2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde"

Transkript

1 .9. Smth Katı Blgsayala gelştlmeden önce letm hattı poblemlen çömek çn bçok abak gelştlmşt. Smth katı veya abağı gelştlen en yaygın patk hesaplama yöntemne sahp olup hala letm hatlılaının gafk olaak analnde kullanılmaktadı. Bu kat P. H. Smth (1939) taafından sanal empedans le lgl hesaplamala çn gelştlmş olmasına ağmen blgsaya tabanlı tasaım çn gelştlen yaılımlaa da öncü olaak mkodalga develen çöümlenmesnde yadımcı olmaktadı. Smth katı sanal sayılaı çeen çok çetefll hesaplamaladan kaçınaak empedans ayalama develenn tasalanmasında oldukça kolaylık sağlamaktadı. Smth katı kayıplı ve kayıpsı letm hatlaı çn kullanılabl. B buada kayıpsı letm hatlaındak hesaplamalala lgleneceğ..9.1 Paametk Denklemle Yansıma katsayısı genellkle sanal b büyüklük olup büyüklüğü le θ fa açısından oluşu. jθ e + j (1) Yukaıdak denklemde cosθ ve snθ bleşenlen kullandık. θ θ A θ 53. A.5 θ 18 D Kısa deve yük B B C θ Açık deve yük Bm çembe -1 θ 7 Şekl.: Sanal dülem. A noktası B.5 j..54 e j. A.3 + j.4.5e j53 ve B noktası Smth katı sanal dülemnde bulunu. Şekl. de, A noktası.3 j. 4 le velen A + yansıma katsayısını, (.3.4 ) 1/ A +.5 ve tan 1 (.4 /.3) 53 ve bene θ 1

2 şeklde B noktası da B.54 ve θ olmak üee B.5 j. le velen yansıma katsayısını temsl ede. Dkkat edlse ve temlenn he ks de negatf sayı olmalaı halnde θ nn - dülemnde üçüncü çeyekte olacağı göülü. Bu yüden, θ açısını hesaplamada θ tan 1 ( / ) bağıntısını kullanıken θ açısının doğu değen elde etmek çn 18 deeceden çıkamak veya toplamak geekl olabl. Buada se 18 deece le topladık. Şekl - dek bm çembe 1 şatına kaşılık gel. İletm hattı çn sadece bm çembedek - dülemnde B 1 şatını sağlayan kısım fksel anlama sahp olduğu çn, bundan sonak çmle bm çemben çndek bölgede kalacak şeklde sınılanacaktı. Smth katındak empedansla nomale değele taafından temsl edlle. Öneğn hattın kaaktestk empedansı nomale edlmş sabt olaak göev yapa. Nomale empedanslaı küçük haflele gösteeceğ. Öneğn Z / Z gb. Bu duumda nomale yük empedansı Z / Z (boyutsu) olaak fade edlmş olu. Blndğ gb yansıma katsayısı, Z Z / Z / Z () le vel. Bunun tesnden haeket edeek, tes bağıntısı aşağıdak denklemle vel j j (3) Nomale yük empedansı genel olaak sanal b ncelk olup nomale yük denc ( ) ve nomale yük eaktansından (x ) meydana gel: + jx. Nomale yük empedansını Denk.1 ve 3 ü kullanaak + jx (1 + ) + (1 ) j j (4) Yukaıdak denklem çöüleek ve x çn açık fadele ve katsayılaına göe elde edlebl. Bu şlem denklem 4 ün sağ taafının pay ve paydasını paydanın sanal eşlenğ le çapıp sonucu eel ve sanal kısımlaa ayıaak yapılabl. Bu şlemle takp edeek aşağıdak denklemle elde edl. 1 (5) (1 + ) x (6) (1 ) + Yukaıda velen bu denklemle velen ve değele takımı çn yalnıca bu değelee kaşılık gelen ve x değele takımının olacağını fade ede. Ancak, eğe nn değen sabtlesek (öneğn alalım), he b nn aynı değen veecek şeklde ve katsayılaına bçok mümkün değele atanabl. Öneğn (, ) (.33,) değe takımı

3 veken (, ) (.5,.9) değe takımı da yaklaşık aynı değe ve. Bunun gb sonsu sayıda değe takımı elde edlebl. Geçekte ve değe takımının değe çn bütün kombnasyonlaını - dülemnde çmek stesek şekl.1 dek çembe elde edl. Bu çembe üende, bleşen takımı bulunu. Bene çembele nn dğe değele çnde geçel olup 1 domenndek bütün çembele (, ) (1,) noktasından geçe. Cebsel baı şlemle sonucunda nn velen b değene kaşılık - dülemndek çembe çn paametk denklem Denk.5 teka düenleneek elde edl (7) Meke ( x, y ) noktasında a yaıçaplı b çemben x-y dülemndek denklem, ( ) x x ( y y ) a + (8) le vel. Denklem 7 le 8 kaşılaştııldığında çembe x /(1 + ) ve y noktasında mekelenmş olup a 1/(1 + ) yaıçapına sahpt. Şekl -1 dek en büyük çembe değene kaşılık gelp 1 değene kaşılık gelen bm çembed. Dkkat edlse, x nn büyüklüğüne bakılmaksıın olduğu aman 1 sonucunun elde edleceğ beklen. x.5 1. x 1 x P sc x O.5 P oc 1. x -.5 x -1 x - Şekl -1: 1 B -1. domen çndek ve x çembe ales. Bene duum velen b x değe çn Denklem 6 dak fadenn ele alınmasıyla velen çembe çn aşağıdak denklem elde edl. ( 1) x x (9) 3

4 Buada dkkat etmem geeken b husus şudu: Yukaıdak denklemde - dülemndek x çembele çembelenden faklı b kaakte göste. Öneğn x le velen nomale edlmş eaktans hem potf hem de negatf değele alablken öte yandan nomale edlmş denç negatf olama (negatf denç fksel olaak anlamlı değld). Böylece Denklem 9 b x nn potf değelene dğe de negatf değelene kaşılık gelen k adet çembe ales üetebl. Buna ek olaak Şekl.1 de göüldüğü gb sadece velen çemben b kısmı bm çemben sınılaı çne düşe. Denklem 7 ve 9 da velen k paametk denklemn ve x değele çn çlen çembe alele Şekl - de velen Smth katını meydana get. Şekl - de velen b P noktası,.45exp( j 6.6 ) le velen voltaj yansıma katsayısına kaşılık gelen j1 le velen nomale edlmş b yük empedansını temsl ede..45 le velen büyüklük Smth katının meke le P noktası aasındak doğunun uunluğunun Smth katının meke le bm çemben kenaı aasındak doğunun uunluğuna bölünmesyle elde edl (bm çemben yaıçapı 1 değene kaşılık gel). Smth katının çeves üç adet konsantk skala çe. En çedek skala deece cnsnden yansıma katsayısı açısı veya ojnal adıyla (angle of eflecton coeffcent n degees). Bu θ fa açısı çn olan skaladı. Şekl - de göüldüğü gb, P noktası çn θ 6. 6 d. Dğe k skalanın anlamlaı ve kullanımlaı bundan sona tatışılacaktı. Şekl -: P noktası j1 le velen nomale edlmş b yük empedansını temsl ede. Yansıma katsayısı OP/OR.45 le velen büyüklüğe ve θ 6. 6 açıya sahpt. R noktası çembe üende keyf b noktayı göstemekted (bu da 1 çembed). Alıştıma.15: Smth katını kullanaak a) + j b) 1 j1 c).5 j d) j3 e) f) g) 1 le velen nomale edlmş yük empedanslaına 4

5 o kaşılık gelen yansıma katsayılaını bulunu. Cevap: a). 33 b) c) o o d) e) 1, f) 1 g).9. Gş Empedansı Denklem.61 den yüke doğu yönde l uaklığındak gş empedansı aşağıdak fomülle vel. Z 1+ e e j βl n Z 1 j βl (Ω) (1) Smth katını kullanmak çn empedansla dama kaaktestk empedansa nomale edl. Bu yüden nomale edlmş gş empedansı n Z 1+ e j βl n (boyutsu) (11) j βl Z 1 e le vel. Daha önce de beltldğ gb e jθ yüktek voltaj yansıma katsayısıdı. Fa kaymasına sahp voltaj yansıma katsayısını aşağıdak gb tanımlayalım. l e j βl e jθ e j l j( βl) β e θ (1) l fa kaymasına sahp yansıma katsayısı le yüktek voltaj yansıma katsayısı aynı büyüklüğe sahp olup l nn faı ye göe βl kada kaymış duumdadı. Denklem 11, l ye göe teka yaalım: n e 1+ e j βl j( θ βl) l j βl j( θ βl) 1 l 1 e 1 e (13) Denklem 13 ün fomu denklem 3 de velen le aynıdı. Bu fom benelğne göe, eğe l ye dönüştüülüse de n e dönüştüülmüş olu. Smth katı üende yansıma katsayısının l ye dönüştüülmes demek nn sabt tutulaak faın βl kada aaltılması anlamına gel ve bu Smth katı üende saat yönünde dönüşe kaşılık gel. Dkkat edlse Smth katı etafında tam b dönüş π kada b fa değşmne eşt olup bu değşme kaşılık gelen l uunluğu aşağıdak fomülden elde edl: π βl l π (14) λ veya l λ /. Şekl. de velen Smth katı çevesnde en dış kısımda bulunan skala jeneatöe doğu dalga boylaı skalası olaak adlandıılı ve letm hattı üende jeneatöe doğu dalga boyu bmle üenden haeket temsl etmek çn oluştuulmuştu. Yan, l dalga boylaında ölçülü ve tam b dönüş l λ / ye kaşılık gel. Baı letm hattı poblemlende letm hattı üende faın attığı duumuna kaşılık gelen b noktadan yüke daha yakın başka b noktaya haeket edlmes geekl olabl, k bu da saat yönünün tes yönünde dönüşe kaşılık gel. Uygunluk açısından, smth katı çeves etafında üçüncü b skalayı çe: yüke doğu dalga boylaı skalası. 5

6 Uunluğu l.1λ, kaaktestk empedansı Z 5 olan kayıpsı b letm hattı Z 1 j5 le velen b yük empedansında sonlandıılmış se bu hattın gş empedansının ne olduğunu bulalım. Gş empedansını Z n bulmak çn Smth katını kullanalım. Buada yapmamı geeken yükten l. 1λ kada uakta gş empedansını bulmak olacaktı. Nomale edlmş yük empedansı Z / Z j1 le vel ve Smth katında Şekl -3 de göüldüğü gb A noktası le göstelmşt. Yüke doğu dalga boylaı skalasında A noktasının ye.87λ d. B pegel kullanılaak meke Smth katının mekende çeves A dan geçecek şeklde b dae çl. Smth katının meke ve eksenlenn kesşme noktası olduğu çn çlen dae üendek bütün noktala aynı değene sahpt. Buna sabt daes adı vel ve çoğunlukla SWR daes le anılı. Şekl -3: A noktası WTG skalası üende.87λ konumundak j1 le velen nomale yük empedansını temsl ede. B noktası se yükten l.1λ kada uaktak.6 j.66 le velen gş empedansını temsl ede. Duan dalga oanı (SWR) le aasındak bağıntı daha önce de beltldğ gb, 1+ S (15) 1 le vel. Böylece, nn sabt b değe S nn öel b değene kaşılık gel. y n e dönüştümek çn yı sabt tutmamı geek, bu da SWR daes üende kalmamı ve nın faının βl kada aaltılması anlamına gel. Yan, WTG skalası üende jeneatöe doğu l. 1λ mesafes kada haeket edlmes geek. A noktasının ye.87λ de olduğundan WTG skalası üende.78λ +.1λ. 387λ yene haeket etmem geek. WTG üende bu yen konumdan geçen adyal doğu SWR çembe üende B noktasıyla 6

7 kesş. Bu nokta n temsl ede ve değe n j d. Son olaak n Z 5 le çapıp tes nomale edeek Zn 3 33 j elde ede. Bu sonucu kontol etmek çn Denklem 1 da velen analtk bağıntı kullanılabl. SWR çembe üendek A ve B aasındak noktala letm hattı boyunca faklı noktalaı temsl ede. Alıştıma.16: Smth katını kullanaak uunluğu l olan ve nomale edlmş yük empedansında sonlandıılmış kayıpsı b letm hattının nomale edlmş gş empedansını şu duumla çn bulunu. a) l. 5λ, 1+ j, b) l.5λl, 1+ j1, c) l. 3λ, 1 j1, d) l 1. λ,. 5 j. 5 e) l.1λ, (kısa deve) f) l.4λ, j3 g) l.λ,. Cevap: a) n 1+ j, b) n 1+ j1, c) n.76 + j.84, d) n.59 + j.66, e) j.73, f) n + j.7, g) j.3, n Duan Dalga Oanı (SWR), Voltaj Maksmumu ve Mnmumu + j1 le velen yük empedansını ele alalım. Şekl -4 de den (A noktası) geçecek şeklde SWR çembe çlmş b Smth katını göstemekted. SWR çembe eel eksen ( ), P max ve P mn olmak üee k noktada kesmekted. Böylece he k noktada da ve. Buna ek olaak eel eksen üende yük empedansının sanal kısmı x dı. Yansıma katsayısının tanımından, n (16) P max ve P mn noktalaı, < 1 olduğu aman Pmn ve > 1 olduğu aman se Pmax olmak üee aşağıda velen öel duuma kaşılık gel: ( çn) (17) çn Denklem 16 yı S ye göe teka yaasak S 1 S + 1 (18) P max ve P mn noktalaı çn olup böylece, S 1 (19) S + 1 Denklem 18 ve dek fom benelğ S olmasını öne. Ancak, S 1 tanımından dolayı sadece P max noktası ( > 1) benelk şatını sağlamaktadı. Şekl -4 de P max noktasında.6 olup böylece S.6 dı. Başka b değşle, S sayısal olaak SWR çembenn eel eksen katın mekenn sağ taafında kestğ nokta olan P max noktasında nn değene eştt. 7

8 P mn ve P max noktalaı aynı amanda, hat üendek voltaj maksmum ve mnmumlaının yükten olan uaklıklaını temsl ede. Bu fadenn doğuluğu Denklem 1 de nn tanımı ele alınaak kolayca göstelebl. P max noktasında nn toplam faı ( θ βl ) sıfıa eştt l l (eğe θ > se) veya π ye eştt (eğe θ < se), bu daha önce Denklem.55 de fade edldğ gb V duumuna kaşılık gel. Bene şeklde P mn noktasında nn toplam max faı π ye eştt, bu V max duumuna kaşılık gel. Böylece, Şekl -4 de velen SWR çembe taafından temsl edlen letm hattı çn yük le en yakın voltaj maksmumu aasındak mesafe lmax. 37λ olup, saat yönünde A noktasında yükten P max noktasına haeket edleek elde edl. Bene şeklde, yük le en yakın voltaj mnmumu aasındak mesafe l mn.87λ olup, saat yönünde A noktasında P mn noktasına haeket edleek elde edl. V le velen voltaj maksmumunun ye aynı amanda I nn ye olduğundan max ve yne V mn le velen voltaj mnmumunun ye aynı amanda I max ın ye olduğundan Smth katı hat üendek bütün maksmum ve mnmumlaına olan mesafele tespt etmekte uygun b yöntem sağlamış olu (Duan dalga öüntüsü λ/ le velen kendn tekalama peyoduna sahpt). mn l Şekl -4: A noktası + j1 le velen yük empedansını temsl ede. Duan dalga oanı S.6 (P max noktasında). Yük le bnc voltaj maksmumu aasındak mesafe l max. 37λ ve yük le bnc voltaj mnmumu aasındak mesafe l. 87λ d..9.4 Empedanstan Admtansa Dönüşümle Baı tüde letm hatlaı poblemlen çöeken empedans yene admtans le çalışılması daha uygundu. He hang b Z empedansı genel halde sanal b fade olup b R dencne ve X eaktansına sahpt: max 8

9 ( ) Z R + jx Ω () Y le temsl edlen admtans Z nn tesne eştt: Y 1 1 R jx (S) (1) Z R + jx R + X Admtansın eel kısmına letm kablyet G (conductance) ve sanal kısmına se suseptans B adı vel. Y G + jb (S) () Denklem 3 le kaşılaştııldığında aşağıdak eştlk elde edl. R G ( S) (3) R + X X B ( S) (4) R + X Daha önce de fade ettğm gb nomale edlmş empedans Z/Z le vel. Aynı duum nomale edlmş admtans çn de geçeld. Yan, y Y /Y d. İletm hattının kaaktestk admtansı Y 1 Z le tanımlayaak, / G B y + j g + Y Y jb (boyutsu) (5) G g GZ (boyutsu) (6) Y B b BZ (boyutsu) (7) Y Yukaıdak bağıntılada g ve b sıasıyla nomale edlmş letm kablyetn (conductance) ve nomale edlmş suseptansı temsl ede. Nomale edlmş admtans ( y) tab bu aada nomale edlmş empedansın ()tes olduğu dkkatten kaçmamalıdı. Y Z 1 y (boyutsu) (8) Y Z Denklem 14 ü kullanılaak nomale edlmş yük admtansı aşağıdak gb elde edl. 1 1 y (9) 1+ 9

10 Şmd yükten l λ / 4. 5λ mesafesnde bulunan nomale edlmş gş empedansını ( ) ele alalım. Denklem 11 ve βl 4πl / λ 4πλ / 4λ π duumunu kullanaak n aşağıdak bağıntı elde edl. Şekl -5 de A noktasında.6 + j1. 4 le velen yük empedansından l λ / 4. 5λ mesafesnde bulunan gş empedansı n.5 j. 6 olaak bulunu. jπ 1+ e 1 n ( l λ / 4) y j (3) π 1 e 1+ Böylece, Smth katı üende βl 4π/ λ 4πλ / 4λ π kada dönüş y y ye dönüştümüş olu. Şekl -5 de göülebleceğ gb ve y y temsl eden noktala SWR çembende dyagonal olaak bblene ıttıla. Geçekte, Smth katı üende böyle b dönüşüm hehang b nomale edlmş admtansın buna kaşılık gelen nomale edlmş empedanstan belleneblmes çn kullanılabl. Bunun tes de geçeld. Smth katı nomale edlmş empedansla çn veya nomale edlmş admtansla çn kullanılabl. B empedans katı olaak Smth katı, nomale edlmş yük empedansının ( ) nomale edlmş denç ( ) ve nomale edlmş eaktans (x ) çembelen çe. Admtans katı olaak kullanıldığında se çembele g çembele halne gelken x çembele de b çembele halne gel. Buada daha önce fade edldğ gb g ve b, nomale edlmş yük admtansının (y ) sıasıyla nomale edlmş letm kablyet ve nomale edlmş suseptansını temsl etmekted. Şekl -5: A noktası.6 + j1.4 le velen yük empedansını temsl ede. Buna kaşılık gelen admtans se B noktası taafından temsl edlen gş empedansı admtanstı:.5 j.6 olaak bulunu. y 1

11 Önek -1: Kaaktestk empedansı Z 5 Ohm olan kayıpsı b letm hattı Z ( 5 + j5) le velen yük empedansında sonlandıılmıştı. Smth katını kullanaak (a) voltaj yansıma katsayısını, (b) voltaj duan dalga oanını, (c) bnc voltaj maksmumun le voltaj mnmumunun yüke olan mesafesn, (d) uunluğu l 3. 3λ le velen hattın gş empedansını ve (e) hattın gş admtansını bulunu. Çöüm: (a) Nomale edlmş yük empedansı Z / Z (5 + j5) / j1 olup Şekl -6 dak Smth katında A noktasıyla şaetlenmşt. İletky kullanaak, katın mekendek O noktasından tbaen A noktasından geçecek şeklde katın dış çembene doğu b doğu çl. Çlen doğu θ 83 de angle eflecton coeffcent n degees skalasını kese. Bundan sona, letk kullanılaak O le A aasındak OA doğusunun uunluğu ve çembenn yaıçapı ölçülü. Bu aten 1 çembenn yaıçapına eştt. j83 Buadan nın büyüklüğü.6 olaak elde edl. Böylece,.6e Şekl -6: Önek -1 un çöümü: (b) Pegel kullanaak, meke O noktasında ve çeves A noktasından geçecek şeklde b SWR çembe çl. Bu çembe eksenn B ve C noktalaında kese. B noktasında nn değe 4.6 dı. Bu aynı amanda duan dalga oanına eştt. (c) SWR çembe üende bnc voltaj maksmumu B noktasındadı. Bu WTG skalasında.5λ yended. WTG skalası üende A noktası taafından temsl edlen yük.135λ yended. Böylece, yük ve bnc voltaj maksmumu aasındak mesafe I (.5.135) λ. 115λ le vel. Bnc voltaj mnmumu se C noktasındadı. max WTG skalası üende A ve C noktalaı aasında haeket edeek,. 365λ olup l max tan.5λ kada mesafe sonadı. I mn (.5.135) λ 11

12 (d) İletm hattının 3.3λ uunluğunda olduğu velmşt. Bundan.5λ nın katlaının çıkaılmasıyla.3λ elde edl. WTG skalası üende yükten.135λ noktasında letm hattının gş ( )λ.435λ ded. Bu SWR çembe üende D noktası le etketlenmşt ve nomale edlmş empedans.8 j. 4 olaak okunu. Böylece, Z n nz (.8 j.4) 5 14 j Ω olaak elde edl. (e) Nomale edlmş gş admtansı Smth katı üende.3λ den n göüntü noktasına dae boyunca haeket edleek bulunu. Bu nokta SWR çembe üende E le şaetlenmşt. E noktasının koodnatlaı y n j1. 7 le vel. Buna kaşılık gelen gş admtansı Y j1.7 yny (.3 j.34) S dı. 5 n + Önek -11: Bu poblem Smth Katının kullanılması hacnde Önek -5 le aynıdı. Voltaj duan dalga oanı S 3 olaak velen 5 ohm luk letm hattında bnc voltaj mnmumu yükten 5 cm mesafede oluşmaktadı ve bundan sonak mnmum cm dedd. Yük empedansını bulunu. Çöüm: Bbn takp eden k mnmum aasındak mesafe λ/ d. Böylece, λ 4 cm d. Dalga boyu bmnde bnc voltaj mnmumu I mn 5 / λ d. Şekl -7 de Smth katı üende A noktası S 3 e kaşılık gel. Pegel kullanılaak sabt S çembe A noktasından geçecek şeklde çl. B noktası voltaj mnmumun yene kaşılık gel. B noktasından yüke doğu WT skalası üende.15λ kada haeket edeek C noktasına vaıı. Bu nokta yükün yen temsl ede. C noktası üendek nomale yük empedansı.6 j.8 dı. Z 5 Ω le çapaak Z 5(.6 j.8) ( 3 j4)ω elde ede. n Şekl -7: Önek.11 n çöümü. 1

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

EKSENEL ÇEKMEYE MARUZ DELİKLİ SONSUZ PLAĞA SİLİNDİRİK PARÇANIN ÇAKILMASI PROBLEMİ

EKSENEL ÇEKMEYE MARUZ DELİKLİ SONSUZ PLAĞA SİLİNDİRİK PARÇANIN ÇAKILMASI PROBLEMİ PAMUKKAL ÜNİVRSİTSİ MÜHNDİ SLİK FAKÜLTSİ PAMUKKAL UNIVRSITY NGINRING COLLG MÜHNDİSLİK BİLİMLRİ DRGİSİ JOURNAL OF NGINRING SCINCS YIL CİLT SAYI SAYFA : 00 : 8 : 3 : 83-9 KSNL ÇKMY MARUZ DLİKLİ SONSUZ PLAĞA

Detaylı

ÇEMBERİN ANALİTİK İNCELENMESİ

ÇEMBERİN ANALİTİK İNCELENMESİ ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli

Detaylı

Sonlu Elemanlar Yöntemini Kullanarak Asenkron Motorun Hız-Moment Karakteristiğinin Elde Edilmesi

Sonlu Elemanlar Yöntemini Kullanarak Asenkron Motorun Hız-Moment Karakteristiğinin Elde Edilmesi Fıat Ünv. Fen ve üh. Bl. De. Scence and Eng. J. of Fıat Unv. 7 (4), 699-707, 005 7 (4), 699-707, 005 Sonlu Elemanla Yöntemn Kullanaak Aenkon otoun Hız-oment Kaaktetğnn Elde Edlme A. Gökhan YETGİN ve A.

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

Bir Otomobil Fabrikasının Şanzuman Üretim Bölümü İçin Hücresel Üretim Sistemi Önerisi

Bir Otomobil Fabrikasının Şanzuman Üretim Bölümü İçin Hücresel Üretim Sistemi Önerisi Anadolu Ünvestes Sosyal Blmle Degs Anadolu Unvesty Jounal of Socal Scences B Otomobl Fabkasının Şanzuman Üetm Bölümü İçn Hücesel Üetm Sstem Önes A Cellula Manufactung System Poposal Fo the Geabox Poducton

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edton VECTOR ECHNICS OR ENGINEERS: STTICS ednand. ee E. Russell Johnston, J. Des Notu: Ha CR İstanbul Ten Ünvestes Tel: 285 31 46 / 116 E-mal: acah@tu.edu.t Web: http://atlas.cc.tu.edu.t/~acah

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF KONU ANLATIMLI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 4 Manyetzma 1.. Ünte 4. Konu (Manyetzma) A nın Çözümle P 1 1 3. Üzenen akımı geen yaıçaplı b halkanın

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

SİLİNDİRİK DEPOLARININ SİSMİK YALITIM YÖNTEMİYLE DEPREMDEN KORUNMASI. Gökhan YAZICI 1,.Feridun ÇILI 2

SİLİNDİRİK DEPOLARININ SİSMİK YALITIM YÖNTEMİYLE DEPREMDEN KORUNMASI. Gökhan YAZICI 1,.Feridun ÇILI 2 SİLİNDİRİK DEPOLARININ SİSMİK YALITIM YÖNTEMİYLE DEPREMDEN KORUNMASI Gökhan YAZICI 1,.Fedun ÇILI 2 Öz: Bu çalışmada, sıvı deposuna gelen yanal depem kuvvetlen azaltmak amacıyla ssmk yalıtım teknğ kullanılmıştı.

Detaylı

BÖLÜM 1 ELEKTRİK ALANLARI

BÖLÜM 1 ELEKTRİK ALANLARI BÖLÜM 1 ELEKTRİK ALANLARI 1.1. ELEKTRİK YÜKLERİNİN ÖZELLİKLERİ Elektk yükü aşağıdak özellklee sahpt: 1. Doğada atı ve eks olmak üzee k tü yük bulunmaktadı. Aynı yükle bblen tele, faklı yükle se bblen çekele.

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Stokastik envanter model kullanılarak iş makinelerinin onarımında kullanılan kritik yedek parçalar için envanter yönetim sistemi oluşturulması

Stokastik envanter model kullanılarak iş makinelerinin onarımında kullanılan kritik yedek parçalar için envanter yönetim sistemi oluşturulması Stokastk envante model kullanılaak ş maknelenn onaımında kullanılan ktk yedek paçala çn envante yönetm sstem oluştuulması İlke Bçe 2 Jandama Genel Komutanlığı, Beştepe, Ankaa Nhat Kasap Sabancı Ünvestes,

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma Paçacıklaın Kinetiği Impuls-Momentum Yöntemi: Çapışma İki kütle bibii ile kısa süe içeisinde büyük impulsif kuvvetlee yol açacak şekilde temas edese buna çapışma (impact) deni. Çapışma 1. Diekt mekezcil

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z İnc Antnl Çaplaı boylaına gö küçük olan antnl inc antnl dni Alanlaın hsabında antnlin sonsu inc kabul dilmsi kolaylık sağla Ancak antn mpdansı bulunmak istndiğind kalınlığın iş katılması gki Ht Dipolü

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY FİZ10 FİZİK-II Ankaa Ünvestes Fen Fakültes Kmya Bölümü B-Gubu 014-015 Baha Yaıyılı Bölüm-II 5.0.015 Ankaa Aysuhan OZANSOY Bölüm : Elektk Alan 1. Elektk Alan. Elektk Alan Çzgle 3. Süekl Yük Dağılımlaı 4.

Detaylı

SÜREKLİ PARAMETRELİ GENETİK ALGORİTMA YARDIMI İLE GENİŞ BANTLI VE ÇOK KATMANLI RADAR SOĞURUCU MALZEME TASARIMI

SÜREKLİ PARAMETRELİ GENETİK ALGORİTMA YARDIMI İLE GENİŞ BANTLI VE ÇOK KATMANLI RADAR SOĞURUCU MALZEME TASARIMI HAVACILIK VE UAY TEKNOLOJİLERİ DERGİSİ OCAK 005 CİLT SAYI (7-75) Süekl Paaetel Genetk Algota Yadıı İle Genş Bantlı ve Çok Katanlı Rada Soğuucu Malzee Tasaıı SÜREKLİ PARAMETRELİ GENETİK ALGORİTMA YARDIMI

Detaylı

EMÜ 447 ANTENLER VE MİKRODALGA TEKNİĞİ DERSİ ARAŞTIRMA RAPORU

EMÜ 447 ANTENLER VE MİKRODALGA TEKNİĞİ DERSİ ARAŞTIRMA RAPORU T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ 447 ANTENLER VE MİKRODALGA TEKNİĞİ DERSİ ARAŞTIRMA RAPORU 99220504 99220515 99220521 HAZIRLAYANLAR Alper ALKOÇ

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomanyk Dalga Tos Ds-1 Dfansyl Fomda awll Dnklml İngal Fomda awll Dnklml Fazöln Kullanımı Zamanda amonk Alanla alzm Oamı Dalga Dnklml B awll Dnklmlnn Dfansyl Fomu D. D ρ. B Faaday Kanunu Amp Kanunu Gauss

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR Al hsan MEŞE DOKTORA TEZİ FİZİK ANABİLİM DALI Danışman :. Pof. D. Eol OKAN. Pof.D. Zeha AKDENİZ EDİRNE

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur SIT MKINR Günlük yaşantımızda iş yapmamızı kolaylaştıan alet ve makineledi asit makinelele büyük bi yükü, küçük bi kuvvetle dengelemek ve kaldımak mümkündü asit makinalada yük, dengeleyici kuvvet ile gösteili

Detaylı

Theoretical Investigation of Water-Gas Shift Reaction with Four Components Using Fick System

Theoretical Investigation of Water-Gas Shift Reaction with Four Components Using Fick System Süleyman emel Ünestes, Fen Blmle Ensttüsü egs, - (00),- Fck Sstemn Kullanaak öt Bleşenl Su-Gaz eğşm Reaksyonunun füzyon Katsayılaının eoksel İncelenmes MURA ÖZÜRK, İBRAHİM ÜÇGÜ, NURİ ÖZEK Süleyman emel

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

Dönerek Öteleme Hareketi ve Açısal Momentum

Dönerek Öteleme Hareketi ve Açısal Momentum 6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.

Detaylı

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER BÖÜ BASİ AİNEER AIŞIRAAR ÇÖZÜER BASİ AİNEER yatay düzlem 0N 0N 0N 0N fiekil-i fiekil-ii yatay düzlem 06 5 06 7 08 He iki şe kil de de des te ğe gö e tok alı nı sa a) kuvvetinin büyüklüğü 04 + 08 80 + 60

Detaylı

ANTEN VE MİKRODALGA LABORATUVARI

ANTEN VE MİKRODALGA LABORATUVARI Deney No: 4 ANTEN VE MİKRODALGA LABORATUVARI ANTEN EMPEDANSININ YARIKLI HAT (SLOTTED LINE) KULLANILARAK ÖLÇÜMÜ Bir dalga kılavuzundaki gerilimi voltmetre ile akımı da ampermetre ile ölçmek mümkün değildir.

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

TEST - 1 ÜRETEÇLER. ε 3 =6V. ε 2. ε i=3a. ε 3 =12V. ε 2 =36V. ε ε. Devrenin eflde er direnci = = 6Ω olur. Devrenin eflde er direnci

TEST - 1 ÜRETEÇLER. ε 3 =6V. ε 2. ε i=3a. ε 3 =12V. ε 2 =36V. ε ε. Devrenin eflde er direnci = = 6Ω olur. Devrenin eflde er direnci ÜETEÇE TEST - 1 1. 3 10Ω 3. =5 2 15Ω = 1 1 =36 2 =12 1 = 2 = 3 =6 3 = Devenn eflde e denc efl = 6 3 1 = 10Ω Devenn eflde e denc efl = 3 1 1 1 = / 36 12 6 30 = = = = 5 / 6 6 na koldan geçen ak m, / 25 25

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla

Detaylı

Bölüm 6: Newton un Hareket Yasalarının Uygulamaları:

Bölüm 6: Newton un Hareket Yasalarının Uygulamaları: (Kimya Bölümü A Gubu 17.11.016) Bölüm 6: Newton un Haeket Yasalaının Uygulamalaı: 1. Bazı Sabit Kuetle 1.1. Yeçekimi 1.. Geilme 1.3. Nomal Kuet. Newton un I. Yasasının Uygulamalaı: Dengedeki Paçacıkla

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi Sayı 36 Nisan 2013

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi Sayı 36 Nisan 2013 Dumlupına Ünvestes Sosyal Blmle Degs Sayı 36 Nsan 23 VERİ ZARFLAMA ANALİZİ İLE TÜRKİYE DE GIDA İMALATI YAPAN FİRMALARIN ETKİNLİKLERİNİN ÖLÇÜLMESİ Selahattn YAVUZ Yd.Doç.D., Ezncan Ünvestes İktsad ve İda

Detaylı

Adnan GÖRÜR Duran dalga 1 / 21 DURAN DALGA

Adnan GÖRÜR Duran dalga 1 / 21 DURAN DALGA Anan GÖRÜR Duran alga 1 / 21 DURAN DAGA Uygulamalara, iletim hattı boyunca fazör voltaj veya akımının genliğini çizmek çok kolayır. Bunlara kısaca uran alga (DD) enir ve Kayıpsız Hat Kayıplı Hat V ( )

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TRİBOLOJİ LABORATUARI DENEY FÖYÜ DENEY ADI RADYAL KAYMALI YATAKLARDA SÜRTÜNME KUVVETİNİN ÖLÇÜLMESİ DERSİN ÖĞRETİM ÜYESİ YRD.DOÇ.DR.

Detaylı

FIRÇASIZ DOĞRU AKIM MOTORUN SAYISAL İŞARET İŞLEMCİ TABANLI KONUM DENETİMİ

FIRÇASIZ DOĞRU AKIM MOTORUN SAYISAL İŞARET İŞLEMCİ TABANLI KONUM DENETİMİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2006 : 12 : 1 : 37-41

Detaylı

TEST - 1 BAS T MAK NELER. fiekil-ii

TEST - 1 BAS T MAK NELER. fiekil-ii BA A EER E - fiekil-i fiekil-ii difllisi fiekil - II deki konuma yönünde devi yapaak gelebili Bu duumda difllisi yönünde döne f f ve kasnakla n n ya çapla eflit oldu undan kasna- tu atasa, de tu ata,,

Detaylı

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ

TMMOB ELEKTRİK MÜHENDİSLERİ ODASI ELEKTRİK TESİSLERİNDE TOPRAKLAMA ÖLÇÜMLERİ VE ÖLÇÜM SONUÇLARININ DEĞERLENDİRİLMESİ TMMOB ELEKTİK MÜHENDİSLEİ ODASI ELEKTİK TESİSLEİNDE TOPAKLAMA ÖLÇÜMLEİ VE ÖLÇÜM SONUÇLAININ DEĞELENDİİLMESİ Not : Bu çalışma Elk.Y.Müh. Tane İİZ ve Elk.Elo.Müh. Ali Fuat AYDIN taafından Elektik Mühendislei

Detaylı

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir. KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ 11. SINI SORU ANKASI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ 4 Manyetzma Test 1 n Çözümle 3. y 1. T R P x S P + tel 1 S ve T noktalaınak bleşke manyetk alanlaın eşt olablmes çn

Detaylı

Matris Konverter Uygulaması. Matrix Converter Application

Matris Konverter Uygulaması. Matrix Converter Application Polteknk Degs Jounal of Polytechnc Clt:11 Sayı: s.19-198, 008 Vol: 11 No: pp.19-198, 008 Mats Konvete Uygulaması İsmal COŞKUN, Al SAYGIN, Mah DURSUN ÖZET Mats konvetele anahtalama topolojsndek gelşmelee

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜÇ CİSİMLİ KABLOLU UYDU SİSTEMİNİN DİNAMİĞİ YÜKSEK LİSANS TEZİ. Müh.

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜÇ CİSİMLİ KABLOLU UYDU SİSTEMİNİN DİNAMİĞİ YÜKSEK LİSANS TEZİ. Müh. İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜÇ CİSİMLİ KABLOLU UYDU SİSTEMİNİN DİNAMİĞİ YÜKSEK LİSANS TEZİ Müh. Ehan TOPAL Anablm Dalı : Uçak ve Uzay Mühendslğ Pogamı : Dsplnle Aası Pogam HAZİRAN

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve

Detaylı

DÜZ KONİK DİŞLİ ÇARKLARIN GEOMETRİK TEMEL BÜYÜKLÜKLERİ

DÜZ KONİK DİŞLİ ÇARKLARIN GEOMETRİK TEMEL BÜYÜKLÜKLERİ 39 KONİK DİŞLİ ÇRK MEKNİZMLRI DÜZ KONİK DİŞLİ ÇRKLRIN GEOMETRİK TEMEL BÜYÜKLÜKLERİ Yuvalanma mekanzmalaı çnde eksenlen kesşmes k konk eleman le sağlanı. Bunlaın tepele dönme eksenlenn kesşme noktasındadı.

Detaylı

UÇAK EYLEYİCİ ARIZASININ TESPİTİ, YALITIMI VE SİSTEMİN YENİDEN YAPILANDIRILMASI

UÇAK EYLEYİCİ ARIZASININ TESPİTİ, YALITIMI VE SİSTEMİN YENİDEN YAPILANDIRILMASI Uludağ Ünvestes Mühendslk-Mmalık Fakültes Degs Clt 15 Sayı 1 21 UÇAK EYEYİCİ AIZASII TESPİTİ YAITIMI VE SİSTEMİ YEİDE YAPIADIIMASI Eme KIYAK * Ayşe KAHVECİOĞU * Gülay İYİBAKAA * Özet: Uçak eyleyclende

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur.

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur. Düzlmd ğisl haktin üçüncü tanımı pola koodinatlada yapılı; buada paçacık sabit bi başlangıç noktasından msaf uzaktadı bu adyal doğu açısıyla ölçülmktdi. Hakt adyal bi msaf açısal bi konum il kısıtlı olduğunda

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Kütle Çekimi ve Kepler Kanunları. Test 1 in Çözümleri

Kütle Çekimi ve Kepler Kanunları. Test 1 in Çözümleri 7 Kütle Çekii e Keple Kanunlaı est in Çözülei. Uydu Dünya nın ekezinden kada uzaklıktaki yöüngesinde peiyodu ile dolanıken iki kütle aasındaki çeki kueti, ekezcil kuet göei göü. F çeki F ekezcil G Bağıntıya

Detaylı

IŞIK VE GÖLGE. 1. a) L ve M noktaları yalnız K 1. L noktası yalnız K 1. kaynağından, kaynağından, P ve R noktaları yalnız K 2

IŞIK VE GÖLGE. 1. a) L ve M noktaları yalnız K 1. L noktası yalnız K 1. kaynağından, kaynağından, P ve R noktaları yalnız K 2 BÖÜ IŞI VE GÖGE IŞTIRR ÇÖZÜER IŞI VE GÖGE a) c) N N O O P P R R pee pee ve noktalaı yalnız kaynağınan, P ve R noktalaı yalnız kaynağınan ışık alabili noktası yalnız kaynağınan, O ve P noktalaı yalnız kaynağınan

Detaylı

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ 0. SNF ONU NTM 4. ÜNİTE: OPTİ. onu GÖGEER ve YDNNM ETİNİ ÇÖZÜMERİ Ünite 4 Optik. 5. Ünite. onu (yınlanma) nın Yanıtlaı pee. a. yaklaştıılmalıı. b. uzaklaştıılmalıı. B nin Yanıtlaı X Y. a. ekan. 3. şık

Detaylı

SENKRON RELÜKTANS MAKİNASININ ANALİZİ

SENKRON RELÜKTANS MAKİNASININ ANALİZİ SENKRON REÜKTANS MAKİNASNN ANAİZİ Esoy BEŞER 1 H.Taık DURU 2 Sai ÇAMUR 3 Biol ARİFOĞU 4 Esa KANDEMİR 5 Elektik Mühendisliği Bölümü Mühendislik Fakültesi Koeli Ünivesitesi, Vezioğlu Kampusü, 411, Koeli

Detaylı

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,

Detaylı

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR Tüm aın haklaı Doç. D. Bülent Yeşilata a aitti. İinsi çoğaltılama. III/ 7. İSKOZ ( SÜTÜNMELİ ) AKIŞLA 7.. Giiş Bi akışta iskoite etkisi önemli ise bu akış isko (sütünmeli) akış adını alı. Akışkan iskoitesinden

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi 84 lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s lkk alann valğndan dola = akm akacak Bu duumda;

Detaylı

Otomatik Depolama Sistemlerinde Kullanılan Mekik Kaldırma Mekanizmasının Analizi

Otomatik Depolama Sistemlerinde Kullanılan Mekik Kaldırma Mekanizmasının Analizi Uluslaaası Katılımlı 17. Makina Teoisi Sempozyumu, İzmi, 14-17 Hazian 21 Otomatik Depolama Sistemleinde Kullanılan Mekik Kaldıma Mekanizmasının Analizi S.Telli Çetin * A.E.Öcal O.Kopmaz Uludağ Ünivesitesi

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ

MATLAB GUI TABANLI ELEKTROMIKNATIS DEVRE TASARIMI VE ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 005 : 11 : 1 : 13-19

Detaylı

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ ÖZET Egün ALKAN Elk.Y.Müh. Buga Otis Asansö Sanayi ve Ticaet A.Ş. Tel:0212 323 44 11 Fax:0212 323 44 66 Balabandee Cad. No:3 34460 İstinye-İstanbul

Detaylı

Çembersel Hareket. Test 1 in Çözümleri

Çembersel Hareket. Test 1 in Çözümleri 5 Çebesel Haeket est in Çözülei.. düşey eksen tabla He üç cisi aynı ipe bağlı olduğundan peiyotlaı eşitti. Açısal hız bağıntısı; ~ di. Bağıntısındaki sabit bi değedi. Ayıca cisilein peiyotlaı eşitti. hâlde

Detaylı

Temel zemin etkileşmesi; oturma ve yapı hasarı

Temel zemin etkileşmesi; oturma ve yapı hasarı Temel emin etkileşmei; otuma ve yapı haaı Foundation oil inteaction; ettlement and tuctual damage Altay Biand Otadoğu Teknik Üniveitei, Ankaa, Tükiye ÖZET: Oganik eminlein valığı dışında yapı haaında genelde

Detaylı

DENEY 4: Genlik Modülasyonu Uygulamaları

DENEY 4: Genlik Modülasyonu Uygulamaları DENEY 4: Genlik Mdülasynu Uygulamalaı AMAÇ: Genlik Mdülasynlu işaetlein elde edilmesi ve demdülasyn aşamalaının inelenmesi ÖN ÇALIŞMA Bilgi işaetinin, iletim kanalından veimli iletimi için uygun biçime

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

Anten Tasarımı. HFSS Anten Benzetimi

Anten Tasarımı. HFSS Anten Benzetimi Bu dokümanda, antene ait temel bilgiler verilmiş ve HFSS programında anten tasarımının nasıl yapıldığı gösterilmiştir. Anten Tasarımı HFSS Anten Benzetimi KAZIM EVECAN Dumlupınar Üniversitesi Elektrik-Elektronik

Detaylı

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 14- Des 6 Gauss Kanunu D. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynakla: -Fizik. Cilt (SWAY) -Fiziğin Temellei.Kitap (HALLIDAY & SNIK) -Ünivesite Fiziği (Cilt ) (SAS ve ZMANSKY) http://fizk14.aovgun.com www.aovgun.com

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

BİLGİSAYAR GRAFİKLERİNDE YENİ BİR IŞIKLANDIRMA MODELİ

BİLGİSAYAR GRAFİKLERİNDE YENİ BİR IŞIKLANDIRMA MODELİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) BİLGİSAYAR GRAFİKLERİNDE YENİ BİR IŞIKLANDIRMA MODELİ Muat KURT Uluslaaası Blgsaya Anablm Dalı Blm Dalı Kodu : 619.0.04 Sunuş Tah : 06.08.007

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kaha 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Baazıt, Brsen Yaınev, 2007, İstanbul BÖLÜM 12 AÇIK KANALLARDA AKIM: ÜNİFORM OLMAYAN AKIMLAR 12.1 GİRİŞ - --- --.;! Baraj sonrak su üze öncek su üze.. Vnfom

Detaylı

Elektrik Alan Çizgileri. ρ (C/m 3 ) Sürekli bir Yük Dağılımının Elektrik Alanı. Elektrik Alanı, devam. Elektrik Alanı, devam. Elektrik Alanı, devam

Elektrik Alan Çizgileri. ρ (C/m 3 ) Sürekli bir Yük Dağılımının Elektrik Alanı. Elektrik Alanı, devam. Elektrik Alanı, devam. Elektrik Alanı, devam Süekl b Yük Dağılıının Elektk Alanı Yükle topluluğunun yükle aasındak uzaklıkla, lglenlen b noktanın topluluktan olan uzaklığından çok daha küçükse, yükle sste süekld. Süekl b Yük Dağılıının Elektk Alanı,

Detaylı

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ

BÖLÜM 3 SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ BÖLÜM SIKIŞTIRILAMAZ POTANSİYEL AKIM DENKLEMLERİNİN GENEL ÇÖZÜMÜ. Poblemin tanımlanması. Geen idantitesine daanan genel çöüm. Çöümün metodolojisi. Temel çöüm - Noktasal kanak.5 Temel çöüm - Noktasal duble.6

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

R DEVRESİ L DEVRESİ C DEVRESİ

R DEVRESİ L DEVRESİ C DEVRESİ 6 BÖÜM ATENATİF AKIM AIŞTIMAA - ÇÖÜME DEESİ DEESİ DEESİ f 80 4 A olu 0 snωt snπft 4vsnπ50t 4vsn00πt olu Akıın zaanla dğş dnklndn, (t) snft sn50 400 sn 4 v A olu Gln aksu dğ, 0v 0v olu Gl dnkl, (t) snft

Detaylı

KIZILCAHAMAM ĐZ TESTĐ ANALĐZĐ

KIZILCAHAMAM ĐZ TESTĐ ANALĐZĐ 75 KIZILCAHAMAM ĐZ TESTĐ ANALĐZĐ Sehat AKIN Tevfk KAYA Mahmut PARLAKTUNA ÖZET Kızılcahamam Jeotemal Sahası Ankaa ya 7 km uzaklıkta olup, jeotemal saha 994 yılından bu yana şletlmekte, jeotemal kaynakla

Detaylı

VERİ ZARFLAMA ANALİZİ İLE BULANIK ORTAMDA ETKİNLİK ÖLÇÜMLERİ VE ÜNİVERSİTELERDE BİR UYGULAMA

VERİ ZARFLAMA ANALİZİ İLE BULANIK ORTAMDA ETKİNLİK ÖLÇÜMLERİ VE ÜNİVERSİTELERDE BİR UYGULAMA T.C. SÜLEYAN DEİREL ÜNİVERSİTESİ SOSYAL BİLİLER ENSTİTÜSÜ İŞLETE ANABİLİ DALI VERİ ZARFLAA ANALİZİ İLE BULANIK ORTADA ETKİNLİK ÖLÇÜLERİ VE ÜNİVERSİTELERDE BİR UYGULAA DOKTORA TEZİ KENAN OĞUZHAN ORUÇ Tez

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı