GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ"

Transkript

1 GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇARAZLAMANIN SÖZDE RASSAL OULASYONLARA ETKİSİ ınar SANAÇ Ali KARCI Bilgisayar Mühendisliği Bölümü Mühendisli Faültesi Fırat Üniversitesi 239 Elazığ ÖZET Geneti algoritmalarda geneti operatörler ço büyü önem taşımatadır En genel haliyle çaprazlama, mutasyon ve seçim operatörleri geneti algoritmanın temel parçalarıdır Geneti operatörlerin algoritma üzerindei etileri daha öncei çalışmalarda ispatlanmıştır Özellile çaprazlama operatörü algoritma üzerinde en fazla oranla ullanılan operatörlerden birisidir Aynı şeilde başlangıç populasyonu oluşturma yöntemleri üzerinde de son zamanlarda çalışmalar gittiçe artmıştır Bu maalede, gelenesel şema teorisine dayalı olara çaprazlama operatörünün özel bir başlangıç populasyonu oluşturma yöntemi olan sözde rassal başlangıç populasyonları üzerindei etisi araştırılmıştır Çaprazlamanın çeşitliliği ne derece sağladığı ve hangi durumlarda şemayı bozmadığı incelenmiştir ve bu durumda algoritmanın iyiye doğru gidip gitmediği gözlemlenmiştir Çaprazlama yöntemlerinden olan n notalı çaprazlama metodu ullanılmıştır Buna bağlı olara uygunlu değerlerinin gösterdiği sıçramalar gözlemlenmiştir Teori açılamalar bir problem üzerinde denenmiş ve elde edilen sonuçlar arşılaştırılmıştır Anahtar Kelimeler: Sözde Rassal opulasyon, Başlangıç populasyonu, n notalı çaprazlama GİRİŞ Gelişigüzel arama metotlarından biri olan geneti algoritmalarda, rassal değerlerle yola çıara problemin çözümünü bulmaya çalışılır[] Bu aramanın belirli urallara dayalı olara yapılmasıyla ve rassallığın azaltılmasıyla bu metotlar daha iyiye götürülmeye çalışılır Bu sayede daha ısa sürede daha iyi sonuçlar bulma hedeflenir Gelenesel olara rassal başlangıç populasyonlarıyla arama yapmaya başlayan geneti algoritmalarda başlangıç populasyonu sözde rassal dizilerden faydalanılara oluşturulmuştur[2] bu sayede çeşitliliğin daha iyi sağlanması belenmetedir Kullanılan geneti operatörler de geneti algoritma için olduça önemlidirler Özellile çaprazlama operatörü geneti algoritmada mutasyondan daha yüse oranda ullanılır ve sonuca yaınsamada etili olması belenir Daha öncei çalışmalarda çaprazlama operatörünün rassal populasyonlar üzerindei etileri teori olara incelenmiştir[6] Bu çalışmada çaprazlamanın sözde rassal başlangıç populasyonlar üzerindei etileri araştırılacatır Buna göre maalenin iinci bölümünde sözde rassal populasyonlar, 3 bölümde çaprazlamanın rassal populasyon üzerindei etisi, 4 bölümde sözde rassal populasyon için çaprazlamanın belenen etisi anlatılmıştır 5 bölümde deneysel sonuçlar verilmiş ve 6 bölümde bu sonuçlar değerlendirilmiştir 2 SÖZDE RASSAL OULASYON Başlangıç populasyonu geneti algoritmanın il adımını oluşturduğu için, başlangıçta bireylerin çözüm uzayına dağılımı önemlidir Rassal dağıldığında bireyler birbirlerin ço yaın notalarda toplanabilirler ve bu notalar da çözümden ço uzata olabilir ve doğru sonuca ya ço fazla iterasyon sonunda ulaşılır veya da hiç ulaşılamayabilir Sonuca daha eren ulaşabilme için başlangıç populasyonları çeşitli yöntemlere göre oluşturulmatadır[2,3,4,5] Bunlardan bir tanesi de populasyon oluşturuluren sözde rassal dizilerden faydalanmatır 2 Sözde Rassal opulasyonları Oluşturma yöntemleri: Eğer gerçel odlama yapılacasa, bir romozomdai gen sayısı adar asal sayı bulunur ve her sayı bu asal tabanlarda yazılır ve daha sonra tersi alınır Hesaplanaca sayı φ p (n) olara gösterilirse; φ p (n) = a 0 * p - +a * p a m * p -m- Burada p asal tabanı, m ise basama sayısını gösterir, a i ler atsayılardır ve 0 a i < p dir Buna göre iili tabanda φ p (n) değerleri Tablo dei gibi hesaplanır: Tablo de elde edilen sayılar populasyonu oluşturma için ullanılır Bu notadan sonra populasyon, bu sayılar yardımıyla 2 farlı yöntem ullanara oluşturulabilir Bunlar; Halton ve Hammersley dizileridir[2,3] Bu çalışmada Halton sözde rassal dizileri ullanılmıştır

2 Tablo : İi tabanında φ p (n) değerleri ondalı iili iili ondalı n = = φ 2 (n) = 0 = Halton dizileriyle romozom oluşturulursa, populasyondai i romozom için ; x i = (φ p (i), φ p2 (i),, φ pn (i)) i=, 2,, N (N : populasyon boyutu) şelinde oluşturulur Her romozomun bu şeilde oluşturulmasıyla Halton sözde rassal populasyonu meydana gelir Halton populasyon, çözümleri uzaya belirli aralılarla dağıtır Bu nedenle sözde rassal populasyon oluşturma yöntemleri içerisinde olduça sı ullanılır[3] 3 ÇARAZLAMANIN RASSAL OULASYONA ETKİSİ Herhangi bir odlama alfabesinden oluşabilece romozom gruplarına şema denir Örneğin iili odlama ullanılıyorsa, alfabe A= {0, } den oluşur Bu alfabeye göre oluşabilece şemalardan bazıları 0**, **00, 0*, şelinde gösterilebilir Burada *, o genin 0 veya olmasının önemli olmadığını gösteriri Yani * lı genler de olsalar 0 da olsalar aynı şemaya dahil olacalardır demetir * lar dışındai veya 0 lara tanımlayıcı genler denir Bir şemada tanımlayıcı genlerin sayısı o şemanın mertebesini verir Buna göre Holland, bir şemanın çaprazlama sonrasında hayatını sürdürme olasılığını araştırmıştır Goldbeg, t anında verilen H şemasındai birey sayısından yola çıara t+ anında elde edilece olan H şemasındai birey sayısını hesaplamıştır[6] m t ; t anında H şemasına ait birey sayısı,, h şemasının t anındai ortalama f t uygunlu değeri ve f t, t anında populasyonun ortalama uygunlu değeri olma üzere, t+q anında H şemasına ait bireylerin sayısının şöyle olması belenir: m t+ f t ) ) m t ) y ) f t Burada y ), H şemasının çaprazlama sonucunda yaşamını devam ettirme olasılığıdır t+ anında H şemasına ait birey sayısının daha fazla olması belenir, çünü şema bir sonrai nesilde yaşamını sürdürebilir, hem de başa şemaların çaprazlanmasından H şemasına ait birey meydana gelebilir 3 N Notalı Çaprazlamanın Etisi Sabit uzunlulu bir evrimsel algoritma için, eğer L uzunluğunda odlama yapılacasa ve ullanılan alfabenin eleman sayısı C ise, C L tane atar oluşturma mümündür Eğer mertebeden bir şema H ile gösterilirse, bu şema C L- tane atar içerebilecetir Çaprazlama olayı, R rassal değişeniyle tanımlansın İili odlama düşünüldüğünde H için 2 tane çaprazlama olayının olması mümündür (0 R 2 ) Her R çaprazlama olayı uzunluğunda bir bit maselemeyle sunulabilir Eğer o bitin masesi ise, bu demetir i j notadai aleller yer değiştirece, 0 ise yer değiştirmeyecetir Bütün n notalı çaprazlamada bit maseleme ullanılabilir Bir nesilde bütün çaprazlama olaylarının toplam olasılığı olmalıdır R (R) = Bir H şeması için çaprazlama olayı düşünülürse, seçilece ebeveynlerin biri H ya ait olsun, diğer birey ise eyfi seçilsin Bu ii bireyin çaprazlanması sonucunda oluşan evlatlardan bir tanesi H ya ait ise, H şeması yaşamını sürdürür, hiçbiri H ya ait değilse, H bozulur Bu durumda y, H nın yaşamını sürdürme olasılığı, b de H nın bozulma olasılığı olma üzere; y ) = (R)_y/R) = (R) y/r) R R b ) = (R)_b/R) = (R) b/r) R R y ) + b ) = 32 N Notalı Çaprazlama için Yaşamını Sürdürme Teorisi N notalı çaprazlamada, çaprazlama olayı için n tane esim notası belirtilir Bu çaprazlama olaylarını te ve çift notalı çaprazlama olara sınıflandırma uygundur Çift olayda H nın tanımlama pozisyonları (genleri) arasına çift sayıda esim notası gelir(şeil ) Bu durumda tanımlayıcı alellerin hiçbiri yer değiştirmeyecetir ya da tümü yer değiştirecetir Bunun tersine te çaprazlama olayında; tanımlama pozisyonları arasına gelen esim notaları te sayıdadır(şeil 2) Bu durumda da bu tanımlayıcı alellerin bir bölümü yer değişir Bu durumda şemanın bozulma ihtimali yüsetir

3 2 d d2 d3 çift,l,l,,l,n) n/2 2x n 2x n L L L = çift,l,,l,2x) x= 0 2x L L Şeil Çift Çaprazlama Olayı 2 Şeil 2 Te Çaprazlama Olayı çift te ) = ) = Rte (R) (R) Te ve çift çaprazlama olayları bütün çaprazlama ümesini oluşturduğundan toplamları dir ) + çift te = ) Bu durumda H şemasının bozulma ve yaşama olasılıları sırasıyla şöyledir: d s d d2 d3 ) = (R)d /R) + ) = (R)s /R) + Rte Rte (R) s d (R) /R) /R) Eğer R çift ise; /R) 0 ; eğer R te d = ise; s /R) = dir Buna göre, tanımlama uzunluğu olma üzere, =2 için çift çaprazlama olayının olma olasılığı n notalı çaprazlama için şöyledir; n/2 2x n 2x n L L L çift 2, L, L, n) = x= 0 2x L L Burada L /L oranı esim notasının ii tanımlama notası arasına yerleşme olasılığını, (L-L )/L ise esim notasının ii tanımlama notası dışında olma olasılığını gösterir 2x indesi daima çifttir, 0 dan n e adar bütün çift sayıları içerir Kombinasyon ise, n tane esim notasından seçilebilen çift sayı yollarının sayısını hesaplar Bu sonuç sadece iinci dereceden şemalar için geçerlidir Bu ilişiyi daha yüse şemalar için genelleştirme mümündür, çünü çift sayıların toplamı yine bir çift sayıdır Bu denlem en genel haliyle şöyle gösterilebilir: 4 SÖZDE RASSAL OULASYONLAR ÜZERİNDE ÇARAZLAMANIN ETKİSİ 3 bölümdei rassal populasyon için te ve çift çaprazlama olaylarının olma olasılığı sözde rassal populasyon için de geçerlidir Buna göre eğer çift çaprazlama olayı gerçeleşmişse, şema bozulmaz Te çaprazlama olayı gerçeleşmişse, bu durumda şema, bozulur veya hayatini sürdürmeye devam eder Buna göre 3 bölümdei denlemler sözde rassal populasyonlar için de geçerlidir Bu durumda çaprazlamanın geneti algoritmayı iyiye götürmesi gerelidir 5 DENEYSEL SONUÇLAR Deneysel çalışmalar yapılıren geneti algoritma ullanılara program yapılmıştır rogramda, sı ullanılan f (x) = N i= 2 (x i 0 cos(2πx i ) + 0) trigonometri fonsiyon ullanılmıştır[4] roblemde değişenlerin tanım aralığı [-5,5] olara alınmış ve fonsiyonun masimumu araştırılmıştır roblem boyutu 28 olara seçilmiştir rogramda populasyon boyutu 60 olara alınmıştır Gerçel odlama yapılmıştır Başlangıç populasyonu Halton Sözde Rassal opulasyon şelinde oluşturulmuştur rogramda lasi geneti algoritmadan farlı olara, mutasyon yapılmamıştır Te notalı ve ii notalı çaprazlama ullanılmış, bunlar uygunlu değerlerine göre değerlendirilmiştir Seçim operatörü ise sadece ebeveynlerin seçiminde ullanılmıştır Bir sonrai nesil için sadece çaprazlama sonucu oluşan bireyler ullanılır; esi bireyler bir sonrai nesle taşınmaz Elitizm ullanılmamıştır Şemalar ontrol edilmemiştir, çünü gerçel odlamada şemaya haim olma, genler verilen aralıta sonsuz değer alabileceğinden zordur Bu nedenle, populasyondai ortalama uygunlu değeri ve en iyi uygunlu değerlerine baılmıştır ve buna dayalı olara şemalar haında yorum yapılmıştır Buna göre te ve ii notalı çaprazlamanın uygunlu-iterasyon grafi değişimi aşağıda verilmiştir

4 Şeil 3 Te notalı çaprazlama için en iyi ve ortalama uygunlu grafiği Şeil 4 Çift notalı çaprazlama için en iyi ve ortalama uygunlu grafiği Şeil 3 ve Şeil 4 te te ve ço notalı çaprazlama için her jenerasyondai en iyi uygunlu ve ortalama uygunlu değerleri verilmiştir Buna göre te ve ço notalı çaprazlamada populasyonun ortalama uygunlu değerlerinde ço fazla farlılı görülmemetedir Çift notalıda daha inişli çıışlı bir grafi mevcuten, te notalı çaprazlamada ortalama uygunlu değeri daha düzgün bir grafi oluşturmuştur En iyi uygunlu değerlerine baılırsa, ii çaprazlama yöntemi arasında açı bir far vardır Te notalı çaprazlamada 30 iterasyona adar en iyi uygunlu değeri hemen hemen değişmemiş,30 iterasyondan sonra sıçrama gerçeleştirmiş ve daha sonra terar birbirine benzer değerlerle 50 iterasyona adar gitmiştir Ço notalı çaprazlamada ise, en iyi uygunlu biraç sıçrama yapmış, faat 30 iterasyondan sonra süreli artışa geçmiştir Ço notalı çaprazlama olayından sonra populasyonda genel olara ço fazla bir değişim olmasa da en iyi birey süreli daha iyiye doğru gitmiştir Tablo 2 Çaprazlama metotlarının Karşılaştırılması En iyi Uygunlu Ortalama Uygunlu İterasyon No Te Notalı Çaprazlama Ço Notalı Çaprazlama Tablo 2 de görüldüğü gibi en iyi uygunluğa te notalı çaprazlamada 40 iterasonda ulaşılıren, ço notalı çaprazlamada 65 iterasyonda ulaşılmıştır Faat elde edilen uygunlu değerleri arasında olduça büyü bir far vardır 6 SONUÇ Elde edilen grafiler ve tabloya göre, çaprazlama olayının geneti algoritmayı iyiye götürdüğünü söyleyebiliriz Sözde rassal populasyon başlangıçta çeşitliliği iyi sağladığı için çaprazlamayla büyü sıçramalar gerçeleşmemiştir Fonsiyon tutarlı bir yol izlemiştir N notalı çaprazlama metodu, sözde rassal başlangıç populasyonu üzerinde olumlu etiler yapmıştır ve fonsiyon hiçbir zaman daha ötüye gitmemiştir

5 Eğer şemalar bozulsaydı, bu durumda yeni şemalar oluşmuş olaca veya ötü şemalar elde edilmiş olacatı ve bunun sonucu olara da fonsiyon ötüye gideceti veya algoritma uzun iterasyonlar boyunca devam edeceti O zaman te ve ço notalı çaprazlamanın sözde rassal populasyon için şemayı bozma olasılığının düşü olduğu sonucu çıarılabilir KAYNAKLAR: [] D: E Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning,Addison-Wesley, 989 [2] J H Halton On the eciency of certain quasi-random sequences ofpoints in evaluation multi-dimensional integrals Numer Math, 2:84 90, 960 [3] SANAÇ, A KARCI, Geneti Algoritmalarda Sani Rassal opulasyonların arşılaştırılması, Ya/Em 2004 Yöneylem Araştırması/Endüstri MühendisliğiXXIV Ulusal Kongresi 6-8 Haziran 2004, Çuurova Üniversitesi, Adana [4] Yiu-Wing Leung, An Orthogonal Genetic Algorithm with Quantization for Global Numercal Optimization,, IEEE Trans on Evolutionary Computation, vol:5, no:, 200 [5] Y J Cao, Q H Wu, D W Shimmin, Study Of Initial opulation In Evolutionary rogramming [6] William MSpears, Evolutionary Algorithims The Role of Mutation and Recombination, 2000

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm

Genetik Algoritma ile Mikrofon Dizilerinde Ses Kaynağının Yerinin Bulunması. Sound Source Localization in Microphone Arrays Using Genetic Algorithm BİLİŞİM TEKOLOJİLERİ DERGİSİ, CİLT: 1, SAYI: 1, OCAK 2008 23 Geneti Algoritma ile Mirofon Dizilerinde Ses Kaynağının Yerinin Bulunması Erem Çontar, Hasan Şair Bilge Bilgisayar Mühendisliği Bölümü, Gazi

Detaylı

İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI

İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI Hamdi DEMİREL (a), Halil SAVURAN (b), Murat KARAKAYA (c) (a) Mühendisli Faültesi, Yazılım Mühendisliği Bölümü,

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

Turbo kodlamalı resimlerin aşamalı iletimi ve resim bağlaşımlı sıkıştırılması

Turbo kodlamalı resimlerin aşamalı iletimi ve resim bağlaşımlı sıkıştırılması itüdergisi/d mühendisli Cilt:5, Sayı:, Kısım:, 5-6 Nisan 6 Turbo odlamalı resimlerin aşamalı iletimi ve resim bağlaşımlı sııştırılması Kenan BÜYÜKATAK *, Sedef KENT, O. Nuri UÇAN İTÜ Eletri-Eletroni Faültesi,

Detaylı

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number: 1, Article Number: 1A0156 ENGINEERING SCIENCES Yavuz Ünal Received: October 010 Ufu Eim Accepted: January 011 Murat Kölü Series

Detaylı

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi M. Ozan AKI Yrd.Doç Dr. Erdem UÇAR ABSTRACT: Bu çalışmada, sıvıların seviye ölçümünde dalgalanmalardan aynalı meydana

Detaylı

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 08 BİLDİRİLER KİTABI SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ Fevzi ŞENLİTÜRK, Fuat ALARÇİN ÖZET Bu çalışmada

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 14 Sayı: 1 sh Ocak 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 14 Sayı: 1 sh Ocak 2012 DEÜ MÜHENDİSLİ FAÜLTESİ MÜHENDİSLİ BİLİMLERİ DERGİSİ Cilt: 4 Sayı: sh. 39-47 Oca 202 ARIŞIMLI İİLİ LOJİSTİ REGRESYON MODELİNE İLİŞİN BİR UYGULAMA (AN APPLIACTION FOR MIXTURE BINARY LOGISTIC REGRESSION

Detaylı

141 Araştırma Makalesi. Türkiye de Karpuz Üretiminde Üretim-Fiyat İlişkisinin Almon Gecikme Modeli ile İncelenmesi

141 Araştırma Makalesi. Türkiye de Karpuz Üretiminde Üretim-Fiyat İlişkisinin Almon Gecikme Modeli ile İncelenmesi KSÜ Doğa Bil. Derg., 9(), 4-46, 6 KSU J. Nat. Sci., 9(), 4-46, 6 4 Araştırma Maalesi Türiye de Karpuz Üretiminde Üretim-Fiyat İlişisinin Almon Gecime Modeli ile İncelenmesi Nusret ÖBAY *, Şenol ÇELİK Bingöl

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa

Detaylı

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI

GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3

Detaylı

Çok Taşıyıcılı Gerçek Zaman WiMAX Radyoda Zaman Bölgesi ve Frekans Bölgesi Kanal Denkleştiricilerin Teorik ve Deneysel BER Başarım Analizleri

Çok Taşıyıcılı Gerçek Zaman WiMAX Radyoda Zaman Bölgesi ve Frekans Bölgesi Kanal Denkleştiricilerin Teorik ve Deneysel BER Başarım Analizleri Ço Taşıyıcılı Gerçe Zaman WiMA adyoda Zaman Bölgesi ve Freans Bölgesi Kanal Denleştiricilerin Teori ve Deneysel Başarım Analizleri E. Tuğcu, O. Çaır, A. Güner, A. Özen, B. Soysal, İ. Kaya Eletri-Eletroni

Detaylı

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Politeni Dergisi Cilt:3 Sayı: 3 s. 09-3, 00 Journal of Polytechnic Vol: 3 No: 3 pp. 09-3, 00 Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Tevfi GÜLERSOY, Numan

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

Rentech. Yaylar ve Makaralar Deney Seti. Yaylar ve Makaralar Deney Seti. (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü

Rentech. Yaylar ve Makaralar Deney Seti. Yaylar ve Makaralar Deney Seti. (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü (Yay Sabiti, Salınım Periyodu, Kuvvet ve Yol Ölçümleri) Öğrenci Deney Föyü 1 Anara-2015 Paetleme Listesi 1. Yaylar ve Maaralar Deney Düzeneği 1.1. Farlı Yay Sabitine Sahip Yaylar 1.2. Maaralar (Teli, İili

Detaylı

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, *

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, * Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 (1-2) 168-182 (2009) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ

Detaylı

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Fırat Üniv. Fen Bilimleri Dergisi Fırat Unv. Journal of Science 25(), 7-76, 23 25(), 7-76, 23 Matris Unutma Fatörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Özet Cener BİÇER * Esin KÖKSAL

Detaylı

Türkiye de Enflasyon ve Döviz Kuru Arasındaki Nedensellik İlişkisi: 1984-2003

Türkiye de Enflasyon ve Döviz Kuru Arasındaki Nedensellik İlişkisi: 1984-2003 Türiye de Enflasyon ve Döviz Kuru Arasındai Nedenselli İlişisi: 1984-2003 The Causal Relationship Between Exchange Rates and Inflation in Turey:1984-2003 Yrd.Doç.Dr. Erem GÜL* Yrd.Doç.Dr. Ayut EKİNCİ**

Detaylı

Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu

Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu Değişken Çaprazlama ve Mutasyon Faktörleri Kullanılmış Genetik Algoritma ile Kafes Yapıların Optimizasyonu Hilmi COŞKUN İskenderun Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, İskenderun, HATAY Tel:

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2012 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 ralı 2012, Bursa Lineer Olmayan Dinami Sistemlerin Yapay Sinir ğları ile Modellenmesinde MLP ve RBF Yapılarının Karşılaştırılması

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Oca 2011 STOKASTİK KULLANICI DENGESİ TRAFİK ATAMA PROBLEMİNİN SEZGİSEL METOTLAR KULLANILARAK ÇÖZÜLMESİ (HEURISTIC METHODS

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

Mendel Genetiği, Kalıtım, Gen Mühendisliği ve Biyoteknoloji

Mendel Genetiği, Kalıtım, Gen Mühendisliği ve Biyoteknoloji Mendel Genetiği, Kalıtım, Gen Mühendisliği ve Biyoteknoloji MENDEL GENETİĞİ Ebeveyn (ana-baba) ile oğul bireyler arasındaki benzerlik ve farklılıkların nasıl veya hangi oranlarda ortaya çıkabileceğini

Detaylı

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

YUVACIK VE NAMAZGAH BARAJ DEFORMASYONLARININ İZLENMESİ

YUVACIK VE NAMAZGAH BARAJ DEFORMASYONLARININ İZLENMESİ YUVACI VE NAMAZGAH BARAJ DEFORMASYONLARININ İZLENMESİ Orhan URT-1, Haan İLHAN-, Dile AYDIN-3, İsmail SEYRE-4, Eşref AIŞ-5, Ömer Faru ÇELİ- 6, Önder EİNCİ-7, Veysel BAŞARIR-8, Türer AYGÜN-9 Mail Adresi:

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Bazı Özel Kısmı Türevli Diferansiyel Denlemlerin Gezen Dalga Çözümleri İbraim ÇAĞLAR YÜKSEK LİSANS Matemati Anabilim Dalını Ağustos - KONYA Her Haı Salıdır

Detaylı

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI

BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI Niğde Üniversitesi İİBF Dergisi, 2013, Cilt: 6, Sayı: 1, s. 96-115. 96 BÜTÜNLEŞİK ÜRETİM PLANLAMASININ HEDEF PROGRAMLAMAYLA OPTİMİZASYONU VE DENİZLİ İMALAT SANAYİİNDE UYGULANMASI ÖZ Arzu ORGAN* İrfan ERTUĞRUL**

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Binom Katsayıları ve Pascal Üçgeni 3. Bölüm Emrah Ayar Anadolu Üniversitesi Fen Faültesi Matemati Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Binom Teoremi Binom Teoremi ( ) n 1. Derste

Detaylı

Özel Bir Dalgacık Kullanarak Dalgacık Dönüşümü Đle QRS Belirleme QRS Detection With Wavelet Transform Using A Custom Wavelet.

Özel Bir Dalgacık Kullanarak Dalgacık Dönüşümü Đle QRS Belirleme QRS Detection With Wavelet Transform Using A Custom Wavelet. ELECO '22 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - Aralı 22, Bursa Özel Bir Dalgacı Kullanara Dalgacı Dönüşümü Đle QRS Belirleme QRS Detection With Wavelet Transform Using A

Detaylı

Eğimli palplanş ve temel zemini özelliklerinin hidrolik yapı altındaki sızmaya etkisi

Eğimli palplanş ve temel zemini özelliklerinin hidrolik yapı altındaki sızmaya etkisi itüdergisi/d mühendisli Cilt:4, Sayı:6, 8-9 Aralı Eğimli palplanş ve temel emini öellilerinin hidroli yapı altındai sımaya etisi Hasan G. MOHAMED *, Necati AĞIRALİOĞLU İTÜ İnşaat Faültes İnşaat Mühendisliği

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Sabit Mıknatıslı Disk Motorlarda Mıknatıs Kaykı Etkisi

Sabit Mıknatıslı Disk Motorlarda Mıknatıs Kaykı Etkisi Sabit Mınatıslı Dis Motorlarda Mınatıs Kayı Etisi Metin AYDIN Meatroni Mühendisliği Bölümü, Mühendisli Faültesi, Kocaeli Üniversitesi, Esi Istanbul Yolu 1. m 13, Izmit/Kocaeli e-posta: metin.aydin@ocaeli.edu.tr

Detaylı

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ Ege Akademik BakıĢ / Ege Academic Review 10 (1) 2010: 199-210 PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ EFFICIENCY OF MUTATION RATE FOR PARALLEL MACHINE SCHEDULING

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü Serbestli Dereceli Taşıt Modeli PID Kontrolü Matematisel Modelin Çıarılması: Hareet denlemlerinin çıarılmasında Lagrange yöntemi ullanılmıştır. Lagrange yöntemi haında detaylı bilgi (Francis,978; Pasin,984;

Detaylı

Farklı Madde Puanlama Yöntemlerinin ve Farklı Test Puanlama Yöntemlerinin Karşılaştırılması

Farklı Madde Puanlama Yöntemlerinin ve Farklı Test Puanlama Yöntemlerinin Karşılaştırılması Eğitimde ve Psiolojide Ölçme ve Değerlendirme Dergisi, Yaz 200, (), -8 Farlı Madde Puanlama Yöntemlerinin ve Farlı Test Puanlama Yöntemlerinin Karşılaştırılması Halil YURDUGÜL * Hacettepe Üniversitesi

Detaylı

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri

Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Gebze Teni Üniversitesi Fizi Bölümü Deneysel Metotlara Giriş Temel Kavramlar, Analiz Yöntemleri Doğan Erbahar 2015, Gebze Bu itapçı son biraç yıldır Gebze Teni Üniversitesi Fizi Bölümü nde lisans laboratuarları

Detaylı

COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI ÖZET

COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI ÖZET COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI Darçin AKIN *, Yasasin ERYILMAZ ** ÖZET Bu maalede cografi bilgi sistemi (CBS) desteli bir trafi aza analizinin nasil yapilabilecegi ve aza verilerinin

Detaylı

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi Bulanı Programlama Yöntemi ile Süre-- Eniyilemesi Eran Karaman, Serdar Kale BAÜ Mühendisli Mimarlı Faültesi, 045, Çağış, Balıesir Tel: (266) 62 94 E-posta: earaman@baliesir.edu.tr sale@baliesir.edu.tr

Detaylı

BCJR ALGORİTMASI KULLANILAN TURBO KOD ÇÖZÜCÜLERİN FPGA GERÇEKLEŞTİRİMİ

BCJR ALGORİTMASI KULLANILAN TURBO KOD ÇÖZÜCÜLERİN FPGA GERÇEKLEŞTİRİMİ Gazi Üniv. Müh. Mim. Fa. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 6, No 4, 83-83, 0 Vol 6, No 4, 83-83, 0 BCJR ALGORİTMASI KULLANILAN TURBO KOD ÇÖZÜCÜLERİN FPGA GERÇEKLEŞTİRİMİ Onur ATAR*, Murat H. SAZLI**

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

METANOLÜN KATALİTİK OKSİDASYONUYLA FORMALDEHİT ÜRETİM KİNETİĞİNİN İNCELENMESİ

METANOLÜN KATALİTİK OKSİDASYONUYLA FORMALDEHİT ÜRETİM KİNETİĞİNİN İNCELENMESİ METNOLÜN TLİTİ OİDYONUYL FOMLDEHİT ÜETİM İNETİĞİNİN İNCELENMEİ.H. YILMZ, F.. TLY,. TLY Ege Üniversitesi, Mühendisli Faültesi, imya Mühendisliği ölümü, 3500, ornova- İZMİ ÖZET u çalışmada, metanolün formaldehite

Detaylı

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ

MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ K-MEANS KÜMELEME ALGORİTMASININ GENETİK ALGORİTMA KULLANILARAK GELİŞTİRİLMESİ BİTİRME ÖDEVİ Yunus YÜNEL Tez Danışmanı:

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal o Engineering and Natural Sciences Mühendisli ve Fen Bilimleri Dergisi Sigma Vol./ilt 26 Issue/Saı 3 Araştırma Maalesi / Research Article DETERMINATION OF OPTIMUM INSULATION THIKNESS BY USING HEATING

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Ei Aralı Seviyesinde Denee Sınavı. Uzunluğu R/ olan bir zincirin ucu yarıçapı R olan pürüzsüz bir ürenin tepe notasına bağlıdır (şeildei ibi). Bilinen bir anda bu uç serbest bıraılıyor. )Uç serbest bıraıldığı

Detaylı

Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılarak Yapılan Optimum Yönlendirme İşlemi

Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılarak Yapılan Optimum Yönlendirme İşlemi Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılara Yapılan Optimum Yönlendirme İşlemi Derviş Karaboğa 1 Selçu Ödem 2 1,2 Bilgisayar Mühendisliği Bölümü, Mühendisli Faültesi, Erciyes Üniversitesi,

Detaylı

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ PAMUKKALE ÜNÝVERSÝTESÝ MÜHENDÝSLÝK YIL FAKÜLTESÝ PAMUKKALE UNIVERSITY ENGINEERING CÝLT COLLEGE MÜHENDÝSLÝK BÝLÝMLERÝ SAYI DERGÝSÝ JOURNAL OF ENGINEERING SAYFA SCIENCES : 1995 : 1 : 2-3 : 95-103 ANKARA

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 01 Mayıs VİNÇTE ÇELİK KONSTRÜKSİYON KİRİŞTE BURUŞMA 1-03 Güven KUTAY Semboller ve Kaynalar için "1_00_CeliKonstrusiyonaGiris.doc" a baınız. Koordinat esenleri "GENEL GİRİŞ" de belirtildiği gibi DIN 18800

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ Yılmaz Uyaroğlu M. Ali Yalçın Saarya Üniversitesi, Mühendisli Faültesi, Eletri Eletroni Mühendisliği Bölümü, Esentepe Kampüsü,

Detaylı

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr.

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr. MAK3 MAKİNA EEMANARI I. Yarıyıl içi imtihanı /0/0 Müddet: 90 daia Ögretim Üyesi: Prof.Dr. Himet Kocabas, Doç.Dr. Cemal Bayara. (0 puan) Sıı geçmelerde sürtünme orozyonu nasıl ve neden meydana gelir? Geçmeye

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER

GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER GERÇEK ZAMAN KISITLARI ALTINDA SEYRÜSEFER Ferhat Uçan (a), (b) (a), 41470,Gebze, Kocaeli, ferhat.ucan@bte.tubitak.gov.tr (b) du.tr ÖZ seklik t k Problemin en uygun çözümü, tüm a birlikte eniyileyen zordur.

Detaylı

Sigma 27, 190-196, 2009 Research Article / Araştırma Makalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION

Sigma 27, 190-196, 2009 Research Article / Araştırma Makalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION Journal of Engineering and Natural Sciences Mühendisli ve Fen Bilimleri Dergisi Sigma 7, 19-19, 9 Research Article / Araştırma Maalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION Derya

Detaylı

Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org FUZZY Control Strategy Adapting to ISPM-15 Standarts Aydın Mühürcü 1, Gülçin Mühürcü 2 1 Saarya University, Electrical-Electronical

Detaylı

TÜRKİYE DE PİYASA GÖSTERGELERİNDEN PARA POLİTİKASI BEKLENTİLERİNİN ÖLÇÜLMESİ 1

TÜRKİYE DE PİYASA GÖSTERGELERİNDEN PARA POLİTİKASI BEKLENTİLERİNİN ÖLÇÜLMESİ 1 TÜRKİYE DE PİYASA GÖSTERGELERİNDEN PARA POLİTİKASI BEKLENTİLERİNİN ÖLÇÜLMESİ 1 Harun Alp a, Haan Kara a, Gürsu Keleş a, Refet Gürayna b, Musa Ora a ÖZET Bu çalışmanın amacı, Türiye de hangi piyasa aracının

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

KONTEYNER YÜKLEME PROBLEMLERİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI

KONTEYNER YÜKLEME PROBLEMLERİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI Gazi Üniv. Müh. Mim. Fa. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 5, No 4, 881-894, 010 Vol 5, No 4, 881-894, 010 KONTEYNER YÜKLEME PROBLEMLERİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI Türay DERELİ

Detaylı

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Available online at www.alphanumericournal.com alphanumeric ournal Volume 3, Issue 1, 2015 2015.03.01.OR.02 MATEMATİKSEL PROGRAMLAMA İLE TEDARİK ZİNCİRİ YÖNETİMİNDE ETKİNLİK PLANLAMASI Murat ATAN * Sibel

Detaylı

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu

Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu itüdergisi/d mühendislik Cilt:1 Sayı:1 Ağustos 2002 Genetik Algoritmalarla akış tipi çizelgelemede üreme yöntemi optimizasyonu Orhan ENGİN *, Alpaslan FIĞLALI İTÜ İşletme Fakültesi, Endüstri Mühendisliği

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

, t anındaki birey sayısı (popülâsyon büyüklüğü) olmak üzere,

, t anındaki birey sayısı (popülâsyon büyüklüğü) olmak üzere, Kaosu Kaosan Kuraralım ve Rasgeleliğin Haını Verelim Kaos sözcüğü ile ilgili Tür Dil Kurumu web sayfasındai Güncel Türçe Sözlü e yazılı olanlar: aos (isim, a os, Fransızca). Evrenin düzene girmeden öncei

Detaylı

DALGACIK PAKET DÖNÜŞÜMÜ VE GENETİK ALGORİTMA KULLANARAK ZAYIF RADAR SİNYALLERİNİN GÜRÜLTÜDEN ARINDIRILMASI

DALGACIK PAKET DÖNÜŞÜMÜ VE GENETİK ALGORİTMA KULLANARAK ZAYIF RADAR SİNYALLERİNİN GÜRÜLTÜDEN ARINDIRILMASI Gazi Üniv. Müh. Mim. Fa. Der. Journal of the Faculty of Engineering and Architecture of Gazi University Cilt 9, No, 375-383, 014 Vol 9, No, 375-383, 014 DALGACIK PAKET DÖNÜŞÜMÜ VE GENETİK ALGORİTMA KULLANARAK

Detaylı

ON COMPOSITE LAMINATED PLATES WITH PLANE LOADED ELASTIC STRESS ANALAYSIS

ON COMPOSITE LAMINATED PLATES WITH PLANE LOADED ELASTIC STRESS ANALAYSIS Doğu Anadolu Bölgesi Araştırmaları; 7 DÜZLEMSEL YÜLÜ TABAALI OMPOZİT PLAALARDA ELASTİ GERİLME ANALİZİ *Hamit ADİN, **Bahattin İŞCAN *Dicle Üniversitesi Şırna Mesle Yüseoulu ŞIRNA **Batman Üniversitesi

Detaylı

AutoLISP KULLANILARAK ÜÇ KOLLU ROBOTUN HAREKET SİMÜLASYONU

AutoLISP KULLANILARAK ÜÇ KOLLU ROBOTUN HAREKET SİMÜLASYONU PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : 6 : : -7 AutoLISP

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

BASKIN GEN SEÇİMİ OPERATÖRÜNE DAYALI GENETİK ALGORİTMA MODELİ

BASKIN GEN SEÇİMİ OPERATÖRÜNE DAYALI GENETİK ALGORİTMA MODELİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 869-875, 20 Vol 26, No 4, 869-875, 20 BASKIN GEN SEÇİMİ OPERATÖRÜNE DAYALI GENETİK ALGORİTMA MODELİ Adem KALINLI, Özgür AKSU

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

TUNÇBİLEK TERMİK SANTRALİ 5.ÜNİTE KAZANININ SAYISAL MODELLEMESİ

TUNÇBİLEK TERMİK SANTRALİ 5.ÜNİTE KAZANININ SAYISAL MODELLEMESİ TUNÇBİLEK TERMİK SANTRALİ 5.ÜNİTE KAZANININ SAYISAL MODELLEMESİ Faru ÖZDEMİR*, Yaup Erhan BÖKE İstanbul Teni Üniversitesi, Maina Faültesi, İnönü Caddesi No: 65 Gümüşsuyu 34437 İSTANBUL *Sorumlu yazar:

Detaylı

FARKLI YAPIM SİSTEMLERİ VE KONUT MALİYETLERİ

FARKLI YAPIM SİSTEMLERİ VE KONUT MALİYETLERİ FARKLI YAPIM SİSTEMLERİ VE KONUT MALİYETLERİ ESRA BOSTANCIOĞLU 1, EMEL DÜZGÜN BİRER 2 ÖZET Bir binanın fonsiyon ve performansının değerlendirilmesinde; diğerlerinin yanında maliyet önemli bir parametredir.

Detaylı

CİDAR ISITMASININ DÜZ BİR LEVHA ÜZERİNDEKİ SINIR TABAKA GEÇİŞİ ÜZERİNE ETKİLERİ EFFECTS OF WALL HEATING ON BOUNDARY LAYER TRANSITION OVER A FLAT PLATE

CİDAR ISITMASININ DÜZ BİR LEVHA ÜZERİNDEKİ SINIR TABAKA GEÇİŞİ ÜZERİNE ETKİLERİ EFFECTS OF WALL HEATING ON BOUNDARY LAYER TRANSITION OVER A FLAT PLATE Isı Bilimi ve Teniği Dergisi, 35, 1, 59-68, 215 J. of Thermal Science and Technology 215 TIBTD Printed in Turey ISSN 13-3615 CİDAR ISITMASININ DÜZ BİR LEVHA ÜZERİNDEKİ SINIR TABAKA GEÇİŞİ ÜZERİNE ETKİLERİ

Detaylı

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015 Gümüşhane Üniversitesi Sosyal Bilimler Eletroni Dergisi Sayı 12 Oca 2015 TÜRKİYE DE EKONOMİK BÜYÜME, ENERJİ TÜKETİMİ VE İTHALAT İLİŞKİSİ ÖZET Canan SANCAR 1 Melie ATAY POLAT 2 Bu çalışmada Türiye de eonomi

Detaylı

Optik WDM ağları için ayrıştırılmış kullanılabilirlik kısıtı altında yol ve dalgaboyu atama teknikleri

Optik WDM ağları için ayrıştırılmış kullanılabilirlik kısıtı altında yol ve dalgaboyu atama teknikleri itüdergisi/d mühendisli Cilt: 10, Sayı: 3, 37-48 Haziran 2011 Opti WDM ağları için ayrıştırılmış ullanılabilirli ısıtı altında yol ve dalgaboyu atama tenileri Bura KANTARCI *1, Sema OKTUĞ 1, Hussein T.

Detaylı

SİPÂRİŞ TİPİ ATÖLYELERDE İŞ SIRALAMA PROBLEMİ İÇİN BİR GENETİK ALGORİTMA UYGULAMASI

SİPÂRİŞ TİPİ ATÖLYELERDE İŞ SIRALAMA PROBLEMİ İÇİN BİR GENETİK ALGORİTMA UYGULAMASI SİPÂRİŞ TİPİ ATÖLYELERDE İŞ SIRALAMA PROBLEMİ İÇİN BİR GENETİK ALGORİTMA UYGULAMASI Murat Baskak İ.T.Ü. İşletme Fakültesi, Endüstri Mühendisliği Bölümü, 34367 Maçka/İstanbul Vural Erol Yıldız Teknik Üniversitesi,

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapma veya Kullanım Koşulları haında bilgi alma için http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresini ziyaret ediniz.

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı