DAYANIKLI SAYISAL RESİM DAMGALAMA

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DAYANIKLI SAYISAL RESİM DAMGALAMA"

Transkript

1 DAYAIKLI SAYISAL DAMGALAMA Chasa CHOUSE Sogül ALBAYRAK, Bilgisayar Mühedisliği Bölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 80750, Beşiktaş, İstabul e-posta: e-posta: Aahtar sözcükler: lama, Telif Hakkı, İçerik Doğrulama ABSTRACT This paper presets a robust digital image watermarkig techique. The proposed techique uses a circularly symmetric watermark to embed it ito a image. Watermark is embedded i the middle frequecies of DFT domai. To make watermark less visible i spatial domai multiplicative embeddig rule is used. This method is resistat to JPEG compressio, filterig, oise additio ad croppig. Results prove the robustess of this method agaist the above-metioed attacks.. GİRİŞ So yirmi yıldaki e büyük tekolojik gelişmeler, gülük yaşatımızı tüm alalarıı etkisi altıa ala sayısal kitle iletişim araçlarıda olmuştur. Sayısal resim/film/ses ve çokluortam uygulamaları gülük hayatımızı bir parçası halie gelmiştir. Özellikle iteret aracılığıyla sayısal ürülere çok kolay bir şekilde erişilebilmesi bua sebep olarak gösterilebilir. Resimleri sayısal ortamda saklaması ve klasik yötemlere göre çok rahat bir şekilde iletilebilmesi beraberide telif hakkı problemlerii getirmiştir. Telif hakkı(copyright) sahipleri çalışmalarıı kullaa kişilerde yaptıkları işi bedelii almak ve çalışmalarıı izisiz kullaılmadığıda emi olmak isteyebilirler. Sayısal ortamı yukarıda belirtile özellikleride dolayı telif hakkı koruma ve içerik doğrulama(autheticatio) çok zor bir hal alır. Problemi çözümüe yöelik yötemlerde biri resmi şifrelemesi olmakla birlikte tam alamı ile koruma sağlayamamaktadır. Resim bir defa deşifre edildiğide isteildiği kadar kopya edilebilmekte ve dağıtılabilmektedir. So yedi yıldır sayısal tekolojide kayaklaa telif hakkı problemlerii giderilmesi kousuda çalışa pek çok bilim adamı bulumaktadır. Bulua çözüm güveilir ve geleceği ola bir yötem ola resmi içie bilgi gizleme olmuştur. Bilgi gizlemek içi her çeşit sayısal veri(resim, ses, video, yazı vs.) kullaılabilir. Biz bu çalışmamızı resme bilgi gizleme ile sıırladıracağız. Bilgi gizleme tekiğii e öemli özelliği, içie yerleştirile bilgii resme baka bir kişi tarafıda farkedilmemesidir. Hiçbir zama bilgi gizleme tekiklerii tümüü sağlaması gereke geel bir taımlama yoktur. Bu çalışmada telif hakkı korumak içi bilgi gizleme yötemiyle ilgileeceğiz ve kullaacağımız terim damgalama(watermarkig) olacaktır.. DAMGALAMA TEKİKLERİİ KULLAIM ALALARI Farklı ihtiyaçları ve sıırları ola değişik uygulama alalarıdaki damgalama tekikleri şu şekilde özetleebilir[]: Telif hakkı ve parmak izi oayı: Resme eklemiş bilgi, telif hakkı iddia ede kişi tarafıda kaıt olarak veya bilgiyi izisiz kullaa kişii izii sürmek içi kullaılabilir. Doğruluğuu veya uygusuz kullaıldığıı belgelemek: Klasik bilgi doğrulama yötemleride checksum, CRC üretimi kullaılabilir. Fakat resimdeki ufak bir değişiklik bu yötemleri kullaılmaz hale getirir. Gizli iletişim: Resmi içie resme baka kişi tarafıda algılaamıyacak şekilde bilgi ekleebilir. Bu tür uygulamalarda karşı tarafa iletilmesi gereke gizli bilgii fazla olması iteret ortamıı çok fazla kullaılmasıa sebep Resim hakkıda bilgi: Resim içie öreği tıbbi bir resim hakkıda açıklayıcı bilgiler saklaabilir. 3. TELİF HAKKI KORUMAK İÇİ DAMGALAMA So yıllarda işaret işleme literatürüe çok fazla damgalama tekikleri eklemiştir. Her damgalama şemasıda üç temel bölüm bulumaktadır. üretme, ekleme ve algılama bu üç bölümü oluşturmaktadır. üretme, resme bağlı damga şablou elde etmeyi hedefler. ekleme işlemi, orijial resmi farklı bir katmaıa damga şablouu ekleme olarak düşüülebilir. algılama ise geellikle damga bezerliği veya varsayım testi ile gerçekleştirilir.

2 3. DAMGALAMA TEKİKLERİ lama tekikleri farklı özelliklerie göre dört değişik kategoride sııfladırılabilir. Bir grup damglama tekiği, algılama esasıda orijial resme ihtiyaç duyar. Buula birlikte geometrik bozulmalara karşı(kesmek, boyut büyültmek/küçültmek, dödürmek) dayaıklıdır. Fakat iterette otomatik arama gibi uygulamalarda hatlarda yoğuluğu arttırması, bellek miktarıı yetmemesi gibi sebepler dolayısıyla bu yötem çok başarılı değildir. Bir diğer grup damgalama da damga siyalii farklı bölgede ekler. Bazı tekikler görüe bölgede(spatial domai)[] pikselleri yoğuluğuu ayarlayarak bilgiyi resme ekler. Bazıları da DCT[3], DFT[4] veya DWT[5] bölgeleride damga işaretii resme ekler. Diğer bir tekik ise resmi karakteristiğie bağlı psiko-görsel (Hume Visual System)[6] maskeleme özelliğide yararlaır. Soucu olarak sıırladırılmış şifreli damgalama tekikleride bahsedilebilir. Bu yötemde damgalamış resimdeki bilgi sadece bilgiyi resme ekleye kişi tarafıda tekrar elde edilebilir veya damgayı herkes okuyabilir fakat sadece şifreyi bile damgayı değiştirebilir ya da silebilir. Saldırga Î i asıl ve Î i de damgalamış resim olduğuu söyleyebilir. Bu durumda I, W de elde edilebilir. 4. DAYAIKLI DAMGALAMA ekleme yötemii blok diagramı Şekil- de görülmektedir. Orijial resmi fourier döüşümü alıır ve frekas bölgeside(domai) üretile dairesel simetrik damga yie ayı bölgede resme ekleir. Ters döüşümü ile damgalamış resim elde edilir. varlığıı testi içi damgaladığı varsayıla resmi döüşümü elde edilir. Tekrar üretile damga ile döüşümü yapılmış resim bezerlik testide geçirilerek damgaı varlığı içi karar aşamasıa geçilir. Şekil-. de sistemi blok diagramı görülmektedir. lamış 4. DAMGA ÜRETİMİ Döüşümü Bezerlik testi Şekil-. bulma yötemi Resimde bizim eklediğimiz damga var/yok 3. SALDIRILAR Özel tasarlamış birtakım saldırılar damga eklemiş resimlerde bilgiyi silebilir veya resimdeki bilgiyi bozabilir. Bu yötemlerde bazılarıda resme basit ve heme heme hiç görümeye ufak bozulmalar ekleir (resmi buladırdıkta sora çok az bir şekilde geometrik bozulma eklemek) ve damga saptaamaz hale gelir. Saldırılar arasıda e çok biliei SWICO(Sigle Watermarked Image Couterfeit Origial)[7] yötemidir. Orijial resim I da damgalı resim Î i elde etmek içi W damgasıı bir resme eklediğimizi düşüelim. Bir saldırga orijial resmi sahtesii (Î ) başka bir Î de W damgasıı çıkararak elde eder. Orijial Harf dizisi Döüşümü Dairesel Simetrik Üretimi üretimide kullaılacak karakter dizisi T xt olsu. Karakterleri sayısı S ise damgada S adet dairesel simetrik halka R ilk dairei yarıçapı ve R de so dairei yarıçapı olsu. Bua göre damgadaki bit sayısı: L = S ( R R) () olur[9]. üretimide T xt deki her karakteri karşılığı olarak 0-bit ve her sayı içi 0 ve leri adedi eşit ola sayılar kullaılır. 0 yerie - yazarak damgayı kullaabileceğimiz formata çevirmiş oluruz. Dairei 0-80 aralığıa 0-bit sayıı karşılığı ola bitler yerleştirilir. Ayı bitler, ayı yöde arasıa yerleştirilir. Şekil-3 de T xt içi üretilmiş örek bir damga görülmektedir. Büyüklük Şekil-. lama yötemi Ters Döüşümü lı

3 M = r = a b (5) 0, r < R & r > R W ( r, θ ) = (6) ±, R r R a : Resmi frekas bölgeside pikseli gerçek kısmı. b : saal kısmı. M : büyüklüğü(magitude). θ : fazı(phase). r R, R ola R -R adet ayı merkezli S adet dairede oluşur. Her dairedeki damgaı değeri ayıdır( veya -). Daire, yarıçapı [ ] Şekil-3. T xt içi üretile damga T xt = COPYRIGHT BY YTU ELEKTRIK ELEKTROIK FAKULTESI BILGISAYAR BILIMLERI MUHEDISLIGI BOLUMU olarak alıırsa üretile dairesel simetrik damgaı bit sayısı: L = S ( R R ) = = 5488 Kulladığımız damgada 0-bit 80 yer kaplar ve her bit damga daireside 9 lik bir yer kaplar. yı oluştura daireleri bir matriste olduğuu düşüelim. Bu durumda dairei matrisde karşılığı ola oktalar x = r cos(θ ) () y = r si(θ ) (3) bağıtısıda buluur. 4. DAMGALAMA lama frekas bölgeside bilgi ifade ede ve - ler kullaılarak yapılır. da ve - leri sayısı eşittir. Dolayısıyla damgaı ortalaması sıfırdır. Frekas bölgeside resmi düşük frekaslarıa yapılacak herhagi bir uygulama resmi görüe yüzüde gözle görülür değişikliklere sebep Resmi sıkıştırılması(jpeg vs. gibi) ise frekas bölgeside yüksek frekasları etkiler. Bu durumda damga orta frekaslara eklemelidir. ı dikkatli bir şekilde tasarlaması durumuda hem filtrelere karşı dayaıklı hem de görümez olacaktır. Sıfır frekası I (0,0) ı bölgeside merkez olduğuu düşüürsek damgaı orta frekasları içie ala bir daireye eklemesi gerekir. b θ = arcta (4) a M değiştirilmiş büyüklük ve I de damgalamış resim olsu. M orjial resmi büyüklüğü, damga ve α da damgaı dayaıklılığıı belirleye katsayı olmak üzere damgalama formulü: M = M α M W (7) olur[9]. Gerçek resmi ters frekas bölgesi kompleks özelliğe sahiptir. M i ters bölgesii gerçek olduğuda emi olmak içi damgaı aşağıdaki simetriyi koruması gerekir: [ ] = W (, y, (8) Matristeki her oktaı frekas bölgesideki karşılığı z = a ib şeklidedir. a gerçek kısım ve b de saal kısımdır. Büyüklük M ve faz θ olsu. M = r = a b = a ib (9) b θ = arcta (0) a Ters frekas bölgesi döüşümü içi θ ve M değerleride faydalaabiliriz. a = M cos(θ ) ve b = M si(θ ) () z = a ib () i = IDFT( z ) (3) lamış resim i dir. So değerler byte sıırıı aşabileceğide i yi [0,55] aralığıa çekilmesi gerekir. Ayrıca damgaı görümezliğii arttırmak içi maskeleme tekikleride biri kullaılabilir[0]. 4.3 BEZERLİK TESTİ İLE DAMGAI TESPİTİ I muhtemel damgalamış resmi frekas bölgesideki karşılığı ve M de büyüklüğü olsu. Muhtemel damgalamış resmi M katsayıları ile

4 damga W arasıdaki bezerlik {c}, damgaı varlığıı test edilmeside kullaılır. Şayet I, W ile damgalamış resim ise bezerlik Eşitlik 4 de görülmektedir. W ve M i birbiride bağımsız ve bezer şekilde rastgele dağıtılmış değişkeler olduğuu varsayarsak, W i ortalama değeri sıfır Resimde kullaıla W i ortalama değerii herekadar sıfır olarak varsaysak da si/cos döüşümüde kayaklaa hatalar dolayısıyla geellikle ortalama değer sıfır olmaz. Bu problemi gidermek içi yukardaki formul, ormalleştirilmiş bezerlik c olarak Eşitlik 5 deki gibi değiştirilmesi gerekir. Resimleri adedi T i eşik değeri olduğuu varsayarsak Şekil-4 te faydalaarak T = 0.57 diyebiliriz. Yapıla testlerde her damgalamış resmi bezerlik değeri c, T değeride büyük ya da eşit çıkmıştır. c = M c = Şekil adet damgalamış(sağ bölge) ve damgasız(sol bölge) resmi dağılım eğrisi ( W M a W M ) x= y= M M = ( (4) ( M ) ( M ) M µ (5) C lamış ve damgasız resimleri ormalleştirilmiş bezerlik c i farklıdır. c bezerlik özelliğii damgaı varlığıı testide kullaabilmek içi damgasız resimlerde oluşa 000 adet resmi c i ve damgalamış 000 adet resmi c i hesaplaırsa Şekil-4 te görülebile bir dağılım grafiği elde edilir. tespiti: H 0 : Şayet c T ise I, W ile damgalamıştır. H : Şayet c < T ise I, W ile damgalamamıştır. : daki leri sayısı. : daki - leri sayısı. M : M ( M : M ; = M : M ; = µ = µ µ f ( M, = a M ( f (, ) M a = a M ; = = a M ( ; = 5. SOUÇ Yapıla testlerde dairesel simetrik damgalama ile şu souçlara ulaşılmıştır: lamış resimlerde görüe bir bozulma olmamıştır. Buu sebebi frekas bölgeside orta frekaslarda resme eklee damgaı resmi görüe bölgesie(spatial domai) etki etmemesidir. Tablo- de bazı test souçları görülmektedir. lamış resim ile damgasız resim arasıdaki fark Şekil-6 da görülmektedir. Burada resmi damgaladığı soucu çıkarılabilir. I resmie W damgası uygulaıp I resmi elde edilmiş olsu. Yie I resmie W damgası uygulaıp I resmi elde edilmiş olsu. lı resim I, W damgası ile test edildiğide algoritma damgaı olmadığı soucua varmaktadır. Yie damgalı resim I, W damgası ile test edildiğide algoritma damgaı olmadığı soucua varmaktadır. Bu bize kullaıla yötemi yalış damga tespitie karşı yeterice güveli olduğuu göstermektedir. işareti W yi oluştura yerie - ve - yerie koularak tersi alımış olsu.

5 Oluşa damga işaretie W diyelim. lamış resim I, damga W uyguladığıda resimde damgaı silidiği ve resmi görüe bölgesie etki ede bozulmaları yok olduğu tespit edilmiştir. Ayı resme farklı damgalar uyguladığıda dağılım eğrisii eşit aralıkta sağa veya sola doğru kaydığı görülmüştür. Bu çalışmadaki damgalama yötemii frekas bölgeside orta frekasa etki etmeye filtrelere karşı dayaıklılığı gösterilmiştir. Öreği gürültü ekleme oraıı %0 da daha yüksek olarak alırsak resmi frekas bölgeside orta frekaslara etki etmeye başladığı ve bu edele damgaı tespitii imkasızlaştığı görülmüştür. Şekil-5 Orijial resim Şekil-6. lamış resim Şekil-6. lamış resim ile damgasız resim arasıdaki fark. Tablo-. Sıır değeri c = alıarak yapıla test souçları Efektler c Gaussia Blur 0.6 Mosaic x 0.58 Gürültü % Media 0.6 JPEG : Kırpma 0.6 Kayakça []. ikolaidis ad I. Pitas, Digital Image Watermarkig: A Overview. ICMCS 99, Volume, Florece, Italy, pp -6. []. ikolaidis, I. Pitas, Robust image watermarkig i the spatial domai. Sigal Processig, v. 66, o. 3 (May 98), pp [3] M. Swaso, B. Zhu, A.. Tewfik, Trasparat robust image watermarkig. Proc. 996, IEEE It. Coferece o Image Processig, vol III, pp -4. [4] S. Pereira, J. J. K. Ó Ruaaidh, F. Deguillaume, G. Csurka, T. Pu, Template Based Recovery of -Based Watermarks Usig Log-polar ad Log-log Maps, IEEE ICMCS99, Florece, Italy, Jue 999. [5] C-S. Lu, S-K. Huag, C-J. Sze, H-Y. M. Liao, IEEE Trasactios o Multimedia, vol. o. 4, December 000. [6] J. F. Delaigle, C. De Vleeschouwer, B. Macq, Watermarkig Algorithms Based o a Huma Visual Model, Sigal Process, vol. 66, pp , 998. [7] S. Craver,. Memo, B. Yeo, Resolvig Rightful Owership with Ivisible Watermarkig Techiques:Limitatios, Attacks ad Implicatios, IEEE Joural o Selected Areas i Commuicatios, vol. 6, o. 4, pp , May 998. [8] P. Bourke, Dimesioal FFT, sis/fftd/, July 998. [9] V. Solachidis ad I. Pitas. Circularly symmetric watermark embeddig i -D DFT domai. I Proceedigs of ICASSP99, Volume 6, pages , Phei Arizoa, USA, March [0] F. Berolii, M. Bari, V. Cappelii, ad A. Piva. Mask buildig for perceptually hidig frequecy embedded watermarks. I Proc. of ICIP 98, volume I, pages , Chicago, USA, 4-7 October 998.

YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ BİLGİSAYAR BİLİMLERİ VE MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR PROJESİ

YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ BİLGİSAYAR BİLİMLERİ VE MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR PROJESİ YILDIZ TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ BİLGİSAYAR BİLİLERİ VE ÜHENDİSLİĞİ BÖLÜÜ BİLGİSAYAR PROJESİ Dayaıklı Sayısal Resim Damgalama Proje Yöeticisi : Prof.. Yahya Karslıgil Proje Grubu

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

3D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ

3D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ D NESNE MODELLEMEYE YÖNELİK LAZERLİ BİR TARAYICI SİSTEMİN TASARIMI VE GERÇEKLEŞTİRİLMESİ Erka BEŞDOK Bilal KASAP Jeodei ve Fotogrametri Mühedisliği Bölümü Mühedislik Fakültesi ve Bilgisayar Müh. ABD, Fe

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ Gai Üiv. Müh. Mim. Fak. Der. Joural of the Faculty of Egieerig ad Architecture of Gai Uiversity Cilt 3, No, 73-79, 15 Vol 3, No, 73-79, 15 GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com ISSN:34-44 Makie Tekolojileri Elektroik Dergisi 7 () 35-4 TEKNOLOJĐK ARAŞTIRMALAR Makale Polivili Klorür (Pvc) Malzemeleri Sıcaklığa Bağlı Titreşim Özelliklerii Đcelemesi

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME Fahri VATANSEVER 1 Ferudu UYSAL Adullah UZUN 3 1 Sakarya Üiversitesi, Tekik Eğitim Fakültesi, Elektroik-Bilgisayar Eğitimi Bölümü, 54187 Esetepe Kampüsü/SAKARYA

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

Mekânsal Karar Problemleri İçin Coğrafi Bilgi Sistemleri ve Çok Ölçütlü Karar Analizinin Bütünleştirilmesi: TOPSIS Yöntemi

Mekânsal Karar Problemleri İçin Coğrafi Bilgi Sistemleri ve Çok Ölçütlü Karar Analizinin Bütünleştirilmesi: TOPSIS Yöntemi Mekâsal Karar Problemleri İçi Coğrafi Bilgi Sistemleri ve Çok Ölçütlü Karar Aalizii Bütüleştirilmesi: TOPSIS Yötemi Derya Öztürk Odokuz Mayıs Üiversitesi Harita Mühedisliği Bölümü, 55139 Samsu. dozturk@omu.edu.tr

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi

Obje Tabanlı Sınıflandırma Yöntemi ile Tokat İli Uydu Görüntüleri Üzerinde Yapısal Gelişimin İzlenmesi Obje Tabalı Sııfladırma Yötemi ile Tokat İli Uydu Görütüleri Üzeride Yapısal Gelişimi İzlemesi İlker GÜNAY 1 Ahmet DELEN 2 Mahmut HEKİM 3 1 Gaziosmapaşa Üiversitesi, Mühedislik ve Doğa Bilimleri Fakültesi,

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Joural of Research i Educatio ad Teachig OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİLERDE MÜZİK EĞİTİMİ İLE ÇOCUKLARIN GELİŞİM ÖZELLİKLERİ ÜZERİNE TERAPÖTİK BİR ÇALIŞMA Yard.Doç.Dr. Tüli Malkoç Marmara Üiversitesi

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. -2 Ekim 2005 FRAKTAL GÖRÜNTÜ SIKIŞTIRMADA HASH FONKSİYONLARINA DAYANAN YENİ BİR SINIFLANDIRMA YÖNTEMİ (A NEW CLASSIFICATION METHOD

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

İKİLİ VE RENKLİ LOGO İLE SAYISAL DAMGALAMA DIGITAL WATERMARKING WITH BINARY AND COLORED WATERMARK

İKİLİ VE RENKLİ LOGO İLE SAYISAL DAMGALAMA DIGITAL WATERMARKING WITH BINARY AND COLORED WATERMARK İKİLİ VE RENKLİ LOGO İLE SAYISAL DAMGALAMA DIGITAL WATERMARKING WITH BINARY AND COLORED WATERMARK Selçuk KİZİR 1 H.Metin ERTUNÇ 2 Hasan OCAK 3 1,2,3 Kocaeli Üniversitesi, Mekatronik Mühendisliği Bölümü

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

3. TEKNE FORM PARAMETRELERİNİN BELİRLENMESİ

3. TEKNE FORM PARAMETRELERİNİN BELİRLENMESİ . TEKNE FOR ARAETREERİNİN EİRENESİ Kovasiyoel gemi formlarıı performası büyük ölçüde ekesit alaları ve dizay su hattı eğrilerii formua bağlıdır. u edele bu eğrileri taımlaya blok katsayısı (), orta kesit

Detaylı

Kuzularda Büyümenin Çok Boyutlu Ölçekleme Yöntemi İle Değerlendirilmesi

Kuzularda Büyümenin Çok Boyutlu Ölçekleme Yöntemi İle Değerlendirilmesi 33 Uluag Uiv. J. Fac. Vet. Me. (003) --3: 33-37 Kuzulara Büyümei Çok Boyutlu Ölçekleme Yötemi İle Değerleirilmesi İsmet DOĞAN * Geliş Tarihi: 5.07.003 Kabul Tarihi: 09.09.003 Özet: Büyümeyi karakterize

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması Robot Navigasyouda Potasiyel Ala Metodlarıı Karşılaştırılması ve Đç Ortamlarda Uygulaması Eyüp Çıar 1 Osma Parlaktua Ahmet Yazıcı 3 1, Elektrik-Elektroik Mühedisliği Bölümü, Eskişehir Osmagazi Üiversesi,

Detaylı

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM

İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM 17 Şubat 01 CUMA Resmî Gazete Sayı : 807 TEBLİĞ Bilgi Tekolojileri ve İletişim Kurumuda: İNTERNET SERVİS SAĞLAYICILIĞI HİZMETİ SUNAN İŞLETMECİLERE İLİŞKİN HİZMET KALİTESİ TEBLİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam,

Detaylı

ON THE TRANSFORMATION OF THE GPS RESULTS

ON THE TRANSFORMATION OF THE GPS RESULTS Niğde Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 6 Sayı -, (00), 7- GPS SONUÇLARININ DÖNÜŞÜMÜ ÜZERİNE BİR İNCELEME Meti SOYCAN* Yıldız Tekik Üiversitesi, İşaat Fakültesi, Jeodezi Ve Fotogrametri Mühedisliği

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ

SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ SBE 601 ARAŞTIRMA YÖNTEMLERİ, ARAŞTIRMA VE YAYIN ETİĞİ ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI ÖRNEKLEME YÖNTEMLERİ Prof. Dr. Ergu Karaağaoğlu H.Ü. Tıp Fakültesi Biyoistatistik ABD ÖRNEKLEM BÜYÜKLÜĞÜNÜN SAPTANMASI

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

The Determination of Food Preparation and Consumption of the Working and Non-Working Women in Samsun

The Determination of Food Preparation and Consumption of the Working and Non-Working Women in Samsun Research Turkish Joural of Family Medicie & Primary Care www.tjfmpc.com The Determiatio of Food Preparatio ad Cosumptio of the Workig ad No-Workig Wome i Samsu Samsu İlide, ve Kadıları, Evde Besi Hazırlama

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular: ALAN ETKİLİ TRANİTÖRLER (JFET) BÖLÜM 8 8 Koular: 8.1 Ala Etkili Joksiyo Trasistör (JFET) 8. JFET Karakteristikleri ve Parametreleri 8.3 JFET i Polarmaladırılması 8.4 MOFET 8.5 MOFET i Karakteristikleri

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİNİN SÖZEL AÇIKLAMA BECERİLERİNE ETKİSİ

OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİNİN SÖZEL AÇIKLAMA BECERİLERİNE ETKİSİ OKUL ÖNCESİ DÖNEM İŞİTME ENGELLİ ÇOCUKLARDA MÜZİK EĞİTİMİNİN SÖZEL AÇIKLAMA BECERİLERİNE ETKİSİ Yrd. Doç. Dr. Tüli Malkoç Marmara Üiversitesi Atatürk Eğitim Fakültesi, Göztepe, tmalkoc@marmara.edu.tr Fuda

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:134-4141 Makie Tekolojileri Elektroik Dergisi 28 (3) 41-48 TEKNOLOJĐK ARAŞTIRMALAR Makale Düşük Sıcak Kayaklı Isı Pompaları Eerji Maliyet Aalizi Özet Murat KAYA Hitit

Detaylı

İMGELERDE DWT İLE DAMGALAMA METODU

İMGELERDE DWT İLE DAMGALAMA METODU İMGELERDE DWT İLE DAMGALAMA METODU Dr.Ersin ELBAŞI Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Kavaklıdere, Ankara ersin.elbasi@tubitak.gov.tr Özetçe Yayın hakkını koruma amaçlı kullanılan

Detaylı

KALİTE KONTROLDE ÖRNEKLEM BÜYÜKLÜĞÜNÜN DEĞİŞKEN OLMASI DURUMUNDA p KONTROL ŞEMALARININ OLUŞTURULMASI

KALİTE KONTROLDE ÖRNEKLEM BÜYÜKLÜĞÜNÜN DEĞİŞKEN OLMASI DURUMUNDA p KONTROL ŞEMALARININ OLUŞTURULMASI İstabul Ticaret Üiversitesi Fe Bilimleri Dergisi Yıl: 5 Sayı:10 Güz 2006/2 s 65-80 KALİTE KONTROLDE ÖRNEKLEM BÜYÜKLÜĞÜNÜN DEĞİŞKEN OLMASI DURUMUNDA p KONTROL ŞEMALARININ OLUŞTURULMASI İrfa ERTUĞRUL *,

Detaylı

MAKEDONYA CUMHURİYETİ NDEKİ İLKOKUL VE LİSELERE YÖNELİK ELEKTRONİK ARAŞTIRMA

MAKEDONYA CUMHURİYETİ NDEKİ İLKOKUL VE LİSELERE YÖNELİK ELEKTRONİK ARAŞTIRMA БИРО ЗА РАЗВОЈ НА ОБРАЗОВАНИЕТО МИНИСТЕРСТВО ЗА ОБРАЗОВАНИЕ И НАУКА НА РЕПУБЛИКА МАКЕДОНИЈА macedoia civic educatio ceter MAKEDONSKI CENTAR ZA GRA\ANSKO OBRAZOVANIE Eğitimde Etiklerarası Etegrasyo Projesi

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

SİSTEM ANALİZİ. >> x = [ ; ; ];

SİSTEM ANALİZİ. >> x = [ ; ; ]; SİSTEM ANALİZİ Ders otları yaıda yardımcı referas kayaklar: System Aalysis ad Sigal Processig, 1998, Philip Debigh A Itrductio to Radom Vibratios, Spectral & Wavelet Aalysis, 3 rd ed., 1993 Logma Scietific

Detaylı

El Hareketini Takip Eden Vinç Sisteminin Giriş Şekillendirici Denetimi

El Hareketini Takip Eden Vinç Sisteminin Giriş Şekillendirici Denetimi Karaelmas Fe ve Mühedislik Dergisi / Karaelmas Sciece ad Egieerig Joural 3 (2), 43-47, 2013 Karaelmas Sciece ad Egieerig Joural Joural home page: http://fbd.beu.edu.tr Araştırma Makalesi El Hareketii Takip

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Çanakkale İli Belediye Sınırları İçerisindeki Peyzaj Alanlarında Sulama Sistemlerinin Projelenmesi ve İşletilmesindeki Hatalar

Çanakkale İli Belediye Sınırları İçerisindeki Peyzaj Alanlarında Sulama Sistemlerinin Projelenmesi ve İşletilmesindeki Hatalar Atatürk Üiv. Ziraat Fak. Derg. 37 (1), 81-90, 2006 ISSN 1300-9036 Çaakkale İli Belediye Sıırları İçerisideki Peyzaj Alalarıda Sulama Sistemlerii Projelemesi ve İşletilmesideki Hatalar Kürşad DEMİREL Murat

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Diferansiyel Gelişim Algoritmasının Termik Birimlerden Oluşan Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması

Diferansiyel Gelişim Algoritmasının Termik Birimlerden Oluşan Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması Diferasiyel Gelişim Algoritmasıı Termik Birimlerde Oluşa Çevresel Ekoomik Güç Dağıtım Problemlerie Uygulaması Differetial evolutio algorithm applied to evirometal ecoomic power dispatch problems cosistig

Detaylı

Dijital Fotogrametride Alana Dayalı Görüntü Eşleme Yöntemleri

Dijital Fotogrametride Alana Dayalı Görüntü Eşleme Yöntemleri Harita Tekolojileri Elektroik Dergisi Cilt:, No: 3, 9 (-33) Electroic Joural of Map Techologies Vol:, No: 3, 9 (-33) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:39-3983 Makale (Article)

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI The Turkish Olie Joural of Educatioal Techology TOJET July 2005 ISSN: 106521 volume Issue Article 16 BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI Yard. Doç. Dr. Bahadti RÜZGAR Marmara

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Harmoni Arama Algoritmasının Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması

Harmoni Arama Algoritmasının Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması Çukurova Üiversitesi Mühedislik Mimarlık Fakültesi Dergisi, 26(2), ss. 65-76, Aralık 2011 Çukurova Uiversity Joural of the Faculty of Egieerig ad Architecture, 26(2), pp.65-76, December 2011 Özet Harmoi

Detaylı

İÇ YÖNELTME İÇİN KENAR GÖSTERGELERİNİN ÖLÇÜLMESİNDE ÖKLİT MESAFESİ YÖNTEMİNİN KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

İÇ YÖNELTME İÇİN KENAR GÖSTERGELERİNİN ÖLÇÜLMESİNDE ÖKLİT MESAFESİ YÖNTEMİNİN KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI TMMOB Harita ve Kadastro Mühedisleri Odası 0. Türkiye Harita Bilisel ve Tekik Kurultayı 8 Mart - Nisa 005, Akara İÇ YÖNELTME İÇİN KENAR GÖSTERGELERİNİN ÖLÇÜLMESİNDE ÖKLİT MESAFESİ YÖNTEMİNİN KULLANILABİLİRLİĞİNİN

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ ZKÜ Sosyal Bilimler Dergisi, Cilt 3, Sayı 5, 2007, ss. 7-87. TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ Doç.Dr. Gülsüm AKALIN Marmara Üiversitesi İİBF İktisat Bölümü gulsum@marmara.edu.tr Öğr.Gör.

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

Genel Kimya ve 4. Şubeler

Genel Kimya ve 4. Şubeler Geel Kimya 101 3. ve 4. Şubeler Dr. Oza Karaltı E-mail : okaralti@etu.edu.tr Ofis: 112-2 https://sites.google.com/site/etukim101 6. Gazlar Gazları fiziksel davraışlarıı 4 özellik belirler. Sıcaklık (K),

Detaylı

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ T.C. DENİZ HARP OKULU DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ ELEKTRİK VE ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI İLETİŞİM BİLİM DALI SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

Üç Boyutlu Bilgisayar Grafikleri

Üç Boyutlu Bilgisayar Grafikleri 1. Üç Boyutlu Nese Taımlama Yötemleri Bilgisayar grafikleride üç boyutlu eseleri taımlamak içi birçok yötem geliştirilmiştir. Hagi taımlama yötemi avatajlı olduğu üç boyutlu uygulamaı amaç ve gereksiimleri,

Detaylı

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ

27 Ağustos 2011 CUMARTESİ Resmî Gazete Sayı : 28038 TEBLİĞ 7 Ağustos 011 CUMARTESİ Resmî Gazete Sayı : 8038 TEBLİĞ Bilgi Tekolojileri ve ĠletiĢim Kurumuda: SABĠT TELEFON HĠZMETĠNE ĠLĠġKĠN HĠZMET KALĠTESĠ TEBLĠĞĠ BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Dayaak ve Taımlar Amaç

Detaylı