEME YÖNTEMLERİNİN KARŞILAŞTIRILMASI Altıncı Ulusl Deprem Mühendisliği Konfernsı, 16-20 Ekim 2007, İstnbul Sixth Ntionl Conference on Erthquke Engineering, 16-20 October 2007, Istnbul, Turkey GERÇEK DEPREM KAYITLARININ TASARIM SPEKTRUMLARINA

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü JFM316 ELEKTRİK YÖNTEMLER LİSANS DERS NOTU. Prof. Dr. M.

Ankara Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü JFM316 ELEKTRİK YÖNTEMLER LİSANS DERS NOTU. Prof. Dr. M. Ankr Üniversitesi Mühendislik Fkültesi Jeofizik Mühendisliği Bölümü JFM316 ELEKTRİK YÖNTEMLER LİSANS DERS NOTU Prof. Dr. M. Emin CANDANSAYAR Ankr Üniv.,Müh. Fk., Jeofizik Müh. Böl., 06100, Beşevler-Ankr.

Detaylı

TEKRARLI YÜK ETKİSİNDE KİL ZEMİNLERİN LİNEER OLMAYAN ELASTİK DAVRANIŞI

TEKRARLI YÜK ETKİSİNDE KİL ZEMİNLERİN LİNEER OLMAYAN ELASTİK DAVRANIŞI Eskişehir Osmngzi Üniversitesi Mühendislik Mimrlık Fkültesi Dergisi Cilt:XXII, Syı:1, 009 Journl of Engineering nd Architecture Fculty of Eskişehir Osmngzi University, Vol: XXII, No:1, 009 Mklenin Geliş

Detaylı

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 7

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 7 BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 7 BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ YÜKSEK ÇERÇEVELĐ, DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ YÜKSEK DIŞMERKEZ ÇAPRAZ PERDELĐ ÇELĐK BĐNANIN TASARIMI 7.1.

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

DENEY 2 Wheatstone Köprüsü

DENEY 2 Wheatstone Köprüsü 0-05 Güz ULUDĞ ÜNİESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ÖLÜMÜ EEM0 Elektrik Devreleri Lorturı I 0-05 DENEY Whetstone Köprüsü Deneyi Ypnın Değerlendirme dı Soydı : Deney Sonuçlrı (0/00)

Detaylı

Sosyal Harcamalar ve İktisadi Büyüme İlişkisi: Türkiye Ekonomisinde 1960 2005 Dönemine Yönelik Bir Dinamik Analiz

Sosyal Harcamalar ve İktisadi Büyüme İlişkisi: Türkiye Ekonomisinde 1960 2005 Dönemine Yönelik Bir Dinamik Analiz Sosyl Hrcmlr ve İktisdi Büyüme İlişkisi: Türkiye Ekonomisinde 1960 2005 Dönemine Yönelik Bir Dinmik Anliz Sosyl Hrcmlr ve İktisdi Büyüme İlişkisi: Türkiye Ekonomisinde 1960 2005 Dönemine Yönelik Bir Dinmik

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

Bulanık Mantık ve Lojistik Regresyon Yöntemleri ile Ulaşım Ağlarında Geçki Seçim Davranışının Modellenmesi *

Bulanık Mantık ve Lojistik Regresyon Yöntemleri ile Ulaşım Ağlarında Geçki Seçim Davranışının Modellenmesi * İMO Teknik Dergi, 2008 4363-4379, Yzı 288 Bulnık Mntık ve Lojistik Regresyon Yöntemleri ile Ulşım Ağlrınd Geçki Seçim Dvrnışının Modellenmesi * Y. Şzi MURAT* Nurcn ULUDAĞ** ÖZ Geçki seçim problemi, bir

Detaylı

BANKA KARLILIK PERFORMANSININ ANALİTİK HİYERARŞİ SÜRECİ İLE DEĞERLENDİRİLMESİ: TİCARİ BANKALAR İLE KATILIM BANKALARINDA BİR UYGULAMA

BANKA KARLILIK PERFORMANSININ ANALİTİK HİYERARŞİ SÜRECİ İLE DEĞERLENDİRİLMESİ: TİCARİ BANKALAR İLE KATILIM BANKALARINDA BİR UYGULAMA BANKA KARLILIK PERFORMANSININ ANALİTİK HİYERARŞİ SÜRECİ İLE DEĞERLENDİRİLMESİ: TİCARİ BANKALAR İLE KATILIM BANKALARINDA BİR UYGULAMA Yrd. Doç. Dr. Ali Cüneyt ÇETİN Süleymn Demirel Üniversitesi, İİBF, etin@iibf.sdu.edu.tr

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

Depolama Süresinin Bazı Hıyar Çeşitlerinde Mekanik Özelliklere Olan Etkisinin Belirlenmesi *

Depolama Süresinin Bazı Hıyar Çeşitlerinde Mekanik Özelliklere Olan Etkisinin Belirlenmesi * TRIM BİLİMLERİ DERGİSİ 5, (3) 5-56 Depolm Süresinin Bzı Hıyr Çeşitlerinde Meknik Özelliklere Oln Etkisinin Belirlenmesi * Yeşim Benl YURTLU Doğn ERDOĞN Geliş Trihi: 5.. 5 Öz: Bu çlışmd, bzı hıyr çeşitlerinde

Detaylı

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2

Vektör - Kuvvet. Test 1 in Çözümleri 5. A) B) C) I. grubun oyunu kazanabilmesi için F 1. kuvvetinin F 2 7 Vektör - uvvet 1 Test 1 in Çözümleri 5. A) B) C) 1. 1 2 I. grubun oyunu kznbilmesi için 1 kuvvetinin 2 den büyük olmsı gerekir. A seçeneğinde her iki grubun uyguldığı kuvvetler eşittir. + + + D) E) 2.

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar

Kristal yapı, atomların üç boyutta belirli bir geometrik düzene göre yerleştiği yapılardır. Kristal Yapılar Kristl Ypılr Kristl ypı Kristl ypı, tomlrın üç boyutt belirli bir geometrik düzene göre yerleştiği ypılrdır. Kristl Ypılr Amorf ypılı Kristl ypılı Amorf ypı, düzensiz ktılşmış mikroypılrdır, bütün doğl

Detaylı

Velilere Yönelik Soru Formu

Velilere Yönelik Soru Formu Velilere Yönelik Soru Formu Eğitim Stndrtlrı Pilot Çlışmsı 4. Sınıf Mtemtik Okul Sınıf Öğrenci Sevgili veliler, Sevgili velyet shipleri, Çocuğunuzun sınıfı, mtemtik eğitim stndrtlrın ilişkin bir pilot

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi Süleymn Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 19, Syı 3, 92-97, 2015 Süleymn Demirel University Journl of Nturl nd Applied Sciences Volume 19, Issue 3, 92-97, 2015 DOI: 10.19113/sdufed.04496

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi Algoritm Geliştirme ve Veri Ypılrı 4 Algoritm ve Yzılımın Şekilsel Gösterimi Mustf Keml Üniversitesi Algoritm ve Yzılımın Şekilsel Gösterimi Algoritmik progrm tsrımı, verilen ir prolemin ilgisyr ortmınd

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

Kelime (Text) İşleme Algoritmaları

Kelime (Text) İşleme Algoritmaları Kelime (Text) İşleme Algoritmlrı Doç.Dr.Bnu Diri Trie Ağcı Sonek Ağcı (Suffix Tree) Longest Common String (LCS) Minimum Edit Distnce 1 Ağçlrın Bğlı Ypısı Düğüm (node), çeşitli ilgiler ile ifde edilen ir

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 5 ĐKĐ DOĞRULTUDA SÜNEKLĐK DÜZEYĐ YÜKSEK ÇERÇEVELĐ ÇELĐK BĐNANIN TASARIMI

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 5 ĐKĐ DOĞRULTUDA SÜNEKLĐK DÜZEYĐ YÜKSEK ÇERÇEVELĐ ÇELĐK BĐNANIN TASARIMI BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 5 ĐKĐ DOĞRULTUDA SÜNEKLĐK DÜZEYĐ YÜKSEK ÇERÇEVELĐ ÇELĐK BĐNANIN TASARIMI 5.1. SĐSTEM... 5/ 5.. YÜKLER... 5/4 5..1. Düşey Yükler... 5/4 5... Deprem

Detaylı

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri

İlişkisel Veri Modeli. İlişkisel Cebir İşlemleri İlişkisel Veri Modeli İlişkisel Cebir İşlemleri Veri işleme (Mnipultion) işlemleri (İlişkisel Cebir İşlemleri) Seçme (select) işlemi Projeksiyon (project) işlemi Krtezyen çrpım (crtesin product) işlemi

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II

BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 330/336 FOTOGRAMETRİ II FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - SAYISAL TEK RESİM DEĞERLENDİRMESİ Yrd. Doç. Dr. Sygın Abdikn BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF 33/336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

LOJİK DEVRELERDE SORUNLAR ve GİDERİLMESİ

LOJİK DEVRELERDE SORUNLAR ve GİDERİLMESİ Krdeniz Teknik Üniversitesi Bilgisyr Mühendisliği Bölümü Syısl Tsrım Lorturı LOJİK DEVRELERDE SORUNLAR ve GİDERİLMESİ 1. Giriş Şimdiye kdr ypıln teorik kominsyonel devre tsrımlrınd girişe uygulnn tüm işretlerin

Detaylı

TÜRKİYE DE BÜYÜK VE ORTA ÖLÇEKLİ HARİTA YAPIMINDA KULLANILAN PROJEKSİYON SİSTEMLERİ

TÜRKİYE DE BÜYÜK VE ORTA ÖLÇEKLİ HARİTA YAPIMINDA KULLANILAN PROJEKSİYON SİSTEMLERİ TMMOB Hrit ve Kdstro Mühendisleri Odsı, 16. Türkiye Hrit Bilimsel ve Teknik Kurultyı, -6 Myıs 17, Ankr. TÜRKİYE DE BÜYÜK VE ORTA ÖLÇEKLİ HARİTA YAPIMINDA KULLANILAN PROJEKSİYON SİSTEMLERİ İbrhim Öztuğ

Detaylı

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU

2013 YILI TÜRKİYE RADYO VE TELEVİZYON YAYINCILIĞI SEKTÖR RAPORU 2 0 1 3YI L I R KL AMV Rİ L Rİ YL T ÜRKİ Y RADY OVT L Vİ ZY ONY A YI NCI L I ĞI S KT ÖRRAPORU R A T M R A D Y OT L V İ Z Y O NY A Y I N C I L A R I M S L KB İ R L İ Ğ İ L e y l ks o k kmu r t İ ş Me r

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

Yüksek sayıda makalelerin sırrı

Yüksek sayıda makalelerin sırrı Yüksek syıd mklelerin sırrı Prof. Dr. Metin Blcı Türk ilim cmisının 2010 yılınd en çok yyın yptığı ilk 10 ilimsel derginin nlizini yptı. Bun göre toplm 21.529 mklenin %10 unun çok düşük düzeyde ve üstelik

Detaylı

KAPALI ISI DEĞİŞTİRİCİLİ TERS VE DİK AKIŞLI SOĞUTMA KULELERİNİN ISI DEĞİŞİMİ MODELLENMESİ VE DİZAYNI

KAPALI ISI DEĞİŞTİRİCİLİ TERS VE DİK AKIŞLI SOĞUTMA KULELERİNİN ISI DEĞİŞİMİ MODELLENMESİ VE DİZAYNI X. UUSA TESİSAT ÜENDİSİĞİ KONGRESİ 3/6 NİSAN 0/İZİR _ 37 KAPAI ISI DEĞİŞTİRİCİİ TERS VE DİK AKIŞI SOĞUTA KUEERİNİN ISI DEĞİŞİİ ODEENESİ VE DİZAYNI ustf Turhn ÇOBAN ÖZET Soğutm kuleleri soğutm sistemlerinin

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

Demir-Karbon (Fe-C) Alaşımları

Demir-Karbon (Fe-C) Alaşımları Demir-Krbon (Fe-C) Alşımlrı 1 Demir-Krbon (Fe-C) Alşımlrı Sıvı (L) δ-ferrit (HMK) Ostenit ( -demir), YMK α-ferrit, HMK 2 Fe-C lşımlrınd bileşim ekseni sdece %6,70 krbon ornın kdr österilir. Bu konsntrsyond

Detaylı

SIMULATION AND POWER FLOW CONTROL OF WIND-DIESEL HYBRID POWER SYSTEM

SIMULATION AND POWER FLOW CONTROL OF WIND-DIESEL HYBRID POWER SYSTEM 5. Uluslrrsı İleri Teknolojiler Sempozyumu (ITS 09), 13-15 Myıs 2009, Krük, Türkiye RÜZGR-DİESEL HİRİT GÜÇ SİSTEMİNİN SİMULSYONU VE GÜÇ KIŞI KONTROLÜ SIMULTION ND POWER FLOW ONTROL OF WIND-DIESEL HYRID

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ (ÖABT) ÇÖZÜMLERİ FİZİK

ÖĞRETMENLİK ALAN BİLGİSİ TESTİ (ÖABT) ÇÖZÜMLERİ FİZİK ÖĞRETMENİ AAN BİGİSİ TESTİ (ÖABT) ÇÖZÜMERİ FİZİ. v 0 c 0 036c c 0 ñú 0,36 3. Negtif yüklü elektroskob dokunduğund yprklr hreket etiyors nin işreti ile elektroskobun yük işretleri ve potnsiyelleri ynıdır.

Detaylı

Işığın Yansıması ve Düzlem Ayna Çözümleri

Işığın Yansıması ve Düzlem Ayna Çözümleri 2 şığın Ynsımsı ve Düzlem Ayn Çözümleri 1 Test 1 1. 38 38 52 52 Ynsıyn ışının yüzeyin normli ile yptığı çıy ynsım çısı denir. Bu durumd ynsım çısı şekilde gösterildiği gibi 38 dir. 4. şıklı cisminin ve

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı

KURUMSAL YÖNETİM-ŞİRKET PERFORMANSI İLİŞKİSİ: İMKB KURUMSAL YÖNETİM ENDEKSİ ÜZERİNE AMPİRİK BİR ÇALIŞMA

KURUMSAL YÖNETİM-ŞİRKET PERFORMANSI İLİŞKİSİ: İMKB KURUMSAL YÖNETİM ENDEKSİ ÜZERİNE AMPİRİK BİR ÇALIŞMA KURUMSAL YÖNETİMŞİRKET PERFORMANSI İLİŞKİSİ: İMKB KURUMSAL YÖNETİM ENDEKSİ ÜZERİNE AMPİRİK BİR ÇALIŞMA Doç. Dr. İlker H. ÇARIKÇI Süleymn Demirel Üniversitesi, İİBF, İşletme Bölümü Doç. Dr. Şeref KALAYCI

Detaylı

Huş Odununun Kayın Odununa Alternatif Olarak Kontrplak Üretiminde Değerlendirilmesi

Huş Odununun Kayın Odununa Alternatif Olarak Kontrplak Üretiminde Değerlendirilmesi 50 Odununun Kyın Odunun Alterntif Olrk Kontrplk Üretiminde Değerlendirilmesi Evren Osmn ÇAKIROĞLU 1*, İsmil AYDIN 2 1 Artvin Çoruh Üniversitesi Meslek Yüksekokulu Mobily ve Dekorsyon Bölümü/Artvin 2 Krdeniz

Detaylı

Kartografik Tasarım Üretim Seminer 1. www.iobildirici.com. iobildirici@yahoo.com

Kartografik Tasarım Üretim Seminer 1. www.iobildirici.com. iobildirici@yahoo.com Krtogrik Tsrım Üretim Seminer ANALOG HARİTALARDAN MEKANSAL VERİ KAZANIMI: DATUM, PROJEKSİYON, KOORDİNAT SİSTEMLERİ, SAYISALLAŞTIRMA Pro.Dr. İ.Öztuğ BİLDİRİCİ Selçuk Üniversitesi Mühendislik-Mimrlık Fkültesi

Detaylı

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi Akdemik Bilişim 1 - XII. Akdemik Bilişim Konfernsı Bildirileri 1-1 Şut 1 uğl Üniversitesi Değişken Klınlıklı İzotrop Plklrın ANSYS Pket Progrmı ile odellenmesi ustf Hlûk Srçoğlu, Yunus Özçelikörs Eskişehir

Detaylı

T.C.. VALİLİĞİ.. OKULU/LİSESİ

T.C.. VALİLİĞİ.. OKULU/LİSESİ T.C.. VALİLİĞİ.. OKULU/LİSESİ../. EĞİTİM ÖĞRETİM YILI ÖĞRENCİNİN Adı Soydı Sınıfı No Eğitimde fed edilecek fert yoktur. Mustf Keml ATATÜRK T.C... VALİLİĞİ/KAYMAKAMLIĞI Milli Eğitim Müdürlüğü. OKULU/LİSESİ

Detaylı

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING

Sigma 28, 124-137, 2010 Review Paper / Derleme Makalesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Journl of Engineering nd Nturl Sciences Mühendislik ve Fen Bilimleri Dergisi Sigm 28, 24-37, 200 Review Pper / Derleme Mklesi ANALYTIC HIERARCHY PROCESS FOR SPATIAL DECISION MAKING Dery ÖZTÜRK*, Ftmgül

Detaylı

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK .6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK İki uundn potnsiyel frk uygulnmış metl iletkenlerde, serest elektronlr iletkenin yüksek potnsiyeline doğru çekilirler. Elektrik kımını oluşturn, elektronlrın u

Detaylı

BİTKİSEL ÜRETİMDE ÇİFTLİK GÜBRESİ VE BİYOGAZ KOMPOSTU KULLANIMININ YAYGINLAŞTIRILMASI

BİTKİSEL ÜRETİMDE ÇİFTLİK GÜBRESİ VE BİYOGAZ KOMPOSTU KULLANIMININ YAYGINLAŞTIRILMASI BİTKİSEL ÜRETİMDE ÇİFTLİK GÜBRESİ VE BİYOGAZ KOMPOSTU KULLANIMININ YAYGINLAŞTIRILMASI Yyımlyn: Türk - Almn Biyogz Projesi And Sokk No: 8/6 06580 Çnky, Ankr, Türkiye T: +90 312 466 70 56 T.C. Çevre ve Şehircilik

Detaylı