İstatistikçiler Dergisi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İstatistikçiler Dergisi"

Transkript

1 İstatistiçiler Dergisi (008) İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri Bölümü, 06800, Beytepe, Anara, Türiye Ömer ESESOY Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri Bölümü, 06800, Beytepe, Anara, Türiye ÖZET Bu çalışmada, farlı sigorta ollarına ait poliçelerden oluşan bir portföyde sigorta ollarının bağımlı olması durumu ele alınmıştır. Sigorta şiretleri portföylerinde farlı sigorta ollarına ait poliçeler bulundurmatadır. Ris uramıyla ilgili atüeryal çalışmalarda genellile sigorta ollarının bağımsız olduğu varsayımı yapılır. Anca bu varsayım çoğu zaman gerçeçi bir varsayım değildir. Çalışmada farlı sigorta ollarına ait poliçelerden oluşan bir portföyde, hasar sayılarının bağımlı olması durumu genel eti modeliyle incelenmiş ve toplam hasar mitarının dağılımı hızlı Fourier dönüşümü ullanılara bulunmuştur. Anahtar Sözcüler: Bağımlı Risler, Hasar Dağılımları. ABSTRACT AGGREGATE CLAIM DISTRIBUTIO OF DEPEDET RISKS This wor is concerned with the portfolio consisting of dependent classes of business. In the portfolio of an insurance company, there exist policies from different classes of business. In most actuarial literature related to ris theory, it is assumed that classes of business are independent. However, there are practical situations for which this assumption is not appropriate. The number of claims for a portfolio consisting of different classes of business is assumed to be dependent and studied by means of common shoc models and the aggregate loss distribution is calculated by fast Fourier transform (FFT). Key Words: Dependent Riss, Loss Distributions.. GİRİŞ Sigortacılıta belirli bir zaman aralığında gerçeleşen hasar ya da ayıplara yapılan ödeme mitarlarının toplamı, toplam hasar mitarı olara adlandırılır. Toplam hasar mitarının dağılımı, hasar sayısı ve hasar mitarının dağılımları temel alınara hesaplanır. Literatürde toplam hasar mitarının dağılımının hesaplanması için değişi yöntemler geliştirilmiştir. Konvulüsyon yöntemi, Panjer in geriye doğru özyineli (recursive) algoritması, hızlı Fourier dönüşümü (Fast Fourier Transformation, FFT) bunlardan biraç tanesidir. Gelenesel olara atüeryal çalışmalarda portföyde yer alan poliçelerin birbirinden bağımsız olduları varsayımı yapılır. Anca bu varsayım ço gerçeçi bir varsayım olmamatadır ve son yıllarda yapılan çalışmalarda rislerin bağımlı olması durumu ele alınmatadır. Genel olara bağımlı hasarların bileşi dağılımlarının bulunabilmesi için rislerin marjinal dağılımların bilinmesi yeterli olmayacatır.

2 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) Bu nedenle bağımlılı modelinin seçimi bağımlılığı yaratan meanizmaya bağlı olara yapılmalıdır. Bu çalışmada farlı sigorta ollarından oluşan bir sigorta portföyünde, sigorta olları arasında bağımlılı olduğu durumlar için toplam hasar mitarının dağılımı FFT yöntemi hesaplanacatır. Çalışmada öncelile toplam hasar mitarının hesaplanması ve ris modelleri haında bilgi verilecetir.. Toplam Hasar Mitarının Dağılımı Oluşan sayıda hasar için yapılan i ödemelerinin toplamı, toplam hasar mitarı S S = () olara tanımlanır. raslantı değişenin olasılı fonsiyonu f ( i) = P( = i) biçiminde esili olara tanımlanmıştır. Burada in aldığı değerler hasar mitarı için seçilen uygun bir birim ve bunun atları biçimindedir. S nin olasılı fonsiyonu: f S ( s) = P( S = s) = n= 0 P ( = n) P( S = s = n) () ile gösterilir. Eşitli () de verilen toplam, arateristi fonsiyonlar türünden aşağıdai biçimde yazılabilir: φ ( t) = E e S it( S ) it( [ ] E [ E[ e + + ) = ]] [ φ ( t) ] = P ( φ ( t)) = E. (3) Burada P hasar sayısı nin olasılı çıaran (probability generating function) fonsiyonudur [4], [3]... Hızlı Fourier Dönüşümü Karateristi fonsiyonların hızlı Fourier dönüşümü (FFT) ullanılara ters fonsiyonunun bulunmasıyla esili raslantı değişenlerinin yoğunlu fonsiyonları elde edilir. Tanım (): Herhangi bir f(x) süreli olasılı fonsiyonunun Fourier Dönüşümü ~ itx f ( t) = f ( x) e dx ile tanımlanır. Orjinal fonsiyon ise endi Fourier dönüşümünden itx f ( x) = ~ f ( t) e dt π (4) (5)

3 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) fonsiyonu ile yeniden elde edilebilir [3]. Tanımda verilen f(x) olasılı yoğunlu fonsiyonu ~ olduğunda, f ( t ) onun arateristi fonsiyonu olur. f(x) fonsiyonu esili olduğunda Tanım(), Tanım() dei gibi genelleştirilebilir. Tanım (): Eğer f x x in, n dönem boyunca periyodi olan, tüm tamsayı değerleri için tanımlanmış bir fonsiyon ise (tüm f x değerleri için; f x+n = f x ); ( f0, f,, f n ) vetörünün Kesili Fourier t Dönüşümü, x =,,0,,, için ~ f = f x n j= 0 f j π i exp n j =-,0,, (6) ~ ile tanımlanır. Buna e olara f da ayrıca n dönem boyunca periyoditir. f ters dönüşümü ile orjinal fonsiyon yeniden aşağıdai gibi elde edilebilir: f n j = n = 0 ~ fonsiyonunun ~ π i f exp j, j=-,0,, (7) n (3) eşitliği ullanılara toplam hasar mitarının dağılımı FFT yöntemi ile bulunabilir. FFT yöntemi ile toplam hasar mitarının dağılımının bulunmasında ullanılaca algoritma aşağıdai gibi verilmiştir: Hasar mitarlarının dağılım fonsiyonu F (x), r tamsayı olma üzere m= r olaca biçimde esili hale getirilir. Burada m, toplam hasar mitarının dağılımında (f S (x)) istenilen nota sayısını verece biçimde seçilmelidir (Eğer hasar mitarları dağılımdai nota sayısı m= r den az ise dağılım vetörünün sonuna, vetörün uzunluğu n oluncaya adar sıfır eleme geremetedir). Öncei adımda elde edilen hasar mitarlarının dağılımına FFT uygulanır ve böylece in arateristi fonsiyonu elde edilir. Buradai sonuç m= r uzunluğunda bir vetör olacatır. (3) eşitliği ullanılara toplam hasar mitarı S nin arateristi fonsiyonu elde edilir. Öncei adımda elde edilen S nin arateristi fonsiyonuna ters (Inverse) FFT (IFFT) uygulanara toplam hasar dağılımı elde edilmiş olur [4],[6]. 3. Farlı Sigorta Kollarının Birleştirilmesi ve K gibi bağımsız ii raslantı değişeninin toplamı arateristi fonsiyonlar cinsinden it( + K ) it itk it itk φ + K ( t) = E[ e ] = E[ e. e ] = E[ e ]. E[ e ] = φ ( t). φk ( t) (8) biçiminde yazılabilir. İi farlı sigorta olunun birleştirildiği varsayıldığında: o Birinci sigorta olunun hasar sayısı ve hasar mitarı, o İinci sigorta olunun hasar sayısı K ve hasar mitarı Y olsun. o,, K ve Y birbirinden bağımsız olduğu varsayılsın. Bu durumda ii sigorta olunun birleşimi Z = + + ) + ( Y + + Y ) ( K olara tanımlanır ve Eşitli (3) ile Eşitli (8) yardımıyla arateristi fonsiyonlar cinsinden

4 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) φ ( t) = P ( φ ( t)). P ( φ ( t)) (9) Z K Y şelinde yazılabilir. Karateristi fonsiyonlar arasındai ilişi ve bir öncei bölümde verilen hızlı Fourier dönüşümü algoritması ullanılara toplam hasar mitarının dağılımı elde edilebilir [6]. 3.. Bağımlı Değişenlerin (Rislerin) Toplamı Poliçeler arasında bağımlılı olduğu varsayıldığında, bağımlı değişenlerin bileşi olasılı çıaran fonsiyonları aşağıda verilen Teorem yarımıyla bulunabilir. Teorem: Herhangi bir değeri için,,, bağımlı değişenlerinin bileşi olasılı çıaran fonsiyonu P,, ve bileşi arateristi fonsiyonu φ,, ise; S = toplamının olasılı çıaran fonsiyonu ve arateristi fonsiyonu aşağıdai gibi yazılabilir [6]: P t) = P ( t,, t), φ ( t) = φ ( t,, ). S (,, S,, t Benzer bir eşitli S nin arateristi fonsiyonunu elde etme için de yazılabilir. S nin arateristi fonsiyonu elde edilditen sonra ters Fourier dönüşümü uygulanara S nin olasılı fonsiyonu elde edilir Hasar Sayıları Bağımlı Sigorta Kollarının Toplamı Hasar sayıları bağımlı olan ii portföy için; : Birinci Portfoyün hasar sayısını, K: İinci Portföyün hasar sayısını, : Birinci Portfoyün hasar mitarını, Y: İinci Portföyün hasar mitarını göstersin. ve K hasar sayılarının bağımlı olduğu, hasar sayılarının hasar mitarından bağımsız ve i ve Y j raslantı değişenlerinin birbirinden bağımsız olduğu varsayıldığında ii portföyün toplam hasar dağılımı, S = + + ) + ( Y + + Y ) (0) ( K olara yazılabilir. Bu durumda toplam hasarın olasılı çıaran fonsiyonu S ( + + ( ) ) + ( Y + + YK P t = E t = E t ) S = E [ ] [ ] ( + + n ) + ( Y + + Ym ), K E [ t = n, K m ] K [ P ( t) P ( t ] = = E ) = P )), K Y, K ( P ( t), PY ( t olara, arateristi fonsiyonlar cinsinden ise φ ( t) = P, ( φ ( t), φ ( t)) () S K biçiminde yazılır [6]. Y

5 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) Genel Etili Poisson Modeli Farlı sigorta ollarının birleştirilmesinde temel Poisson Modeli için farlı sigorta olunun birleştirildiği varsayılsın. j=,,,, olma üzere j inci sigorta olunun hasar sayısı λ j parametresi ile Poisson dağılıma sahip olsun. Hasar mitarlarının dağılım fonsiyonu da F j olsun. Burada farlı sigorta ollarından gelen hasar mitarlarının birbirinden bağımsız olduğu varsayılsın. Bu durumda toplam hasar mitarı için arateristi fonsiyonlar ullanılara, φ ( t) = S = j= j= e P j ( φ j λ j ( φ ( t ) ) j ( t)) λ ( φ ( t ) ) = e yazılabilir. Burada λ = λ + + λ ve λ λ φ ( t) = φ ( t) + + φ ( t) λ λ dir. Dolayısıyla farlı sigorta olunun birleştirilmiş toplam hasar mitarının hasar sayısının dağılımı λ = λ + + λ parametreli Poisson dağılımı, hasar mitarının dağılımı λ λ λ ( ) F x = F ( x) + F ( x) + + F ( x ) () λ λ λ olur. Bireysel risler, hasarı yaratan meanizmaya ya da genel eonomi yasal değişililere bağımlı olabilir. Bireysel risler arasındai etileşimin bir dış etiye bağlı olduğu durumların modellenmesi gereir. Yüse afet risi olan bölgelerde, afetin yarattığı genel eti (common shoc), sigorta olları arasındai bağımlılığın artmasına neden olabilir. Genel etili Poisson modeli Wang (998), Wu ve Yuen (003) ile Cossette ve Marceau (000) tarafından yapılan çalışmalarda da ele alınmıştır. Bağımlı ii birleşi Poisson dağılımının toplamı ele alındığında;. Portföy için: Hasar sayısı, λ parametresi ile Poisson dağılımına ve hasar mitarı ise f (x) olasılı dağılımına sahip olsun.. Portföy için: Hasar sayısı, λ parametresi ile Poisson dağılımına ve hasar mitarı Y ise f (y) olasılı dağılımına sahip olsun. ve Y nin birbirinden ve (, ) den bağımsız olduğu, anca ve nin genel eti modeliyle bağımlı olduğu varsayılsın. = 0 b, = 0 b. Burada 0 ~Poisson(λ 0 ), b ~Poisson(λ -λ 0 ) ve b ~Poisson(λ -λ 0 ) olur. Modelde ve arasındai bağımlılı 0 dan aynalanmatadır. Genel eti modelinde (, ) nin bileşi olasılı çıaran fonsiyonu Cov[, ] = Var[ 0 ] = λ0 ien P (t,t ) = E t, [, t ] = ile gösterilebilir. İi ris portföyünün toplamı ise [ λ (t ) + λ (t ) + λ (t )(t ) ] exp 0 S = ( + + ) + (Y Y ) + + ile gösterilir ve toplam hasar mitarı,

6 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) λ λ0 λ λ0 λ0 f(x) = f(x) + f(x) + f* (x) (3) λ + λ λ0 λ + λ λ0 λ + λ λ0 biçiminde tanımlanmış Birleşi Poisson (λ +λ λ 0 ) dağılımına sahip olur. Burada f * : f ve f nin onvulüsyonunu göstermetedir. Böylece Genel Etili Poisson Modeli için hasar sayısı ve mitarının dağılımları elde edilir [6] Genel Etili egatif Binom Modeli egatif Binom dağılımı α n α + n P( n) λ = =, α + λ + λ α, λ > 0, n = 0,,, (4) biçiminde verilmiş olsun. Bu durumda egatif Binom için olasılı çıaran fonsiyon; P (t) = [ λ(t ) ] (5) olara yazılabilir. Hasar sayısının dağılımına baılmasızın genel bir ilişi yazılması durumunda, toplam hasar sayısının ortalaması her sigorta olunun hasar sayılarının ortalamalarının toplamına eşittir: E[ agg ] = E[ ]+ E[ ]++ E[ ] (6) Toplam hasar sayısının ortalaması ise, Var[ agg ] = Var i = Var[ i ] + Cov[ i, j ] i= i= i< j eşitliği ile hesaplanır. Burada Cov[ i,j] ρij i j (7) = olara tanımlanır. Farlı sigorta ollarının toplamının incelendiği modelde toplam hasar sayısının dağılımının belirlenmesinde sade ve diret bir yalaşım hasar sayılarının egatif Binom dağılımlı olduğunun varsayılmasıdır. Bu durumda egatif Binom un parametreleri Eşitli (6) ve (7) de verilen E[ agg ] ve Var[ agg ] ile tahmin edilebilir. Sigorta ollarının bileşiminin hasar mitarı ise yine her bir sigorta olunun bireysel hasar mitarlarının ağırlılılandırılmış ortalamasıyla bulunur: [ ] [ ] ( [ agg ] [ agg ] [ ] E E E F x) = F ( x) + F ( x) + + F ( x). (8) E E E [ ] agg ris portföyünün hasar sayılarının marjinal dağılımları ~egatif Binom(α,λ ),, ~egatif Binom(α,λ ) olara verilsin. α 0 min{α,,α } olma üzere her j, (j=,,) j = ja jb, ja ~B(α 0,λ j ), jb ~B(α j - α 0,λ j ) biçiminde birimlere ayrılsın. jb lerin bağımsız olduğu varsayıldığında (,, ) için bileşi olasılı çıaran fonsiyon P,, (t,,t ) = α0 { λ(t ) λ (t ) } { λ j(t j ) } j= α0 α j olur [5]. egatif Binom için de j inci sigorta oluna ait toplam hasar sayısı ii raslantı değişeninin toplamıyla bulunmatadır. j = jj + j0 (9) Burada, jj : j inci sigorta oluna ait bağımsız hasarların sayısını, j0 : bağımlı hasarların sayısını, j : j inci sigorta oluna ait toplam hasar sayısını

7 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) ifade etmetedir. ~ B( α, λ ) (j j j j j j =,) ~ B( α, λ ) (j,) (0) j 0 0 j = n adet bağımsız ve ( α i, λ) parametreli egatif Binom raslantı değişeninin toplamı α i, λ i= 0 parametresiyle egatif Binom dağılır []. Bu durumda α0 Cov[ i,j ] = α0λiλ j = E[ i ] E[ j ] () α α olur. i j Genel Etili egatif Binom modeli nde bağımlı değişenlerin bileşi olasılı dağılım fonsiyonu 0 0 [ E[ t t Θ] ] = M [ λ (t ) + λ (t ) ] P, (t,t ) = E Θ 0 0 α0 [ λ (t ) λ (t ) ] = olur. Bu nedenle, nin bileşi olasılı çıaran fonsiyonu P, (t,t ) = E t = E t (+ 0 ) ( + 0 ) [ t ] 0 0 [ ] E[ t ] E[ t ] t α j j [ λ j(t j ) ] P, (t,t ) 0 0 j= eşitliği ile yazılabilir. = () n 4. SAYISAL ÖREK Genel Etili Poisson Modeli ve Genel Etili egatif Binom Modeliyle bağımlı sigorta ollarının toplam hasar mitarı dağılımları öncei bölümde verilenler yardımıyla bulunabilir. Toplam hasar dağılımının esili olara hızlı Fourier dönüşümü yöntemiyle bulunabilmesi için farlı bilgisayar programlarını ullanma mümündür. Hasar mitarı dağılımlarını esilileştirebilme amacıyla, ullanılan yuvarlama yönteminde, adım sayısı olara n= r oşulunu sağlayan değişi n değerleri denenmiştir. Hesaplamalarda Microsoft Excel programında Fourier dönüşümü için destelenen en yüse adım sayısı olan 4096 değeri ullanılmıştır. Ayrıca esilileştirme işleminde ullanılaca olan h aralığı, seçilen adım sayısının yüseliği göz önüne alınara ve hasar mitarlarının dağılım fosiyonundai değişimini en düşü seviyede tutma için h= olaca biçimde seçilmiştir. 4.. Genel Etili Poisson Modeli Örneği Genel etili Poisson modelinde sigorta ollarının aşağıda verilen dağılımlara sahip olduğu varsayılmıştır. Birinci Sigorta olu için: ~Üstel (0,5) ~Poisson(5) İinci Sigorta olu için: ~Pareto (3;4) ~Poisson(5)

8 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) Genel etili Poisson modeli, bu ii sigorta olu için aşağıdai şeilde yazılabilir: = + = +. Burada, ve raslantı değişenleri λ, λ ve λ parametreli bağımsız Poisson dağılımlı raslantı değişenleridir: ~Poisson(λ +λ ) ve ~Poisson(λ +λ ) olur. Bu durumda ve arasındai bağımlılı her ii değişen için orta birim olan den aynalanmatadır ve ile arasındai ovaryans; Cov[, ] = λ ile gösterilir. Toplam hasar mitarı S nin ortalaması ve varyansı ise sırasıyla E[S] = (λ +λ )E[ ] + (λ +λ )E[ ], Var [ S] = ( λ + λ )E[ ] + ( λ + λ )E[ ] + λ E[ ] E[ ] olur. Farlı orelasyon atsayıları için λ nin aldığı değerler Çizelge de verilmiştir. Toplam Hasar mitarının dağılımı esili olara elde edilmiş ve Çizelge de verilmiştir. Çizelge. Genel Etili Poisson modeli için orelasyon atsayıları ρ(, )=0 ρ(, )=0,4 ρ(, )=0,8 λ 0 4 Cov[, ] 0 4

9 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) Çizelge. Genel Etili Poisson Modeline Göre Hesaplanmış Toplam Hasar Mitarı Dağılımları ρ(, )=0 ρ(, )=0,4 ρ(, )=0,8 s f(s) F(s) f(s) F(s) f(s) F(s) 0 0,0006 0,0006 0,008 0,008 0,0054 0,0054 0,0090 0,0050 0, , , ,030 0, , , ,069 0,004 0, , ,0336 0,0034 0,0303 0,0376 0, ,0045 0,038 0,049 0,037 0,0738 0, ,0457 0, ,084 0, ,0097 0, ,0903 0,0574 0,03 0, ,0443 0, ,0359 0,0800 0,064 0,040 0,0764 0,67 8 0,0804 0,0904 0,0988 0,3389 0,0305 0, ,039 0,43 0,033 0,670 0, ,90 0 0, ,77 0, ,089 0, ,57 0, ,60 0,0380 0,4099 0, ,69 0,0444 0,5754 0, ,8075 0, , ,0430 0, , ,360 0, , ,0447 0,3450 0,0440 0, , , , , ,0445 0, ,0386 0, , ,4345 0,0405 0, ,0385 0, ,0437 0, ,0404 0, , , ,0450 0,5036 0, ,548 0, , , ,566 0, ,5647 0, , , ,6005 0, , ,0336 0, ,0045 0, ,0079 0, ,00 0, ,009 0, ,0059 0,9856 0,0088 0, ,004 0,9890 0,004 0, ,0068 0, ,000 0, ,006 0, ,005 0, , , ,00 0, ,0035 0, , ,9973 0,0000 0, ,00 0, ,0007 0,9944 0, , ,0008 0, , , , ,9966 0, , , , ,0007 0,9938 0, , ,0005 0,9947 0, ,9930 0, , , , , , , ,9944

10 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) Genel Etili egatif Binom Modeli Örneği Genel etili Poisson modeline benzer şeilde ii sigorta olunun aşağıda verilen dağılımlara sahip olduğu varsayılsın. Birinci Sigorta olu için: ~Üstel (0,5) ~egatif Binom (;5) İinci Sigorta olu için: ~Pareto (3;4) ~ egatif Binom (;5) Genel etili egatif Binom modeli, bu ii sigorta olu için aşağıdai şeilde yazılabilir: = + 0 = + 0 olara yazılır. jj ~B(α jj,λ j ) ve j0 ~B(α 0,λ j ) tanımlamaları geçerlidir. Poisson modelinden farlı olara burada bağımlılı için α 0 değerini bulma gerelidir. Cov[, ] ve Eşitli (0) yardımıyla α 0 değeri bulunabilir. Toplam hasar mitarı S nin ortalaması ve varyansı; E[S] = (α + α 0 )E[ ] + (α + α 0 ) E[ ] Var[S]= α λ E[ ] + α λ ( E[ ]) + α λ E[ ] + α λ E[ ] olara yazılır. ( ) + α λ λ E[ ] E[ ] 0 Genel etili egatif Binom modeli için belenen farlı orelasyon atsayıları için ovaryans değerleri ve α 0 değerleri Çizelge 3 te ve Genel Etili egatif Binom Modeline göre esili olara elde edilen Toplam Hasar mitarının dağılımı Çizelge 4 te verilmiştir. Çizelge 3. Genel Etili egatif Binom modeli için orelasyon atsayıları ρ(, )=0 ρ(, )=0,4 ρ(, )=0,8 α 0 0 0,48 0,96 Cov[, ] 0 4

11 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) Çizelge 4. Genel Etili egatif Binom Modeline Göre Hesaplanmış Toplam Hasar Mitarı Dağılımları ρ(, )=0 ρ(, )=0,4 ρ(, )=0,8 s f(s) F(s) f(s) F(s) f(s) F(s) 0 0,0459 0,0459 0,0700 0,0700 0,446 0,446 0,030 0,0754 0, ,0973 0, ,5830 0,035 0,0667 0, ,4649 0,0407 0, ,034 0,3880 0,0360 0,85 0, , ,0369 0,750 0,0354 0,775 0, ,75 5 0,0394 0,0443 0, ,5 0, , ,039 0,3735 0,0334 0,8554 0,0385 0, ,0367 0,700 0,0339 0,3793 0,0306 0, ,034 0,305 0,033 0,3495 0,0877 0, ,0366 0,3339 0,030 0, ,0737 0, , , ,090 0, ,0606 0, ,0307 0, ,0798 0, ,048 0,4749 0,0930 0,4433 0,0686 0,4634 0,0364 0, ,0837 0,457 0,0575 0,4896 0,053 0, ,074 0,480 0,0466 0,538 0,048 0, ,064 0, ,0359 0,5374 0,0048 0, ,054 0,5396 0,055 0, ,0953 0, ,044 0, ,054 0,585 0,0863 0, ,0340 0, ,0056 0,6008 0,0777 0, ,040 0,607 0,096 0,669 0,0696 0, ,04 0,6358 0,0870 0, ,068 0, , , , ,970 0,004 0, , ,9470 0, ,9653 0, , , ,9454 0, ,9306 0, , ,0033 0, , ,9336 0, , ,003 0,9568 0,0038 0, , , ,0093 0,9546 0,003 0, ,0039 0, ,0076 0, ,0095 0,9495 0,0035 0, ,0059 0, ,0080 0, ,0030 0, ,0043 0,9639 0,0066 0,9484 0,0088 0, ,008 0, ,0053 0, ,0075 0, ,005 0, ,0040 0, ,0063 0,947

12 M. Pırılda, Ö. Esensoy / İstatistiçiler Dergisi (008) SOUÇ Farlı sigorta ollarına ait poliçelerden oluşan bir portföyde sigorta ollarına ait hasar sayılarının bağımlı olması durumunda toplam hasar mitarının hızlı Fourier dönüşümü yöntemiyle hesaplanması ele alınmıştır. Farlı sigorta ollarının birleştirilmesi işlemi için arateristi fonsiyonlar yardımıyla onvulüsyon metodu ullanılmıştır. Bileşi arateristi fonsiyonların elde edilmesi, bileşi dağılım fonsiyonların elde edilmesine göre daha olay olduğundan toplam hasar mitarının bulunmasında arateristi fonsiyonlar ullanılmıştır. Toplam hasar mitarının dağılımının elde edilebilmesi için belirlenen dağılımların esili dağılım biçimine getirilmesi geremetedir. Çalışmada dağılımları esili biçime getirme için Klugman ve diğerleri (998) de verilen yuvarlama yöntemi ullanılmıştır. Kesilileştirme işlemi için adım sayısı olara m= r oşulunu sağlayan değişi m değerleri ullanılmıştır. Çalışmada sunulan değerler ise m=4096 için bulunan değerlerdir. Değişi m değerleri için yapılan hesaplamalarda hızlı Fourier yönteminin m değerine duyarlı olduğu ve buna göre m değeri üçüldüçe sonuçlarda sapma olduğu gözlemlenmiştir. Ayrıca çalışmada bağımlı hasar sayısının bulunması için sigorta ollarının hasar sayıları arasındai ovaryanstan yararlanılmıştır. Seçilen orelasyon atsayıları için bulunan ovaryanslar yardımıyla bağımlı hasar sayısına ilişin parametreler bulunmuştur. Bulunan bağımlı hasar sayıları ullanılara toplam hasar mitarı hesaplanmıştır. Elde edilen sonuçlar Çizelge 3 ve Çizelge 4 te sunulmuştur. KAYAKLAR: [] Cossette, H., Marceau, E., 000, The discrete-time ris model with correlated classes of business, Insurance: Mathematics and Economics 6(), [] Dayin, C., Pentaiainen, T., Pesonen, M., (994). Parctical Ris Theory for Actuaries, London, Chapman & Hall. [3] Kaas, R., Goovaerts, M., Dhaene, J., (00). Modern Actuarial Ris Theory, Boston, Kluwer Academic Publishers. [4] Klugman, S. A., Panjer, H. H., Willmot, G. E., (998). Loss Models: From Data to Decisions, ew Yor, John Wiley & Sons, Inc. [5] Panjer, H. H., (98). Recursive Evaluation of a Family of Compound Distributions, ASTI Bulletin, -6. [6] Wang, S., (998). Aggregation of Correlated Ris Portfolios: Models and Algorithms, Proceedings of the Casualty Actuarial Society, [7] Wu,., Yuen, K.C., 003, A discrete-time ris model with interaction between classes of business. Insurance: Mathematics and Economics 33(), 7-33.

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu,

A İSTATİSTİK KPSS-AB-PÖ/2007. 1. X rasgele değişkeninin olasılık fonksiyonu. 4. X sürekli raslantı değişkeninin birikimli dağılım fonksiyonu, . X rasgele değişeninin olasılı fonsiyonu f( x) = c(x + 5), x =,, 0, diğer hâllerde olduğuna göre, c nin değeri açtır? A İSTATİSTİK KPSS-AB-PÖ/007. X süreli raslantı değişeninin biriimli dağılım fonsiyonu,

Detaylı

MEASURING TOTAL LOSS AMOUNT OF A PUBLIC INSURANCE COMPANY BY COLLECTIVE RISK MODEL

MEASURING TOTAL LOSS AMOUNT OF A PUBLIC INSURANCE COMPANY BY COLLECTIVE RISK MODEL Journal of Economics, Finance and Accounting (JEFA), ISSN: 2148-6697 Year: 2014 Volume: 1 Issue: 4 MEASURING TOTAL LOSS AMOUNT OF A PUBLIC INSURANCE COMPANY BY COLLECTIVE RISK MODEL Elif Makbule Cekici¹,

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

Farklı Madde Puanlama Yöntemlerinin ve Farklı Test Puanlama Yöntemlerinin Karşılaştırılması

Farklı Madde Puanlama Yöntemlerinin ve Farklı Test Puanlama Yöntemlerinin Karşılaştırılması Eğitimde ve Psiolojide Ölçme ve Değerlendirme Dergisi, Yaz 200, (), -8 Farlı Madde Puanlama Yöntemlerinin ve Farlı Test Puanlama Yöntemlerinin Karşılaştırılması Halil YURDUGÜL * Hacettepe Üniversitesi

Detaylı

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number: 1, Article Number: 1A0156 ENGINEERING SCIENCES Yavuz Ünal Received: October 010 Ufu Eim Accepted: January 011 Murat Kölü Series

Detaylı

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, *

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, * Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 (1-2) 168-182 (2009) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI Niğde Üniversitesi İİBF Dergisi, 2013, Cilt: 6, Sayı: 1, s. 96-115. 96 BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI ÖZ Arzu ORGAN* İrfan ERTUĞRUL**

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler.

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler. Eğitim ve Bilim Cilt 40 (2015) Sayı 177 31-41 Türiye dei Vaıf Üniversitelerinin Etinli Çözümlemesi Gamze Özel Kadılar 1 Öz Oran analizi ve parametri yöntemlerin eğitim urumlarını ıyaslaren yetersiz alması

Detaylı

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ TEKNOLOJİ, Cilt 7, (2004), Sayı 3, 407-414 TEKNOLOJİ GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ ÖZET Himet DOĞAN Mustafa AKTAŞ Tayfun MENLİK

Detaylı

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi M. Ozan AKI Yrd.Doç Dr. Erdem UÇAR ABSTRACT: Bu çalışmada, sıvıların seviye ölçümünde dalgalanmalardan aynalı meydana

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ ISSN:0- e-journal of New World Sciences Academy 009, Volume:, Number:, Article Number: A000 PHYSICAL SCIENCES Received: November 00 Acceted: June 009 Series : A ISSN : 0-0 009 www.newwsa.com Yüsel Öner,

Detaylı

Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org FUZZY Control Strategy Adapting to ISPM-15 Standarts Aydın Mühürcü 1, Gülçin Mühürcü 2 1 Saarya University, Electrical-Electronical

Detaylı

BÜHLMANN-STRAUB KREDİBİLİTE MODELİNDE KREDİBİLİTE FAKTÖRÜNÜN İNCELENMESİ

BÜHLMANN-STRAUB KREDİBİLİTE MODELİNDE KREDİBİLİTE FAKTÖRÜNÜN İNCELENMESİ SAÜ Fen Edebiyat Dergisi (213-II) BÜHLMANN-STRAUB KREDİBİLİTE MODELİNDE KREDİBİLİTE FAKTÖRÜNÜN İNCELENMESİ Abdurrahman ERDAL *1, Meral EBEGİL ** *1 Türkiye Çalışma ve İş Kurumu /ANKARA ** Gazi Üniversitesi

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

Türkiye de Enflasyon ve Döviz Kuru Arasındaki Nedensellik İlişkisi: 1984-2003

Türkiye de Enflasyon ve Döviz Kuru Arasındaki Nedensellik İlişkisi: 1984-2003 Türiye de Enflasyon ve Döviz Kuru Arasındai Nedenselli İlişisi: 1984-2003 The Causal Relationship Between Exchange Rates and Inflation in Turey:1984-2003 Yrd.Doç.Dr. Erem GÜL* Yrd.Doç.Dr. Ayut EKİNCİ**

Detaylı

141 Araştırma Makalesi. Türkiye de Karpuz Üretiminde Üretim-Fiyat İlişkisinin Almon Gecikme Modeli ile İncelenmesi

141 Araştırma Makalesi. Türkiye de Karpuz Üretiminde Üretim-Fiyat İlişkisinin Almon Gecikme Modeli ile İncelenmesi KSÜ Doğa Bil. Derg., 9(), 4-46, 6 KSU J. Nat. Sci., 9(), 4-46, 6 4 Araştırma Maalesi Türiye de Karpuz Üretiminde Üretim-Fiyat İlişisinin Almon Gecime Modeli ile İncelenmesi Nusret ÖBAY *, Şenol ÇELİK Bingöl

Detaylı

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES Uluslararası Ham Petrol ve Altın Fiyatlarının Amerian Doları ile İlişisi: Amiri Bir Uygulama Mehmet Şentür 1 Yusuf Erem Abaş 2 Uğur Adıguzel 3 Özet Bu çalışmada, uluslararası altın ve etrol fiyatlarının

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015 Gümüşhane Üniversitesi Sosyal Bilimler Eletroni Dergisi Sayı 12 Oca 2015 TÜRKİYE DE EKONOMİK BÜYÜME, ENERJİ TÜKETİMİ VE İTHALAT İLİŞKİSİ ÖZET Canan SANCAR 1 Melie ATAY POLAT 2 Bu çalışmada Türiye de eonomi

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Kalın kuyruklu hasar modellerinde iflas olasılığının benzetim yöntemi ile hesabı: Trafik sigortası örneği

Kalın kuyruklu hasar modellerinde iflas olasılığının benzetim yöntemi ile hesabı: Trafik sigortası örneği www.istatistikciler.org İstatistikçiler Dergisi 5 (2012) 1-13 İstatistikçiler Dergisi Kalın kuyruklu hasar modellerinde iflas olasılığının benzetim yöntemi ile hesabı: Trafik sigortası örneği Başak Bulut

Detaylı

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm BİLİŞİM TEKOLOJİLERİ DERGİSİ, CİLT: 1, SAYI: 1, OCAK 2008 23 Geneti Algoritma ile Mirofon Dizilerinde Ses Kaynağının Yerinin Bulunması Erem Çontar, Hasan Şair Bilge Bilgisayar Mühendisliği Bölümü, Gazi

Detaylı

İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI

İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI Hamdi DEMİREL (a), Halil SAVURAN (b), Murat KARAKAYA (c) (a) Mühendisli Faültesi, Yazılım Mühendisliği Bölümü,

Detaylı

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından

Detaylı

Sigorta priminin benzetim yöntemi ile belirlenmesi ve otomobil sigortası örneği

Sigorta priminin benzetim yöntemi ile belirlenmesi ve otomobil sigortası örneği www.istatistikciler.org İstatistikçiler Dergisi: İstatistik&Aktüerya 7 (2014) 20-28 Đstatistikçiler Dergisi: Đstatistik&Aktüerya Sigorta priminin benzetim yöntemi ile belirlenmesi ve otomobil sigortası

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Oca 2011 STOKASTİK KULLANICI DENGESİ TRAFİK ATAMA PROBLEMİNİN SEZGİSEL METOTLAR KULLANILARAK ÇÖZÜLMESİ (HEURISTIC METHODS

Detaylı

Sigma 27, 190-196, 2009 Research Article / Araştırma Makalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION

Sigma 27, 190-196, 2009 Research Article / Araştırma Makalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION Journal of Engineering and Natural Sciences Mühendisli ve Fen Bilimleri Dergisi Sigma 7, 19-19, 9 Research Article / Araştırma Maalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION Derya

Detaylı

Esmer Irkı Sığırlarda Süt Verimi Üzerine Etkili Faktörlerin Path Analizi İle Belirlenmesi

Esmer Irkı Sığırlarda Süt Verimi Üzerine Etkili Faktörlerin Path Analizi İle Belirlenmesi Kafas Univ Vet Fa Derg 7 (5): 859-86, 0 DOI:0.9775/vfd.0.688 REEARCH ARTICLE Esmer Irı ığırlarda üt Verimi Üzerine Etili Fatörlerin Path Analizi İle Belirlenmesi Yalçın TAHTALI * Aziz ŞAHİN * Zafer ULUTAŞ

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

T.C. BAŞBAKANLIK HAZİNE MÜSTEŞARLIĞI 2009 YILI AKTÜERLİK SINAVLARI KAPSAMI

T.C. BAŞBAKANLIK HAZİNE MÜSTEŞARLIĞI 2009 YILI AKTÜERLİK SINAVLARI KAPSAMI T.C. BAŞBAKANLIK HAZİNE MÜSTEŞARLIĞI 2009 YILI AKTÜERLİK SINAVLARI KAPSAMI 15 Ağustos 2007 tarihli ve 26614 sayılı Resmî Gazete de yayımlanarak 1 Ocak 2008 tarihinde yürürlüğe giren Aktüerler Yönetmeliği

Detaylı

Operasyonel Risk Ölçümü: Kayıp Dağılımları Modellemesi

Operasyonel Risk Ölçümü: Kayıp Dağılımları Modellemesi Operasyonel Risk Ölçümü: Kayıp Dağılımları Modellemesi Murat MAZIBAŞ mmazibas@bddk.org.tr Bankacılık Düzenleme ve Denetleme Kurumu (BDDK) ÖZET Operasyonel risk, kredi ve piyasa riski gibi ölçümü ve yönetimi

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 2 sh. 27-35 Mayıs 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 2 sh. 27-35 Mayıs 2003 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: sh. 7-35 Mayıs 003 FATURALI CTP LEVHALARDA GERİLME KONSANTRASYONUNUN ARAŞTIRILMASI (AN INVESTIGATION OF STRESS CONCENTRATION IN FILLETED

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

Kalite Fonksiyon Yayılımı Quality Function Deployment. Ar. Gör. Serdar Kılınç 14.02.2008

Kalite Fonksiyon Yayılımı Quality Function Deployment. Ar. Gör. Serdar Kılınç 14.02.2008 Kalite Fonsiyon Yayılımı Quality Function Deployment Ar. Gör. Serdar Kılınç 14.02.2008 Ürün/Hizmet Tasarımı ve Müşteri Belentileri Reabet gücünü sağlamada riti başarı fatörü müşteri belentilerini tam olara

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

Ersin Pak (ersin.pak@kocallianz.com.tr) Melda Şuayipoğlu (melda.suayipoglu@kocallianz.com.tr) Nalan Öney (nalan.kadioglu@kocallianz.com.

Ersin Pak (ersin.pak@kocallianz.com.tr) Melda Şuayipoğlu (melda.suayipoglu@kocallianz.com.tr) Nalan Öney (nalan.kadioglu@kocallianz.com. Sağlık Sigortalarında İflas Olasılığını Etkileyen Parametrelerin Simülasyon Modeli ile Analizi Ersin Pak (ersin.pak@kocallianz.com.tr) Melda Şuayipoğlu (melda.suayipoglu@kocallianz.com.tr) Nalan Öney (nalan.kadioglu@kocallianz.com.tr)

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ PAMUKKALE ÜNÝVERSÝTESÝ MÜHENDÝSLÝK YIL FAKÜLTESÝ PAMUKKALE UNIVERSITY ENGINEERING CÝLT COLLEGE MÜHENDÝSLÝK BÝLÝMLERÝ SAYI DERGÝSÝ JOURNAL OF ENGINEERING SAYFA SCIENCES : 1995 : 1 : 2-3 : 95-103 ANKARA

Detaylı

AutoLISP KULLANILARAK ÜÇ KOLLU ROBOTUN HAREKET SİMÜLASYONU

AutoLISP KULLANILARAK ÜÇ KOLLU ROBOTUN HAREKET SİMÜLASYONU PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : 6 : : -7 AutoLISP

Detaylı

METANOLÜN KATALİTİK OKSİDASYONUYLA FORMALDEHİT ÜRETİM KİNETİĞİNİN İNCELENMESİ

METANOLÜN KATALİTİK OKSİDASYONUYLA FORMALDEHİT ÜRETİM KİNETİĞİNİN İNCELENMESİ METNOLÜN TLİTİ OİDYONUYL FOMLDEHİT ÜETİM İNETİĞİNİN İNCELENMEİ.H. YILMZ, F.. TLY,. TLY Ege Üniversitesi, Mühendisli Faültesi, imya Mühendisliği ölümü, 3500, ornova- İZMİ ÖZET u çalışmada, metanolün formaldehite

Detaylı

VII. BÖLÜM İÇME SUYU ŞEBEKELERİ

VII. BÖLÜM İÇME SUYU ŞEBEKELERİ VII. BÖÜM İÇME SUYU ŞEBEKEERİ İsale hattı ile haznelere getirilen suları sarfiyat yerlerine dağıtan oru sistemine içme suyu şeeesi adı verilir. İçme suyu şeeesi her inada yeteri adar asınçlı suyu ulunduraca

Detaylı

Devlet Üniversitelerinin Etkinlik Analizi: Türkiye Örneği. Efficiency Analysis of State Universities: A Case of Turkey

Devlet Üniversitelerinin Etkinlik Analizi: Türkiye Örneği. Efficiency Analysis of State Universities: A Case of Turkey Hacettepe Üniversitesi Eğitim Faültesi Dergisi (H. U. Journal of Education) 29(3), 124-136 [Temmuz 2014] Efficiency Analysis of State Universities: A Case of Turey Gamze ÖZEL * ÖZ: Bu çalışmanın amacı,

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal o Engineering and Natural Sciences Mühendisli ve Fen Bilimleri Dergisi Sigma Vol./ilt 26 Issue/Saı 3 Araştırma Maalesi / Research Article DETERMINATION OF OPTIMUM INSULATION THIKNESS BY USING HEATING

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

TÜRKİYE DE TURİZM VE TİCARİ AÇIKLIK ARASINDAKİ İLİŞKİ: TODA VE YAMAMOTO NEDENSELLİK YAKLAŞIMI 1

TÜRKİYE DE TURİZM VE TİCARİ AÇIKLIK ARASINDAKİ İLİŞKİ: TODA VE YAMAMOTO NEDENSELLİK YAKLAŞIMI 1 Eonomi ve Sosyal Araştırmalar Dergisi, Cilt 2, Yıl 2, Sayı, 206 The International Journal of Economic and Social Research, Vol. 2, Year 2, No., 206 TÜRKİYE DE TURİZM VE TİCARİ AÇIKLIK ARASINDAKİ İLİŞKİ:

Detaylı

Almon Gecikme Modeli ile Domates Üretiminde Üretim-Fiyat İlişkisinin Analizi: Türkiye Örneği

Almon Gecikme Modeli ile Domates Üretiminde Üretim-Fiyat İlişkisinin Analizi: Türkiye Örneği TÜRK TARIM ve DOĞA BİLİMLERİ DERGİSİ TURKISH JOURNAL of AGRICULTURAL and NATURAL SCIENCES www.urjans.com Almon Gecime Modeli ile Domaes Üreiminde Üreim-Fiya İlişisinin Analizi: Türiye Örneği a Şenol ÇELİK*,

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

IR (İNFRARED) Absorpsiyon Spektroskopisi

IR (İNFRARED) Absorpsiyon Spektroskopisi IR (İNFRARED) Absorpsiyon Spetrosopisi Spetrosopi Yöntemler Spetrofotometri (UV-Visible, IR) Kolorimetri Atomi Absorbsiyon Spetrosopisi NMR Spetrosopisi ESR (Eletron Spin Rezonans) Spetrosopisi (Kütle

Detaylı

Yavaş Değişen Kritik-Altı Açık Kanal Akımının k-ε Türbülans Kapatma Modelleri ile Sayısal Hesabı

Yavaş Değişen Kritik-Altı Açık Kanal Akımının k-ε Türbülans Kapatma Modelleri ile Sayısal Hesabı Çuurova Üniversitesi Mühendisli Mimarlı Faültesi Dergisi, 9(1), ss. 145-155, Haziran 014 Çuurova University Journal of the Faculty of Engineering and Architecture, 9(1), pp. 145-155, June 014 Yavaş Değişen

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

TÜRKĠYE DE HANEHALKI YOKSULLUĞU

TÜRKĠYE DE HANEHALKI YOKSULLUĞU Ege Aademi BaıĢ / Ege Academic Review 0 (2) 200: 627-649 TÜRĠYE DE HANEHALI YOSULLUĞU HOUSEHOLD POVERTY IN TUREY Yrd. Doç. Dr. Tülin CANBAY, Celal Bayar Üniversitesi, Ġtisadi ve Ġdari Bilimler Faültesi,

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ

DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ ABSTRACT Şürü Ertie 1, Deniz Yıldırım 2, Efe Turhan 3, Taha Taner İnal 4 İstanbul Teni Üniversitesi, Eletri Mühendisliği

Detaylı

Fatih Tank. Assoc.Prof.Dr. Education. Master thesis. Ph.D. thesis. Employment. Last update: 7 Jan. 2014

Fatih Tank. Assoc.Prof.Dr. Education. Master thesis. Ph.D. thesis. Employment. Last update: 7 Jan. 2014 Fatih Tank Assoc.Prof.Dr. Last update: 7 Jan. 2014 Education 1990 1994 B.Sc., Statistics, Ankara University, Ankara, TURKEY. 1994 1997 M.Sc., Statistics, Ankara University, Ankara, TURKEY. 1997 2002 Ph.D.,

Detaylı

CİDAR ISITMASININ DÜZ BİR LEVHA ÜZERİNDEKİ SINIR TABAKA GEÇİŞİ ÜZERİNE ETKİLERİ EFFECTS OF WALL HEATING ON BOUNDARY LAYER TRANSITION OVER A FLAT PLATE

CİDAR ISITMASININ DÜZ BİR LEVHA ÜZERİNDEKİ SINIR TABAKA GEÇİŞİ ÜZERİNE ETKİLERİ EFFECTS OF WALL HEATING ON BOUNDARY LAYER TRANSITION OVER A FLAT PLATE Isı Bilimi ve Teniği Dergisi, 35, 1, 59-68, 215 J. of Thermal Science and Technology 215 TIBTD Printed in Turey ISSN 13-3615 CİDAR ISITMASININ DÜZ BİR LEVHA ÜZERİNDEKİ SINIR TABAKA GEÇİŞİ ÜZERİNE ETKİLERİ

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Çok Taşıyıcılı Gerçek Zaman WiMAX Radyoda Zaman Bölgesi ve Frekans Bölgesi Kanal Denkleştiricilerin Teorik ve Deneysel BER Başarım Analizleri

Çok Taşıyıcılı Gerçek Zaman WiMAX Radyoda Zaman Bölgesi ve Frekans Bölgesi Kanal Denkleştiricilerin Teorik ve Deneysel BER Başarım Analizleri Ço Taşıyıcılı Gerçe Zaman WiMA adyoda Zaman Bölgesi ve Freans Bölgesi Kanal Denleştiricilerin Teori ve Deneysel Başarım Analizleri E. Tuğcu, O. Çaır, A. Güner, A. Özen, B. Soysal, İ. Kaya Eletri-Eletroni

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

BİYOGAZ BESLEMELİ GAZ MOTORLU BİR KOJENERASYON SİSTEMİNİN TERMOEKONOMİK ANALİZİ THERMOECONOMIC ANALYSIS OF A BIOGAS ENGINE POWERED COGENERATION SYSTEM

BİYOGAZ BESLEMELİ GAZ MOTORLU BİR KOJENERASYON SİSTEMİNİN TERMOEKONOMİK ANALİZİ THERMOECONOMIC ANALYSIS OF A BIOGAS ENGINE POWERED COGENERATION SYSTEM Isı Bilimi ve Teniği Dergisi, 33,, 91, 13 J. of Thermal Science and Technology 13 TIBTD Printed in Turey ISSN 133615 BİYOGAZ BESLEMELİ GAZ MOTORLU BİR KOJENERASYON SİSTEMİNİN TERMOEKONOMİK ANALİZİ Ayşegül

Detaylı

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Gebze Teni Üniversitesi Fizi Bölümü Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Doğan Erbahar 2015, Gebze Bu itapçı son biraç yıldır Gebze Teni Üniversitesi Fizi Bölümü nde lisans laboratuarları

Detaylı

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma ÖLÇÜM SİSTEMİ ANALİZİ (MEASUREMENT SYSTEM ANALYSIS - MSA) Ölçüm Sistemi Varyansının Türleri Ölçüm sistemi hataları beş grupta ele alınır. Sapma Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık,

Detaylı

COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI ÖZET

COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI ÖZET COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI Darçin AKIN *, Yasasin ERYILMAZ ** ÖZET Bu maalede cografi bilgi sistemi (CBS) desteli bir trafi aza analizinin nasil yapilabilecegi ve aza verilerinin

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Örnek Bir Tedarik Zincirinin Sistem Dinamikleri Yaklaşımı İle Modellenmesi

Örnek Bir Tedarik Zincirinin Sistem Dinamikleri Yaklaşımı İle Modellenmesi International Journal of esearch and Development, Vol.3, No., January 2 2 Örne Bir Tedari Zincirinin Sistem Dinamileri Yalaşımı İle Modellenmesi Murat Yegengil, Haan Arslan ve Ata Sevinç Kırıale Üniversitesi,

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ ANABİLİM DALI

KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ ANABİLİM DALI KARADENİZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ ANABİLİM DALI HEYELANLAR İÇİN BİR DİNAMİK DEFORMASYON VE BİR DİNAMİK HAREKET YÜZEYİ MODELİNİN OLUŞTURULMASI DOKTORA

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılarak Yapılan Optimum Yönlendirme İşlemi

Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılarak Yapılan Optimum Yönlendirme İşlemi Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılara Yapılan Optimum Yönlendirme İşlemi Derviş Karaboğa 1 Selçu Ödem 2 1,2 Bilgisayar Mühendisliği Bölümü, Mühendisli Faültesi, Erciyes Üniversitesi,

Detaylı