ASTROİSTATİSTİK 6. KONU 6. FARKLI VERİ TÜRLERİNDE ORTA DEĞER, YAYILIM, ÇARPIKLIK VE BASIKLIK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ASTROİSTATİSTİK 6. KONU 6. FARKLI VERİ TÜRLERİNDE ORTA DEĞER, YAYILIM, ÇARPIKLIK VE BASIKLIK"

Transkript

1 ASTROİSTATİSTİK 6. KOU Hazırlaya: Doç. Dr. Tolgaha KILIÇOĞLU 6. FARKLI VERİ TÜRLERİDE ORTA DEĞER, YAYILIM, ÇARPIKLIK VE BASIKLIK Bir veri üzeride istatistisel bir çalışma yapare verii bir popülasyoa mı yosa bir öreleme mi ait olduğuu bilme öemlidir. İstatistitei formüller bu ii veri türü içi farlılılar sergiler. Öreği, bir bilgisayar şiretide çalışa 100 işii ortalama maaşları hesaplama istiyor. Eğer elimizde bu 100 işii e adar maaş aldığıa ilişi bir veri varsa bu bir popülasyo olur. Eğer sadece rastgele seçilmiş 10 işii maaşıı verisi mevcutsa bu veri bir örelem olur. Popülasyou aalizi soucuda ortalama maaş bir parametre ( μ ) olara et bir şeilde ortaya oyulur. Örelem üzeride ise bir istatisti yapılara ortalama maaş tahmi edilir ( x ). Çözülme istee bir soruya göre bir verii popülasyo veya örelem olma durumu da değişebilir. Öreği, bir restora sahibi şu aa adar restoraı ziyaret etmiş ola müşterilerii yaşları üzerie bir istatisti betimleme yapma istemetedir. Elide şu aa adar restoraı ziyaret ede heresi yaş bilgisi veri olara bulumatadır. Bu durumda bu yaş verisi bir popülasyo oluşturur. Aca, restora sahibi bu verileri ullaara buda sora gelece ola müşterileri haıda tahmide buluma istiyorsa bu veri artı bir örelem olara ele alımalıdır. Çüü bu iici searyoda popülasyo restoraı sadece geçmiştei değil gelecetei müşterilerii de apsamatadır. Astroomide belirli gö cisimleride toplaa verileri ço büyü bölümüü bir örelem oluşturduğuu rahatlıla söyleyebiliriz. Öreği, ötro yıldızları üzerie yapıla bir çalışmada evredei ötro yıldızlarıı tamamıı gözlememiz mümü değildir. Aca bir örelem gözleyere ötro yıldızlarıı tamamıa ilişi bir istatisti yapabiliriz. Ço adir de olsa bazı veriler popülasyo da oluşturabilir. Öreği Güeş Sistemi dei gezegeleri yoğulularıı ortalaması üzerie yapıla bir çalışmada sisteme üye 8 gezegei de yoğulu verisi mevcutsa bu veri bir popülasyodur. Bir başa öre ise, bir yıldız ümesie üye tüm yıldızları uzay hareetleri biliiyorsa ve bu hareetler ullaılara ümei uzaydai ortalama hareeti belirleiyorsa verii bir popülasyo olduğu söyleebilir. Aca, yie çoğu durumda bir ümei tüm üyelerii gözleme mümü olmamata ve belirli sayısa üyede bir örelem oluşturulara ümei uzaydai hareeti tahmi edilmetedir. Dolayısıyla elimizde gözlemsel bir veri olduğuda ou çoğu zama bir örelem olduğuu alımızda çıarmamamız gereir. Veriler daha öce de gördüğümüz gibi sııflamış ve sııflamamış olma üzere de iiye ayrılırlar. Sııfladırılmış veriler söz ousu oldularıda istatistisel ifadelere sadece freas ( f ) terimi eleir. İfadeleri vereceği değerleri popülasyo-örelem durumuda olduğu gibi farlılaşması söz ousu değildir.

2 Bu bölümde istatistite ullaıla ifadeleri verii popülasyo/örelem olması ve sııfladırılmış/sııfladırılmamış olması durumlarıda asıl değiştiği gösterilmetedir. Burada verile ifadeleri büyü bir bölümü öcei ouları terarı iteliğii taşır. 6.1 Sembollerdei Farlılılar Ortalama, varyas ve stadart sapma ifadeleri içi ullaıla semboller verii popülasyo veya örelem olmasıa göre değişir. Çizelge 6.1 de bu semboller gösterilmetedir. Çizelge 6.1 Popülasyo ve örelem içi ortalama, varyas ve stadart sapma sembolleri Popülasyo Örelem Ortalama μ x Varyas σ 2 s 2 Stadart Sapma σ s Elema sayısı Bu ifadelere e olara sııflamış verilerde sııf sayısıı sembolüyle, sııftai elema sayısıı f sembolüyle ve sııf göstergesii (sııfı alt sıırı ile üst sıırıı ortalamasıı) ise ^x ile göstereceğiz. Ayrıca sııflamış bir veri içi toplam elema sayısıı ( veya ) sııfları freaslarıı toplamı olduğuu uutmayıız: = veya = 6.2 Ortalama Bir popülasyou ortalaması ile bir örelemi ortalaması bezer şeilde hesaplaır. Çizelge 6.2 de bu hesaplamalara ilişi ifadeler verilmetedir. Çizelge 6.2 Farlı veri tipleri içi ortalama ifadeleri ORTALAMA Popülasyo Örelem μ= μ= x i ^x i x= x= x i ^x i

3 6.3 Mod Bir popülasyou modu ile bir örelemi modu bezer şeilde hesaplaır. Çizelge 6.3 de bu hesaplamalara ilişi ifadeler verilmetedir. Çizelge 6.3 Farlı veri tipleri içi mod ifadeleri MOD Popülasyo Örelem Veridei e ço terarlaya değerdir. Δ 1 MOD L mod +c ( Δ 1 +Δ ) 2 veride e fazla elemaı ola sııfa mod sııfı deir. Bua göre: L mod Δ 1 Δ 2 c : Mod sııfıı alt sıırı : Mod sııfıı freası ile bir öcei sııfı freası arasıdai far (pozitif bir değer) : Mod sııfıı freası ile bir sorai sııfı freası arasıdai far (pozitif bir değer) : Sııf geişliği olara alımalıdır. 6.4 Medya Bir popülasyou medyaı ile bir örelemi medyaı bezer şeilde hesaplaır. Çizelge 6.4 te bu hesaplamalara ilişi ifadeler verilmetedir. Çizelge 6.4 Farlı veri tipleri içi varyas ifadeleri MEDYA Popülasyo Örelem Veriler üçüte büyüğe (veya tersie) doğru sıraladığıda ortada ala değerdir. i medya 1 i medya MEDYA L medya +c ( ) MEDYA L f medya +c ( ) medya f medya veride ediside öce gele sııfları freaslarıı toplamı ile ediside sora gele sııfları freasları toplamıı birbirlerie e yaı olduğu sııfa medya sııfı deir. Bua göre: L medya : Medya sııfıı alt sıırı

4 i medya 1 f medya c : Medya sııfıa adar ola (medya sııfı hariç) sııfları freasları toplamı : Medya sııfıı freası : Sııf geişliği olara alımalıdır. 6.5 Varyas Bir popülasyou varyası ile bir örelemi varyası arasıdai far örelem içi varyas hesaplaıre paydaı 1 alımasıdır. Çizelge 6.5 de bu hesaplamalara ilişi ifadeler verilmetedir. Çizelge 6.5 Farlı veri tipleri içi varyas ifadeleri VARYAS Popülasyo Örelem σ 2 = σ 2 = (x i μ) 2 μ) 2 s 2 = s 2 = (x i x) 2 1 x) Stadart Sapma Bir popülasyou stadart sapması ile bir örelemi stadart sapması arasıdai far örelem içi stadart sapma hesaplaıre paydaı 1 alımasıdır. Çizelge 6.6 de bu hesaplamalara ilişi ifadeler verilmetedir. Çizelge 6.6 Farlı veri tipleri içi stadart sapma ifadeleri STADART SAPMA Popülasyo Örelem = σ = σ (x i μ) 2 μ) 2 s= (x i x) 2 1 s= x) 2 1

5 6.7 Çarpılı Çizelge 6.7 de çarpılığı hesabıda ullaılabilece ifadeler suulmatadır. Popülasyo ve örelem içi verile çarpılı ifadelerii il etapta birbirlerie ço bezediği düşüülebilir. Aca paydaya diat edildiğide örelemde s 3 ifadesi buluduğu görülür. Burada s örelemi stadart sapması olup 1 terimii içide barıdırmatadır. Popülasyou stadart sapması ( σ ) ise değeride hesaplamatadır. Ayrıca, örelem içi verile basılı ifadesii başıda e bağlı bir stadartlaştırma ifadesi bulumatadır. Bu edele popülasyo ve örelem içi hesaplaa çarpılı değerlerii birbirleride bir mitar farlı olması beleir. Çizelge 6.7 Farlı veri tipleri içi çarpılı ifadeleri ÇARPIKLIK Popülasyo Örelem (x i μ) 3 (x i x ) 3 σ 3 ( 1)( 2) s 3 μ) 3 x ) 3 σ 3 ( 1)( 2) s Basılı Çizelge 6.8 de basılığı hesabıda ullaılabilece ifadeler suulmatadır. Popülasyo ve örelem içi verile basılı ifadelerii il etapta yie birbirlerie ço bezediği düşüülebilir. Aca, paydaya diat edildiğide örelemde s 4 ifadesi buluduğu görülür. Burada s örelemi stadart sapması olup 1 terimii içide barıdırmatadır. Popülasyou stadart sapması ( σ ) ise değeride hesaplamatadır. Ayrıca, örelem içi verile basılı ifadesii başıda tıpı çarpılıta olduğu gibi e bağlı bir stadartlaştırma ifadesi bulumatadır. Bu edele popülasyo ve örelem içi hesaplaa çarpılı değerlerii birbirleride bir mitar farlı olması beleir. Çizelge 6.8 Farlı veri tipleri içi basılı ifadeleri BASIKLIK Popülasyo Örelem b= b= (x i μ) 4 (x (+1) i x ) 4 3 b= σ 4 ( 1)( 2)( 3) ( 1) 2 3 s 4 ( 2)( 3) μ) 4 f (+1) i x ) 4 3 b= σ 4 ( 1)( 2)( 3) ( 1) 2 3 s 4 ( 2)( 3)

6 6.9 Bir Veri ile Hesaplamalar Çizelge 6.9 de Gıda Mühedisliği öğrecilerii Astroomi derside aldığı otları sııflamış freas dağılımı yer almatadır. Öcelile her sııfı sııf göstergesii yaıa yazıız. Daha sora, bu dağılımı ullaara verii ortalama, mod, medya, stadart sapma, çarpılı ve basılı değerlerii hesaplayıız. Çizelge 6.9 Astroomi dersi sıav otlarıı sııflamış freas dağılımı ot Aralığı (Sııflar) Sııf Göstergesi ) Freas (öğreci sayısı) ( ) Öcelile verii popülasyo mu yosa örelem mi olduğuu tespit edelim. Astroomi dersii ala Gıda Mühedisliği öğrecilerii hepsii otları bu veride yer almatadır (daha doğrusu bir ısmıı olduğua ilişi soruda bir ibare bulumamatadır). Ayrıca bu otlar ullaılara başa bir durumu tahmii yapılma istememete, sadece veriye ilişi bazı ölçütleri hesaplaması istemetedir. Bu bilgiler ışığıda verii bir popülasyoda geldiğii rahatlıla söyleyebiliriz. Verileri ayı zamada sııflamış olduğu da görülmetedir. Bu durumda hesaplamalarımızda popülasyo ve sııflamış veri içi ola bağıtıları ullaacağız. Ortalama Öcelile freaslar toplamıda toplam öğreci sayısıı belirleyelim: = = =52 Şimdi popülasyou ortalamasıı hesaplayalım: μ= ^x i =(1 5.5)+(1 15.5)+(1 25.5)+...+( )+(8 85.5)+(1 95.5) =

7 Mod Freası e fazla olduğu sııf (yai mod sııfı) sııfıdır. Öcelile mod hesabı içi geree aşağıdai değerleri belirleyelim: L mod : 71 Mod sııfıı alt sıırı Δ 1 : = 4 Mod sııfıı freası ile bir öcei sııfı freası arasıdai far Δ 2 : 14 8 = 6 Mod sııfıı freası ile bir sorai sııfı freası arasıdai far c : 10 Sııf geişliği Bu değerler ullaılırsa mod değeri Δ 1 4 MOD L mod +c ( )=71+10 ( Δ 1 +Δ )=75 olara elde edilir. Buradai mod değerii bir yalaşı değer olduğu uutulmamalıdır. Medya Kediside öce gele sııfları freaslarıı toplamı ile ediside sora geleleriii toplamıı birbirlerie e yaı olduğu sııf (yai medya sııfı) sııfıdır. Bua göre; L medya : 61 Medya sııfıı alt sıırı i medya 1 : =19 Medya sııfıa adar ola sııfları freasları toplamı f medya : 10 Medya sııfıı freası c : 10 Sııf geişliği Bu değerler ullaılırsa medya değeri i medya 1 2 MEDYA L medya +c ( f medya )=61+10 ( )=68 10 olara elde edilir. Burada medya değeri yie yalaşı bir medya değeridir. Stadart Sapma Stadart sapma hesaplaıre toplam işaretii olduğu ifadede paratez içide ala far μ) 2 değerlerii öcede hesaplaması işlemleri daha olay yapılmasıı sağlar. = μ) 2 σ = 1 ( ) ( ) ( ) 2 =

8 Çarpılı Çarpılı hesaplaıre toplam işaretii olduğu ifadede paratez içide ala far μ) 3 değerlerii öcede hesaplaması işlemleri daha olay yapılmasıı sağlar. μ) 3 = 1 ( ) ( ) ( ) 3 σ 3 52 ( ) 3 Çarpılı değeri verii egatif (sola) çarpı olduğuu göstermetedir. = 0.98 Basılı Basılı hesaplaıre toplam işaretii olduğu ifadede paratez içide ala far μ) 4 değerlerii yie öcede hesaplaması işlemleri daha olay yapılmasıı sağlayacatır. b= μ) 4 3= 1 ( ) ( ) ( ) 4 σ 4 52 ( ) 4 3=0.86 Basılı değerii sıfırda büyü olması dağılımı ormal dağılıma azara daha sivri olduğuu gösterir. So olara Çizelge 6.10 da hesapladığımız değerler ile veri sııfladırılmada öcei ham verilerle elde edile gerçe değerleri bir arşılaştırılması verilmiştir. Çizelge 6.10 verilerde hesaplaa ölçütler ile sııflamamış verilerde hesaplaaları arşılaştırılması veride hesaplaa Gerçe değer Mutla Far Ortalama ~1.2 Mod Medya Stadart Sapma ~1.2 Çarpılı Basılı veride elde ettiğimiz ölçütler sııflamamış veriyi olduça başarılı şeilde temsil etmetedir. Çizelge 6.9 dai sııflamış verileri bir histogram grafiğide gösterere bulduğumuz bu parametreleri gözle deetleyiiz.

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)

Detaylı

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1)

TÜMEVARIM. kavrayabilmek için sonsuz domino örneği iyi bir modeldir. ( ) domino taşını devirmek gibidir. P ( k ) Önermesinin doğru olması halinde ( 1) TÜMEVARIM Matematite ulladığımız teoremleri ispatlamasıda pe ço ispat yötemi vardır. Özellile doğal sayılar ve birço ouda ispatlar yapare tümevarım yötemii sıça ullaırız. Tümevarım yötemii P Öermesii doğruluğuu

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

6. Uygulama. dx < olduğunda ( )

6. Uygulama. dx < olduğunda ( ) . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstler Taımlayıcı İstatstler Br veya brde azla dağılışı arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere taımlayıcı statstler der.

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2

Elektrik&Elektronik Müh. Böl. İşaret İşleme Uygulamaları Deney 2 Ayrı Sistemler Eletri&Eletroi Mü. Böl. İşaret İşleme Uygulamaları Deey 2 Prof. Dr. Aydı Aa Dr. Erol Öe Baatti Karaaya Koray Sistemleri Özellileri 1. Doğrusallı Liearity: y a ay Ölçeleme scalig, a armaşı

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT TÜME VARIM Tüme varım. Kazaım : Tüme varım yötemii açılar ve uygulamalar yapar. Toplam ve Çarpım Sembolü. Kazaım : Toplam sembolüü ve çarpım

Detaylı

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır.

tanımlanabilir. Bu nedenle olasılık konusu küme teorisini bir araç olarak kullanmaktadır. . OLASILIK TEORİSİ İstatistisel araştırmaları temel oularıda biri soucu öcede esi olara bilimeye bazı şasa bağlı olayları (deemeleri) olası tüm mümü souçlarıı hagi sılıla ortaya çıtığıı belirleyebilmetir.

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

İstatistiksel Proses Kontrol - Seminer Notları -

İstatistiksel Proses Kontrol - Seminer Notları - MÜSEM - KALİTE YÖNETİCİLİĞİ UZMANLIK SERTİFİKA PROGRAMI 06 Nisa 00 İstatistisel Proses Kotrol - Semier Notları - Marmara Üiversitesi, Tei Eğitim Faültesi e-posta eoer@marmara.edu.tr GSM 053 910016 - Telefo

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

D( 4 6 % ) "5 2 ( 0* % 09 ) "5 2

D( 4 6 % ) 5 2 ( 0* % 09 ) 5 2 3 BÖLÜM KAALI SİSEMLEDE EMODİNAMİĞİN I KANUNU I Yasaya giriş Birii bölümde eerjii edilide var veya yo edilemeyeeği vurgulamış, sadee biçim değiştirebileeği belirtilmişti Bu ile deeysel souçlara dayaır

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

6.046J/18.401J DERS 9. Post mortem (süreç sonrası) Prof. Erik Demaine

6.046J/18.401J DERS 9. Post mortem (süreç sonrası) Prof. Erik Demaine Algoritmalara Giriş 6.046J/8.40J DERS 9 Rastgele yapılamış iili arama ağaçları Belee düğüm deriliği üseliği çözümleme Dışbüeyli öuramı Jese i eşitsizliği Üstel yüseli Post mortem (süreç sorası Pro. Eri

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI

ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI 7 ÖRNEKLEME VE ÖRNEKLEME DAĞILIŞLARI 7.. Niçi Örekleme Yapılır 7.. Olasılıklı Örekleme 7... Basit Şas Öreklemesi 7... Tabakalı Örekleme 7... Küme Öreklemesi 7..4. Sistematik Örekleme 7.. Olasılıklı Olmaya

Detaylı

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Gibi faktörlerin alt kümlerindeki kritik faktörler (mali ve operasyonel) dikkate alınarak her bir yöntem için ayrı ayrı olmak üzere ;

Gibi faktörlerin alt kümlerindeki kritik faktörler (mali ve operasyonel) dikkate alınarak her bir yöntem için ayrı ayrı olmak üzere ; KULLANILACAK SOFTWARE: AVRA a) Geel Açılama Uzmaları özel değerledirmeleri ve firmaları prestijleri temel olmala beraber, dereceledirme çalışmalarımızda, eoomi ve matemati bilimlerii birlite ürettiği teorilerde

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads.

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads. http://oeis.org/a - (,,) Origial wor by Ata Aydi Uslu Hamdi Gota Ozmeese.. Explaatio: Number of bracelets made with blue, idetical red ad idetical blac beads. Usage: Chemistry: CROSSRES: A85 A989 A989

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

: Boş hipotez, sıfır hipotezi : Alternatif hipotez

: Boş hipotez, sıfır hipotezi : Alternatif hipotez İOTEZ TESTLERİ iotez Nedir? İOTEZ, arametre hakkıdaki bir iaıştır. arametre hakkıdaki iaışı test etmek içi hiotez testi yaılır. iotez testleri sayeside örekde elde edile istatistikler aracılığıyla aakütle

Detaylı

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY

İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA THE OPERATING CHARACTERISTIC CURVE AND A CASE STUDY Süleyma Demirel Üiversitesi Vizyoer Dergisi Suleyma Demirel Uiversity The Joural of Visioary İŞLETİM KARAKTERİSTİĞİ EĞRİSİ VE BİR ÇALIŞMA ÖZET Yrd. Doç. Dr. Halil ÖZDAMAR 1 İstatistiksel kalite kotrol

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR SAÜ. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. ORTALAMANIN TANIMI VE FAYDALARI. HASSAS ORTALAMALAR.1. Aritmetik Ortalama.. Kareli Ortalama..

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

İSTATİSTİKSEL HİPOTEZ TESTLERİ (t z testleri)

İSTATİSTİKSEL HİPOTEZ TESTLERİ (t z testleri) İSTATİSTİKSEL İOTEZ TESTLERİ (t z testleri) iotez Nedir? İOTEZ, arametre hakkıdaki bir iaıştır. Bu sııfı ot ortalamasıı 75 olduğua iaıyorum. arametre hakkıdaki iaışımızı test etmek içi hiotez testi yaarız.

Detaylı

SİSTEMLERİN ZAMAN CEVABI

SİSTEMLERİN ZAMAN CEVABI DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

SPEARMAN SIRA KORELASYONU KATSAYISINDA TEKRARLANAN DEGERLER VE BİR UYGULAMA

SPEARMAN SIRA KORELASYONU KATSAYISINDA TEKRARLANAN DEGERLER VE BİR UYGULAMA SPEARMAN SIRA KORELASYONU KATSAYISINDA TEKRARLANAN DEGERLER VE BİR UYGULAMA Doç. Dr. SelAhattl GÜRİŞ ( ) Değişkeler arasıdaki ilişkii derecesii ölçülmeside farklı istatiksel yötemlerde yararlaılabilir.

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri 0.0.06 Taımlayıcı İstatstler Bölüm 3 Taımlayıcı İstatstler Br ver set taıma veya brde azla ver set arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ 1 TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, gdemir2@yahoo.com.tr 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ TEMEL KAVRAMLAR PARAMETRE: Populasyou sayısal açıklayıcı bir ölçüsüdür ve aakütledeki tüm elemalar dikkate alıarak hesaplaabilir. Aakütledeki tek bir elema dahi işlemi

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 ..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı