İSTATİSTİK TERMODİNAMİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İSTATİSTİK TERMODİNAMİK"

Transkript

1 MIT OpnCoursWar Thrmodnamk v Kntk Bahar 2008 Bu malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn stsn zyart dnz İSTATİSTİK TERMODİAMİK İstatstk mkanğn amacı:makroskopk trmodnamk özllklr mkroskopk atomk vya molkülr özllklr cnsndn tanımlamak Br sstmn özllklr k svyd tnımlanablr : 1)Makroskopk trmodnamk tanımlama örnğn.p,v,n,c v,h,a,g, 2)Mkroskopk tanımlama Hr molkülün haln tanımlar Klask mkank vya kuantum mkanğ kullanır dn fazla dğşkn vardır! Onları hr sanyd br güncllmmz grkr

2 Hm klask hm d kuantum tanımı pratk dğldr.istatstk mkank makroskopk mkanğ statstk trmlr cnsndn tanımlar yan ortalama vya n olası sonuçları vrr Br sstmn bll br nry sahp hald bulunma olasılığı Fonksyonl form ndr? v bağımsız nrlr çn ortak olasılık bunların olasılıklarının çarpımıdır Buna C C C C br sabt üstl br fad gçrl olmalıdır. Yüksk nrl hallrn olasılığının düşük nrl hallrdn düşük olmasını v yüksk T dğrlrnd bu olasılığın artmasını bklrz. Yan önml olan şy nn T y oranıdır. Buradan C /T C br sabt 0 olduğu öngörülblr. vya daha yaygın olarak (Boltzman olasılık dağılımı) Burada k = R / A =1, rg/k olup Boltzman sabt olarak blnr Enrlr v olan v hallr çn olan bağıl olasılık / kt Sadc bağıl dğl mutlak olasılıkları bulmak çn a yazalım

3 Tüm hallr çn olan olasılıkların toplamı 1 olmalıdır 1 a a 1 Buradan halnd olma olasılığı Bütün br sstm vya molkül kümsnn br E nrsn sahp olan halnd bulunma olasılığı E E Dönüşüm fonksyonları Molkülr dönüşüm fonksyonu Kanoncal dönüşüm fonksyonu E olasılıkların mvcut olan farklı hallr arasında nasıl paylaşıldığının ölçütüdür. Bunlar brmsz sayılardır. Örnk : T0K mükmml krstal örgü yapısı Tml hal nrs E 0 =0 drsk Tüm dğr hal nrlr>>kt1 E0... E0 0 E0 E1 E0 1 Örnk : oda sıcaklığında gaz fazında bulunan atomların mol sayısı Bu problm kuantum mkanksl( kutudak tanck durumu) vya klask mkanksl ( farklı kntk nrlr sahp sürkl nrlr) Vya örgü modl kullanılablr: mvcut hacım atomk hacm bölünür (1Å 3 =10-30 m 3 )

4 Molkülr ötlnm dönüşüm faktörü, ötlnm ötlnm k =10 atom olan br sstmd kaç tan mkroskopk hal vardır? Atomları kaç farklı noktaya koyablrz: ötlnm Olağanüstü büyük br sayı! Tancklr ayrımlanamasa mvcut olan ayrımlanamayan hal sayısı: Bunu!=10! bölmlyz ötlnm ötlnm ayırt dlmyn tancklr ötlnm ötlnm /! ayırt dlbln tancklr Strlng yaklaşımına gör: ln! = ln vya! - Dolayısıyla ötlnm ötlnm! ötlnm ,, Daha ufak ama hala çok büyük!dolayısıyla sstmn hrhang br hal çn olan olasılık olağanüstü küçük.bu olasılık olağanüstü sayıdak hallr bölünmüş durumda Örnk: rotn kıvrılması çrn polmr yapısı Örnğn uygun tklşm nrs - tk y sahp olan(örnğn H bağlarından dolayı) dört polmr alt brm olsun. Eğr bu kovalnt olyacak şkld bağlanmış olan alt brmlr örgü bölglrn komşu slr Bu bast örnktk yapısal molkülr dönüşüm fonksyonu

5 yapıapı mkrohallr,,yapıapı tk tk 3 0 tk 3 Bu son fad bz dönüşüm faktörlrnn lgl mkrohallr yrn nr svylr nn toplamı cnsndn yazılablcğn göstrmktdr.eğr dnrlğ g drsk yapıapı g nr, 1 tk 3 0 tk 3 Bu kanoncal dönüşüm faktörlrn d yapılablr.buradak dnrlğ drsk hallr, E nr,e E dan tüm trmodnamk fonksyonlar hsaplanablr!!

İSTATİSTİK TERMODİNAMİK

İSTATİSTİK TERMODİNAMİK MI OpnCoursWar http://ocw.mt.du 5.60 hrmodnamk v Kntk ahar 008 u malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz İSİSİK ERMODİMİK Makroskopk trmodnamk sonuçların

Detaylı

Bu malzemelere atıfta bulunmak veya kullanım şartlarını öğrenmek için http://ocw.mit.edu/terms sitesini ziyaret ediniz

Bu malzemelere atıfta bulunmak veya kullanım şartlarını öğrenmek için http://ocw.mit.edu/terms sitesini ziyaret ediniz MIT OpnoursWar http://ocw.mt.du 5.6 Thrmodnamk v Kntk Bahar 8 Bu malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz MODEL SİSTEMLER Molkülr gçş, dönm v rşm çn

Detaylı

Termodinamiğin Yasaları:

Termodinamiğin Yasaları: NTR0PĐ trop kavramı, makroskopk görüş açısıda (klask trmodamk), mkroskopk görüş açısıda (statstksl trmodamk) v formasyo görüş açısıda (formasyo tors) olmak üzr, üç şkld l alıablr. trop statstksl taımlaması

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ. İçten Yanmalı Motorlarda Performans ve Enerji Dağılımı Deneyi

BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ. İçten Yanmalı Motorlarda Performans ve Enerji Dağılımı Deneyi BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ İçtn Yanmalı Motorlarda rformans v Enrj Dağılımı Dny Laboratuvar Tarh: Laboratuvarı Yöntn: Laboratuvar Yr: Laboratuvar Adı:

Detaylı

Sosyoekonomi / 2006-1 / 060103. M. Emin İnal & Derviş Topuz & Okyay Uçan. Sosyo Ekonomi. Doğrusal Olasılık ve Logit Modelleri ile Parametre Tahmini

Sosyoekonomi / 2006-1 / 060103. M. Emin İnal & Derviş Topuz & Okyay Uçan. Sosyo Ekonomi. Doğrusal Olasılık ve Logit Modelleri ile Parametre Tahmini Sosyokonom / 2006- / 06003. M. Emn İnal & Drvş Topuz & Okyay Uçan Sosyo Ekonom Ocak-Hazran 2006- Doğrusal Olasılık v Logt Modllr l Paramtr Tahmn M. Emn İnal Drvş Topuz Okyay Uçan nal@ngd.du.tr drvs_topuz@ngd.du.tr

Detaylı

YAPI MEKANİĞİNDE ÖZEL PROBLEMLER ENERJİ YÖNTEMLERİ

YAPI MEKANİĞİNDE ÖZEL PROBLEMLER ENERJİ YÖNTEMLERİ YIDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSİĞİ BÖÜMÜ MEKANİK ANABİİM DAI YAPI MEKANİĞİNDE ÖZE PROBEMER ENERJİ YÖNTEMERİ PRO. DR. TRGT KOCATÜRK Hazırlayan : İnş. Müh. ŞERE DOĞŞCAN AKBAŞ -ENERJİ YÖNTEMERİ-.

Detaylı

AYRIK VE SÜREKLİ ZAMANLI BİRİNCİ DERECEDEN SİGMA-DELTA MODÜLATÖRÜNÜN PRATİK OLARAK GERÇEKLEŞTİRİLMESİ

AYRIK VE SÜREKLİ ZAMANLI BİRİNCİ DERECEDEN SİGMA-DELTA MODÜLATÖRÜNÜN PRATİK OLARAK GERÇEKLEŞTİRİLMESİ AYRIK VE SÜREKLİ ZAMANLI BİRİNCİ DERECEDEN SİGMADELTA MODÜLATÖRÜNÜN PRATİK OLARAK GERÇEKLEŞTİRİLMESİ D. Hanba * v A. Uçar ** *Fırat Ünvrsts Elktronk Blgsaar Eğtm dhanba@frat.du.tr ** Fırat Ünvrsts Elktrk

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

ASTRONOTİK DERS NOTLARI Verim =

ASTRONOTİK DERS NOTLARI Verim = ASTRONOTİK DERS NOTLARI 04 TANIMLAR Katı v sıvı yakıtların n büyük sorunu VERİMLİLİK tr. En y otorlarda bl nrjnn ancak %40 dan yararlanılır. Bu açıdan bakıldığında kyasal yakıtlı otorlar pyc vrszdrlr.

Detaylı

MONOSİMETRİK VE AÇIK KESİTLİ BİR EULER-BERNOULLI KİRİŞİNİN İKİ FARKLI METOTLA SERBEST TİTREŞİM ANALİZİ

MONOSİMETRİK VE AÇIK KESİTLİ BİR EULER-BERNOULLI KİRİŞİNİN İKİ FARKLI METOTLA SERBEST TİTREŞİM ANALİZİ P A U K K A E Ü Nİ V E İ E İ Ü H E N Dİ İK F A K Ü E İ P A U K K A E U N I V E I Y E N G I N E E I N G F A C U Y Ü H E N Dİ İK Bİİ E İ D E Gİİ J O U N A O F E N G I N E E I N G C I E N C E YI Cİ AYI AYFA

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları gnl olarak k gruba arılır. Bunlar; a) Sürkl brlşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok parçalı

Detaylı

İLETKEN ve YARIİLETKENLERDE HALL OLAYI

İLETKEN ve YARIİLETKENLERDE HALL OLAYI İLETKEN v YARIİLETKENLERDE HALL OLAYI 1. HALL OLAYI Mtallrdk ltknlk, srst haldk lktronların uygulanan lktrk alan doğrultusundak harktlr ntcsnd ld dlr. Yarıltknlrd s, lktronların harcnd oşluklarda lktrksl

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

QUADRO. ProfiScale QUADRO Mesafe ölçüm cihazı. www.burg-waechter.de. tr Kullanım h kılavuzu. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Mesafe ölçüm cihazı. www.burg-waechter.de. tr Kullanım h kılavuzu. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Msa ölçüm cazı tr Kullanım ılavuzu www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Grş Düşünün

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

DAĞILIMLI GECİKMELİ BİR AV-AVCI SİSTEMİNDE HOPF ÇATALLANMA VE KARARLILIK ANALİZİ

DAĞILIMLI GECİKMELİ BİR AV-AVCI SİSTEMİNDE HOPF ÇATALLANMA VE KARARLILIK ANALİZİ T.C BAHÇEŞEHİR ÜİVERSİTESİ DAĞILIMLI GECİKMELİ BİR AVAVCI SİSTEMİDE HOPF ÇATALLAMA VE KARARLILIK AALİZİ YÜKSEK LİSAS TEZİ EMİE DEĞİRMECİ İstanbul, 11 T.C BAHÇEŞEHİR ÜİVERSİTESİ Fn Blmlr Ensttüsü Uygulamalı

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

KOLON EKSENLERİNİN SEÇİMİNİN KESİT TESİRLERİNE ETKİSİ

KOLON EKSENLERİNİN SEÇİMİNİN KESİT TESİRLERİNE ETKİSİ PAMUKKAE ÜNİ VEİ TEİ MÜHENDİ İ K FAKÜTEİ PAMUKKAE UNIVEITY ENGINEEING COEGE MÜHENDİ İ K B İ İ MEİ DEGİ İ JOUNA OF ENGINEEING CIENCE YI CİT AYI AYFA : 6 : 1 : 1 : 65-7 KOON EKENEİNİN EÇİMİNİN KEİT TEİEİNE

Detaylı

YÖNETMELİK TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK

YÖNETMELİK TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK 8 Hazran 2010 SALI Rsmî Gazt Sayı : 27605 Çvr v Orman Bakanlığından: YÖNETMELİK TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. PID Denetleyiciler

OTOMATİK KONTROL SİSTEMLERİ. PID Denetleyiciler OOMAİ ONROL SİSEMLERİ ID Dnlyclr ml Dnm ürlr k öngülü nm mlrn farklı yönmlrl ınıflanırmak mümkünür. Dnm kn gör; A kl vya 2 konumlu nm B Sürkl Dnm Oranı nm k rporonal 2 İngral nm k I Ingral 3 ürv nm k D

Detaylı

TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK

TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK Toprak Krllğnn Kontrolü V Noktasal Kaynaklı Krlnmş Saalara Dar Yöntmlk DOĞA Çvr Yöntm v Altrnat Enrj Tknolojlr Mündslk Danışmanlık Eğtm Hzmtlr San. Tc. Ltd. Şt. TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL

Detaylı

GAZ TÜRBİNLİ BİR ISIL-GÜÇ (KOJENERASYON) ÇEVRİM SANTRALİNİN ENERJİ VE EKSERJİ ANALİZİ: ANKARA ŞARTLARINDA UYGULAMA

GAZ TÜRBİNLİ BİR ISIL-GÜÇ (KOJENERASYON) ÇEVRİM SANTRALİNİN ENERJİ VE EKSERJİ ANALİZİ: ANKARA ŞARTLARINDA UYGULAMA Yıl: 213, Clt: 6, Sayı: 2, Sayfa:19-27 TÜBAV BİLİM DERGİSİ GAZ TÜRBİNLİ BİR ISIL-GÜÇ (KOJENERASYON) ÇEVRİM SANTRALİNİN ENERJİ VE EKSERJİ ANALİZİ: ANKARA ŞARTLARINDA UYGULAMA Murad A. RAHİM 1 *, Duygu GÜNDÜZ

Detaylı

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir. ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım

Detaylı

HAYVAN BARINAKLARINDA DOĞAL HAVALANDIRMA VERDİSİNİN BELİRLENMESİ İÇİN BİR BİLGİSAYAR PROGRAMI GELİŞTİRİLMESİ

HAYVAN BARINAKLARINDA DOĞAL HAVALANDIRMA VERDİSİNİN BELİRLENMESİ İÇİN BİR BİLGİSAYAR PROGRAMI GELİŞTİRİLMESİ OMÜ Zr. Fak. Drgs, 005,0(1):30-36 J. f Fac. f Agrc., OMU, 005,0(1):30-36 HAYVAN BARINAKLARINDA DOĞAL HAVALANDIRMA VERDİSİNİN BELİRLENMESİ İÇİN BİR BİLGİSAYAR PROGRAMI GELİŞTİRİLMESİ Gürkan A. K. GÜRDİL

Detaylı

KESİKLİ SEÇİM MODELLERİ

KESİKLİ SEÇİM MODELLERİ do:.34/rg...36.56 DERS NOTLARI KESİKLİ SEÇİM MODELLERİ Doç. Dr. /İstanbul Aydın Ünvrsts Ekono v Fnans Bölüü Ergnbay Uğurlu E. Ugurlu, p.-9. Drs Notları Şubat Ktapçık 3 do:.34/rg...36.56 KESİKLİ SEÇİM MODELLERİ

Detaylı

1 mol = 6, tane tanecik. Maddelerde tanecik olarak atom, molekül ve iyonlar olduğunda dolayı mol ü aşağıdaki şekillerde tanımlamak mümkündür.

1 mol = 6, tane tanecik. Maddelerde tanecik olarak atom, molekül ve iyonlar olduğunda dolayı mol ü aşağıdaki şekillerde tanımlamak mümkündür. 1 GENEL KİMYA Mol Kavramı 1 Mol Kavramı Günlük hayatta kolaylık olsun diye, çok küçük taneli olan maddeler tane yerine birimlerle ifade edilir. Örneğin pirinç alınırken iki milyon tane pirinç yerine ~

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II. 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II. 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi İTÜ Makina Fakültsi Ağırlığın Potansiyl Enrjisi W=, δh kadar yukarıya doğru yr dğiştirsin, Virtül iş, δu = Wδh= δh NOT: Eğr cisi aşağıya doğru δh yr dğişii yapıyorsa v +h aşağıya doğru is δu = Wδh= δh

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak in http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

STRATEJiK YÖNETiMDE DEGiSiK YAKLASIMLAR

STRATEJiK YÖNETiMDE DEGiSiK YAKLASIMLAR Yöntm, Yl: 6 Say: 20 Oca 1995, s. 53-59 STRATEJK YÖNETMDE DEGSK YAKLASIMLAR,, Asr. Grv. Y. Müh. V. Z YENEN* I.T.ü. Isun Faülts Grs Bu maald, rabt yogun v sürl dgsn br vrd faalyt göstrmt olan frmalarn nd

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomanyk Dalga Tos Ds-1 Dfansyl Fomda awll Dnklml İngal Fomda awll Dnklml Fazöln Kullanımı Zamanda amonk Alanla alzm Oamı Dalga Dnklml B awll Dnklmlnn Dfansyl Fomu D. D ρ. B Faaday Kanunu Amp Kanunu Gauss

Detaylı

Sakarya Ticaret Bozrsası. Üye Memnuniyet ve Beklenti Anketi. Raporu

Sakarya Ticaret Bozrsası. Üye Memnuniyet ve Beklenti Anketi. Raporu Tcar zsı My v Bkln k Mar 2015, SAKARYA Tcar sı 2014 Yılı My v Bklnlrnn Eld Edlms İçn Yapılan k İlşkn r Tcar sı hm ISO 9001 Toplam Kal Yönm Ssm, hm d TOBB Oda/ Akrdasyon Ssmnn grğ olarak gnş çaplı br My

Detaylı

FREKANS-DOMENİNDE MODELLEME

FREKANS-DOMENİNDE MODELLEME Bölü FEANS-DOMENİNDE MODELLEME. Grş Bu bölüd daha önc Yükk Maak drlrnd gördüğüüz konrol lrnn analz v aarılarında çok büyük kolaylıklar ağlayan Lalac dönüşüünü kıaca haırlayacağız. Daha onra doğrual, zaanla

Detaylı

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan 1 YARI İLETKENLER Enstrümantal Analiz ir yarı iltkn, iltknliği bir iltkn il bir yalıtkan arasında olan kristal bir malzmdir. Çok çşitli yarıiltkn malzm vardır, silikon v grmanyum, mtalimsi bilşiklr (silikon

Detaylı

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Ölçme Kuramnda Temel Yaklamlar

Ölçme Kuramnda Temel Yaklamlar yurdugul@hacttp.du.tr Ölçm Kuramnda Tml Yaklamlar Gözlnn l gözlnmyn arasndak bantlar, br baka fad l ölçülbln dknlrdn gözlnmyn dknlrn ld dlmsn dayanan yaklamlar ölçmnn tml konularn oluturmaktadr. Bu bantlar

Detaylı

- BANT TAŞIYICILAR -

- BANT TAŞIYICILAR - - BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için

Detaylı

Elastik Zemine Oturan Kalın Plaklar İçin Kayma Kilitlenmesiz Bir Sonlu Eleman Modeli *

Elastik Zemine Oturan Kalın Plaklar İçin Kayma Kilitlenmesiz Bir Sonlu Eleman Modeli * İMO Tn Drg, 534-5358, Yazı 346 Elast Zmn Oturan Kalın Plalar İçn Kama Kltlnmsz r Sonlu Elman Modl * Korhan ÖZGA* Aş T. DALOĞLU** ÖZ u çalışmada, alınlı doğrultusunda ama şl dğştrmlrn dat alan 4 düğüm notalı

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

PASİF DENDTRİT ELEKTRİKSEL ÖZELLİKLERİNİN BENZETİMİ İÇİN BİR YAZILIM

PASİF DENDTRİT ELEKTRİKSEL ÖZELLİKLERİNİN BENZETİMİ İÇİN BİR YAZILIM PAMUKKAE ÜNİ ERSİ TESİ MÜHENDİ Sİ K FAKÜTESİ PAMUKKAE UNIERSITY ENGINEERING COEGE MÜHENDİ Sİ K B İ İ MERİ DERGİ S İ JOURNA OF ENGINEERING SCIENCES YI CİT SAYI SAYFA : 006 : 1 : 1 : 97-104 PASİF DENDTRİT

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR İdeal Gaz Yasaları Gazlarla yapılan deneyler, 17. yüzyılda başlamış olup fizikokimya dalında yürütülen ilk bilimsel nitelikteki araştırmalardır. Gazlar için basınç (p), hacim (v),

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

4. BİR BOYUTLU ZAMANA BAĞLI ISI İLETİMİ

4. BİR BOYUTLU ZAMANA BAĞLI ISI İLETİMİ üm yayın hakları Prof. Dr. Büln Yşlaa ya ar. İznsz çoğalılamaz. 4. BİR BOYUU ZAMANA BAĞI ISI İEİMİ Zamana bağlı ısı gçş roblmlr gnllkl ssmn sınır koşulları dğşğnd oraya çıkar. Zamana bağlı ısı roblmlrn

Detaylı

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Sakarya Ticaret Borsası. Üye Memnuniyet ve Beklenti Anketi. Raporu

Sakarya Ticaret Borsası. Üye Memnuniyet ve Beklenti Anketi. Raporu Tcar sı My v Bkln k Ocak 2016, SAKARYA Tcar sı My v Bklnlrnn Eld Edlms İçn Yapılan k İlşkn r Tcar sı hm ISO 9001 Toplam Kal Yönm Ssm, hm d TOBB Oda/ Akrdasyon Ssmnn grğ olarak My v Bkln k çalışması grçklşrmşr.

Detaylı

FİZİKOKİMYA I ARASINAV SORU VE CEVAPLARI 2013-14 GÜZ YARIYILI

FİZİKOKİMYA I ARASINAV SORU VE CEVAPLARI 2013-14 GÜZ YARIYILI Soru 1: Aşağıdaki ifadeleri tanımlayınız. a) Sistem b)adyabatik sistem c) Kapalı sistem c) Bileşen analizi Cevap 1: a) Sistem: Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına verilen

Detaylı

Periyodik Tablo. Elementleri artan atom numaralarına ve tekrar eden fiziksel kimyasal özelliklerine göre sınıflandırır.

Periyodik Tablo. Elementleri artan atom numaralarına ve tekrar eden fiziksel kimyasal özelliklerine göre sınıflandırır. Periyodik Tablo Elementleri artan atom numaralarına ve tekrar eden fiziksel kimyasal özelliklerine göre sınıflandırır. 1828 Berzelius elementleri sembolize etmek için harfleri kullandı. 1829 Döbereiner

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210 SAT-IF / CATV Ultra Gniş Bantlı Dağıtım Yükslticilri (UBA-Srisi) TANITIM v KULLANIM KILAVUZU Modllr UBA4234-R Vrsiyon : KK_UBA_V3.0210 1.Gnl Tanıtım UBA Srisi Dağıtım Yükslticilri, uydu (950-2150MHz) v

Detaylı

Dayanışma yemeğinde partililer ve bürokratlarla bir araya gelen Hamidi; Huzurun olduğu yerde yüzler güler KARDEŞLİĞE VESİLE OLSUN

Dayanışma yemeğinde partililer ve bürokratlarla bir araya gelen Hamidi; Huzurun olduğu yerde yüzler güler KARDEŞLİĞE VESİLE OLSUN Hasankyf l brlkt yaşlandı Ilısu Baraj suları altında kalacak olan tarh antk knt Hasankyf l yaşlanan 85 yaşındak Abdurrahman Çllr n ömrü bu güzlm yrd gçt. H batmanpostasgazts.com 15 ÇOCUK 120 TORUN l Hasankyf

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR Sistem ve Hal Değişkenleri Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına sistem, bu sistemi çevreleyen yere is ortam adı verilir. İzole sistem; Madde ve her türden enerji akışına karşı

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Araştırma Makalesi / Research Article. Kayma Mod ile Asenkron Motorun Algılayıcısız Hız Kontrolü

Araştırma Makalesi / Research Article. Kayma Mod ile Asenkron Motorun Algılayıcısız Hız Kontrolü BEÜ Fn Blml Dg BEU Jounal of Scnc (2), 92-6, 22 (2), 92-6, 22 Aaştıma Makal / Rach Atcl Kayma Mod l Ankon Motoun Algılayıcıız Hız Kontolü Kohan KAYŞL *, Hanf GÜLDEMİR 2 Btl En Ünvt Mühndlk-Mmalık Fakült

Detaylı

ABA (Mg) MOLEKÜLÜNÜN TİTREŞİM FREKANSLARININ TEORİK OLARAK HESAPLANMASI

ABA (Mg) MOLEKÜLÜNÜN TİTREŞİM FREKANSLARININ TEORİK OLARAK HESAPLANMASI T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ ABA (Mg) MOLEKÜLÜNÜN TİTREŞİM FREKANSLARININ TEORİK OLARAK HESAPLANMASI YÜKSEK LİSANS TEZİ İsmal YILMAZ Esttü Aablm Dalı : FİZİK Tz Daışmaı : Yrd. Doç.

Detaylı

Kirişli döşemeler (plaklar)

Kirişli döşemeler (plaklar) Kirişli döşmlr (plaklar) Dört tarafından kirişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşluklu döşmlr Düznsiz gomtrili döşmlr Üç tarafı kirişli bir tarafı boşta döşm Bir tarafı kirişli

Detaylı

fonksyonları yoğunluk matrsnn faz-uzayı çkrdğ olarak ld dlmktdr. Gronwold ayrıca Gronwold-van ov torm olarak da blnn çalışmasıyla Posson arantzlrnn ku

fonksyonları yoğunluk matrsnn faz-uzayı çkrdğ olarak ld dlmktdr. Gronwold ayrıca Gronwold-van ov torm olarak da blnn çalışmasıyla Posson arantzlrnn ku . GİRİŞ Kuantum mkanğnn faz-uzayı formülasyonu olarak da blnn dformasyon kuantumlaması ya da kuantzasyonu) bastç klask faz-uzayında tanımlı sıra dğşn fonksyonlarla lbrt uzayında fonksyonlar üzrn tkyn şlmclr

Detaylı

Ek-1: Jenerik Kirletici Sınır Değerler Listesi

Ek-1: Jenerik Kirletici Sınır Değerler Listesi Ek1: Jnrk Krltc Sınır Dğrlr Lsts ORGANİKLER Krltc JENERİK KİRLETİCİ SINIR DEĞERLERİ LİSTESİ a CAS No Akrlamd 79061 0,1 Akrlontrl 107131 1 Akroln 107028 39 Aldrn 309002 0,03 Toprağın yutulması v dr tması

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

3. Yazma Becerileri Sempozyumu

3. Yazma Becerileri Sempozyumu Glckt gl prjlr : İlkkullara yölk Kt 0 1 Fkr Prj 3 Yama Bcrlr mpyumu Tml yötm Yd pratk Örk prjlr Dymlr Dğr ülklr Glckt gl prjlr : İlkkullara yölk Kt 10 2 Br varmış, br ykmuş Bu kt, 2006 yılıda başlaya v

Detaylı

MÜHENDİSLİK YANGIN OTOMASYON SİSTEMLERİ SAN. TİC.

MÜHENDİSLİK YANGIN OTOMASYON SİSTEMLERİ SAN. TİC. Tubojts Nozzls BRASS COMPANY 442 Sok. No: 2-D İşaat İş Mk. Yşh - İZMİR Tl: 0 232 457 27 00-0 Fax: 0 232 457 27 02 w w w. o t o k o. c o m. t f o @ o t o k o. c o m. t Cco Ako ayalaabl hacml Tubojt Nozul,

Detaylı

Hibrid Sürücülü Bir Pres Mekanizmasının Dinamik Modellemesi ve Benzetimi

Hibrid Sürücülü Bir Pres Mekanizmasının Dinamik Modellemesi ve Benzetimi Uluslaaası Kaılımlı 17. Makna Tos Smpozyumu, İzm, 1-17 Hazan 1 Hbd Süücülü B Ps Mkanzmasının Dnamk Modllms v Bnzm M. Ekan Küük * L. Canan Dülg Gazanp Ünvss Gazanp Ünvss Gazanp Gazanp Öz Çalışmada hbd süücülü

Detaylı

DENEY 10 PM DC Servo Motor Karakteristikleri

DENEY 10 PM DC Servo Motor Karakteristikleri DNY 0 PM DC Srvo Moor rkrklr DNYİN AMACI. PM DC rvo oorlrın krkrk prrlrn nlk.. PM DC rvo oorlrın krkrk prrlrn ölçk. GİİŞ Dc rvo oor, konrol lr çlışlrınd, konrol orn uygun olrk konrol yönlr glşrk çn, konrol

Detaylı

AN IMPROVED PROGRAMME FOR QUASI STATIC AND KINEMATICS DEFORMATION ANALYSIS IN LEVELLING NETWORK

AN IMPROVED PROGRAMME FOR QUASI STATIC AND KINEMATICS DEFORMATION ANALYSIS IN LEVELLING NETWORK ÜKSEKLİK ĞLRND USİ SİK VE KİNEMİK DEFORMSON NLİZİ İÇİN GELİŞİRİLEN PROGRM S. DOĞNLP C. Ö. İĞİ C. İNL B. URGU Slçuk Ünrss Mündslk Mmarlık Faküls Jodz Foogramr Mündslğ Bölümü Jodz nablm Dalı Konya sdoganalp@slcuk.du.r

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

Türkiye. 2010 İnsani Gelişme Raporu nda İnsani Gelişme Endeksi değerinin ve sıralama değişikliklerinin açıklanması

Türkiye. 2010 İnsani Gelişme Raporu nda İnsani Gelişme Endeksi değerinin ve sıralama değişikliklerinin açıklanması 2010 İa Glşm Raporu brlşk dklr açıklama otu Türky 2010 İa Glşm Raporu da İa Glşm Edk dğr v ıralama dğşklklr açıklamaı Grş 2010 İa Glşm Raporu İa Glşm Edk (İGE) haplamaıda kullaıla götrglr v mtodolojd pk

Detaylı

Kayıplı Dielektrik Cisimlerin Mikrodalga ile Isıtılması ve Uç Etkileri

Kayıplı Dielektrik Cisimlerin Mikrodalga ile Isıtılması ve Uç Etkileri Kayıplı Dilktrik Cisimlrin Mikrodalga il Isıtılması v Uç Etkilri Orhan Orhan* Sdf Knt** E. Fuad Knt*** *Univrsity of Padrborn, Hinz ixdorf Institut, Fürstnall, 3302 Padrborn, Almanya orhan@hni.upb.d **Istanbul

Detaylı

KATEGORİK VERİLERİN TESTİ (ki-kare testi)

KATEGORİK VERİLERİN TESTİ (ki-kare testi) KATEGORİK VERİLERİN TESTİ (k-kar tst).. K-kar dağılışı.. Bağımsızlık tst... x tablolarda bağımsızlık (ora/homojt) tstlr... rxc tablolarda bağımsızlık (ora/homojt) tstlr.3. İy uyum tstlr.3.. Normal dağılışa

Detaylı

ASİMETRİK EVOLVENT HELİSEL DİŞLİ ÇARKLARIN BİLGİSAYAR SİMÜLASYONU

ASİMETRİK EVOLVENT HELİSEL DİŞLİ ÇARKLARIN BİLGİSAYAR SİMÜLASYONU Gaz Üv. Müh. Mm. Fak. Dr. J. Fa. Eg. Arh. Gaz Uv. Clt 5, No 3, 44-447, Vol 5, No 3, 44-447, ASİMETİK EVOLVENT HELİSEL DİŞLİ ÇAKLAIN BİLGİSAYA SİMÜLASYONU Cüyt FETVACI Mak.Müh.Böl., Müh.Fak., İstabul Üvrsts,

Detaylı

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur.

da. Elektronlar düşük E seviyesinden daha yüksek E seviyesine inerken enerji soğurur. 5.111 Ders Özeti #6 Bugün için okuma: Bölüm 1.9 (3. Baskıda 1.8) Atomik Orbitaller. Ders #7 için okuma: Bölüm 1.10 (3. Baskıda 1.9) Elektron Spini, Bölüm 1.11 (3. Baskıda 1.10) Hidrojenin Elektronik Yapısı

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Coulomb - Gauss. Elektrik Akısı. Elektrik Akısı, devam. Bölüm 24 GAUSS YASASI. Elektrik Akısı Gauss Yasası

Coulomb - Gauss. Elektrik Akısı. Elektrik Akısı, devam. Bölüm 24 GAUSS YASASI. Elektrik Akısı Gauss Yasası lktrk Akısı Gauss Yasası Bölüm 4 GAUSS YASASI Gauss Yasasının Yüklü Yalıtkanlara Uygulanması lktrostatk Dngdk İltknlr Sorular - Problmlr Coulomb - Gauss Gauss Yasası v lktrk alanının başka hsap yolları!

Detaylı

Bölüm 2. X-ışınlarının Difraksiyonu (Kırınımı)

Bölüm 2. X-ışınlarının Difraksiyonu (Kırınımı) Bölüm. X-ışınlarının Draksyonu (Kırınımı) X-ışınlarının özllklrndn sonra, krstallrn ndn X-ışınlarını draksyona uğrattıklarını anlamak çn krstallrn gomtrsn v yapısını nclmlyz. Br krstal atomları üç boyutta

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN İLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖA İLKÖĞREİM MAEMAİK u tstlrin hr hakkı saklıdır. Hangi amaçla olursa olsun, tstlrin tamamının va bir kısmının İhtiaç

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ MADDENİN AYIRT EDİCİ ÖZELLİKLERİ Maddeleri birbirinden ayırt etmek için her bir maddenin kendine özgü özelliklerini kullanırız. Örneğin; renk, koku, tat ve sertlik gibi özellikleri ile maddeleri ayırt

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi 84 lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s lkk alann valğndan dola = akm akacak Bu duumda;

Detaylı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = +

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül 00 Resmi Sınavı (Prof. Dr. Ventsislav Dimitrov) Konu: Döngüsel süreçlerin ermodinamiği Soru. Diyagramdaki döngüsel süreç iki izobar ve iki izotermal süreçten oluşuyor. V V Eğer diyagramdaki - noktaları

Detaylı

300 = Ders notlarındaki ilgili çizelgeye göre; kömür için üst kaplama kalınlığı 4 mm, alt kaplama kalınlığı 2 mm olarak seçilmiştir.

300 = Ders notlarındaki ilgili çizelgeye göre; kömür için üst kaplama kalınlığı 4 mm, alt kaplama kalınlığı 2 mm olarak seçilmiştir. Soru-) Eğii, uzunluğu 50 olan dsandr y bant konvyör kurularak bununla saatt 300 ton tüvönan taş köürü taşınacaktır. Bant konvyörü boyutlandırınız. Kabullr: Bant hızı :,5 /s Köür yoğunluğu : 0,9 ton/ 3

Detaylı

Döküm Prensipleri. Doç.Dr. Derya Dışpınar deryad@istanbul.edu.tr. İstanbul Üniversitesi

Döküm Prensipleri. Doç.Dr. Derya Dışpınar deryad@istanbul.edu.tr. İstanbul Üniversitesi Döküm Prensipleri Doç.Dr. Derya Dışpınar deryad@istanbul.edu.tr John Campbell John Campbell John Campbell Kurz ve Fisher Porter ve Easterling Flemings Şekilvermeyöntemleri Talaşlı Talaşsız Torna Freze

Detaylı

MALZEME BİLGİSİ DERS 5 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 5 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 5 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA BAĞ KUVVETLERİ VE ENERJİLERİ ATOMLARARASI BİRİNCİL BAĞLAR İKİNCİL VEYA VAN DER WAALS BAĞLARI MOLEKÜLLER BÖLÜM III KATILARDA

Detaylı

İşletmeye Giriş. Ekonomik Fonksiyonlarına na göre; g. Mal Üreten. İşletmeler Hizmet Üreten Pazarlama İşletmeleri

İşletmeye Giriş. Ekonomik Fonksiyonlarına na göre; g. Mal Üreten. İşletmeler Hizmet Üreten Pazarlama İşletmeleri İşletme BölümüB Yönetm ve Organzasyon Anablm Dalı İşletmeye Grş Ders Notu - 4 Öğr. Grv.. Dr. M. Volkan TÜRKERT vturker@marmara marmara.edu..edu.tr www.volkanturker volkanturker.com..com.tr İşletmelern

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul

Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul Ercan Kahya 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Bayazıt, Brsen Yayınev, 007, İstanbul se se da Brm kanal küçük gen kestl br kanalda, 1.14. KANAL EGIMI TANIMLARI Brm kanal genşlğnden geçen deb q se, bu q

Detaylı

Ö L Ç Ü GAYRİMENKUL DANIŞMANLIK

Ö L Ç Ü GAYRİMENKUL DANIŞMANLIK Ö L Ç Ü GAYRMNKUL DANIŞMANLIK HAVZAN MAHALLS BNKL SOKAK 9/2(-3) NOLU DARNN TANITIM RAPORU Bir gayrimenkul almak insan hayatındaki en önemli yatırım kararlarından birsini oluşturmakta olup detaylı bir değerlendirme

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir.

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. Her maddenin bir kütlesi vardır ve bu tartılarak bulunur. Ayrıca her

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı