POISSON REGRESYON ANALİZİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "POISSON REGRESYON ANALİZİ"

Transkript

1 İstabul Tcaret Üverstes Fe Blmler Dergs Yıl:4 Sayı:7 Bahar 005/ s POISSON REGRESYON ANALİZİ Özlem DENİZ * ÖZET Herhag br olayı belrlee br süreç çersde yaıla deemeler soucuda meydaa gelme sayısı, sayma verler olarak fade edleblr. Sayma ver modelde ble lk gelşmeler aktueryal blmler, byostatstk ve demografde gözlemştr. So yıllarda bu modeller ktsat, oltk blmler ve sosyolojde de sıkça kullaılmaya başlamıştır. Sayma ver modeller özel br regresyo türüdür. Bu modeller ekoometrcler çok fazla dkkat çekmş ve mkro ekoomde oldukça fazla kullaılmıştır. Bldğ gb, verler sürekl olduğu durumlarda doğrusal regresyo aalz kullaılablmektedr. Acak aalzlerde kullaılacak verler her zama sürekl halde bulumayablr. Bu gb durumlarda ya; verler keskl olması durumuda da doğrusal regresyo modeller kullaılarak yaılacak aalzler etksz, tutarsız ve çelşkl souçlar verecektr. Bu sebete dolayı keskl verler ç tüm koşullar sağladığıda kulaılablecek e etk model Posso regresyo modellerdr. Aahtar Kelmeler: Posso Regresyo, Yaay E Çok Olablrlk Kestrm, Artık Aalz POISSON REGRESSION ANALYSIS ABSTRACT The occurace umber (frequecy) of a evet tested a determed rogress s called coutg data. The frst mrovemets coutg data model were see actuaral sceces, bostatstcs ad demograhy. Coutg data models are a secfc kd of regresso. As we all kow, lear regresso ca be used where the data s cotuous. However the data ca ot always be cotuous. I these crcumstaces where the data s dscotuous, the alcato of lear regresso leads us to effectve, cosstet ad cotradctory results. Therefore, whe all the codtos for dscotuous data are met, Posso regresso models are the most effectve model. Keywords: Posso Regresso, Artfcal Maxmum Lkelhood Predcto, Resdual Aalyss * İstabul Tcaret Üverstes, Fe Edebyat Fakültes, İstatstk Bölümü, 59

2 Özlem Dez. GİRİŞ Herhag br olayı belrlee br süreç çersde yaıla deemeler soucuda meydaa gelme sayısı, sayma verler olarak fade edleblr. Sayma ver modelde ble lk gelşmeler aktueryal blmler, byostatstk ve demografde gözlemştr. So yıllarda bu modeller ktsat, oltk blmler ve sosyolojde de sıkça kullaılmaya başlamıştır. Sayma ver modeller özel br regresyo türüdür. Bu modeller ekoometrcler çok fazla dkkat çekmş ve mkro ekoomde oldukça fazla kullaılmıştır. Sayma verler aalz ç lk sorula soru özel yötemler gerekllğ veya doğrusal regresyo model yeterl olu olmadığıdır. Sayma verlerde oluşa değşkeler ç sürekl ve doğrusal regresyo model uygulaableceğ düşüülür. Acak bu verlere doğrusal regresyo model uygulaması halde souçlar, etksz ve tutarsız olduğu gb çelşkl tahmler yaılablr. Sayma souçlarıı özellkler kes olarak vere brçok model vardır. Acak Posso regresyo brçok aalz başlagıç oktası olarak düşüülür. Posso regresyo model sayma verler ç e sık kullaıla ve e bast ola yötemdr. Bu model le sayımı olasılığı, Posso dağılımı le belrler. Bu model belrg özellğ, soucu koşullu ortalamasıı koşullu varyasıa eşt olmasıdır. Acak uygulamada baze koşullu varyas, koşullu ortalama değer aşablr. İşte bu tür durumlarda, egatf bom regresyo modeller kullaılır. Bu çalışmada, koşullu ortalamaı koşullu varyasa eşt olduğu durumda kullaıla Posso regresyo aalz, teork olarak açıklamaya çalışılmıştır.. POISSON REGRESYON SÜRECİ Bağımlı değşke 0,,, 3,... gb keskl değer aldığı fakat kategork olmadığı durumlar vardır. Bu tür değşkelere, doğalgaz boruları üzerde kazaları sayısı, verle atetler sayısı, yazlıklarda çıka yagıları sayısı gb örekler gösterleblr. Keskl ve kategork olmaya, adr olaylarla lşkl bağımlı değşkel model, bazı varsayımlar altıda Posso regresyo model olarak adladırılır. Posso regresyo model daha çok sayma verler aalz etmek ç kullaılmaktadır (Akı, 00). 60

3 İstabul Tcaret Üverstes Fe Blmler Dergs Bahar 005/ Posso regresyo modelde regresyo sürecdek geel kestrmler e çok olablrlk yötem le gerçekleştrlmektedr. Posso e çok olablrlk kestrm ç; ) Koşullu ortalamaı doğru taımlamasıda bağımlılık şartı sağlamalıdır. Ayrıca bağımlı değşke y Posso dağılması gerekldr. ) E çok olablrlk stadart hataları ve t statstkler kullaarak hesalaa statstksel souçlar, hem koşullu ortalama, hem varyası doğru taımlamasıı gerektrmektedr. Burada stee koşul, koşullu varyas ve ortalamaı eşt olmasıdır. 3) Verler ç koşullu varyas ve koşullu ortalamaı eşt olmaması durumuda, e çok olablrlk yötem uygulaması le elde edlmş statstksel souçlar, koşullu ortalamaı doğru taımladığıı sat edldğ durumlarda geçerl ve doğrudur. 4) Verler ç koşullu varyas ve ortalamaı eşt olmaması durumuda, Posso e çok olablrlk tahm edcsde daha etk tahm edcler kullaılablr... Posso Regresyo Sürecde Katsayıları Kestrm Posso regresyo sürecde bağımlı değşke y dağılımıa göre, βˆ kestrcler hesalama yötemler değşklk göstermektedr. E çok olablrlk kestrm yötem (MLE), doğrusal ve karesel varyas foksyoları le egatf bom, yaay e çok olablrlk (PMLE) ve geelleştrlmş doğrusal modeller, bu yötemlerde e çok ble ve e sık kullaılalarıdır.... Posso E Çok Olablrlk Kestrm Yötem x ye bağlı y ç Posso regresyo model; ( y x ) µ y µ e f =, y = 0,,,... () y! ve ortalama arametres; E y x = = ex( x β () [ ] ) µ şeklde gösterlr ve üstel ortalama foksyou olarak fade edlr. İstatstk lteratürüde bu foksyo ayrıca; log-doğrusal foksyo olarak da fade edlr. Çükü koşullu ortalamaı logartması, arametreler doğrusal olarak vermektedr.. l E [ y x ] = µ = x β (3) 6

4 Özlem Dez Bağımsız gözlemler ç, log-olablrlk foksyou; Bua bağlı olarak Posso MLE fadesde buluur. ( ) = { y x β ex( x β ) l y! } l L β (4) = βˆ değer; ( y ( x ) = ex β x = 0 (5) βˆ değer hesalamasıda kullaıla stadart yötem, Fsher terasyo yötemdr. Uygulamada geellkle 0 veya daha az terasyo yamak yeterl olmaktadır. Verle blgler uygulaa modeller doğrultusuda katsayıları kestrm ç; ve varyas değer ç; souçlarıa ulaşılır. a [ β, V [ ˆ β ] ML ˆ β ~ N (6) [ ˆ ] V ML β = µ x x (7) =... Yaay E Çok Olablrlk Kestrcs Bağımlı değşke y Posso dağılıma uyguluk göstermemes durumuda ble, Posso regresyo yardımıyla hesalamış βˆ ler kullaılablr. Bu amaçla yaay e çok olablrlk kestrcs olarak adladırıla kestrcler kullaılır. Bu termoloj, Posso modeldek Posso e çok olablrlk kestrcs, brc derecede koşul taımıyla elde edlmes gereke kestrc yere kullaılması alamıa gelr. Ama bu kestrc, Posso e çok olablrlk kestrcsdek gb, Posso dağılımıa uyguluk göstermes gerektrmez. Bu açıklamalara bağlı olarak, Posso ç yaay e çok olablrlk kestrcs varyası, βˆ ; 6

5 İstabul Tcaret Üverstes Fe Blmler Dergs Bahar 005/ olarak fade edldğ; şeklde dağılır. ( ˆ ) = µ x x w x x = = = V PML β µ x x (8) [ β, ( ˆ β )] ˆ β ~ N (9) ω değer, V PML y ç koşullu varyas değer olduğu blmektedr...3. Geelleştrlmş Doğrusal Modeller Kestrm Yötem E y x = = ex( x β ortalama foksyoua sah Posso ç, bu model [ ] ) µ kaok bağ foksyou ola Posso yoğuluk foksyou; x ( ) ( ) βy ex x β f y x = ex + c( y, φ ) (0) φ şeklde taımlaır. Bu modelde c ( y,φ ), ormalleştrme katsayısıdır. φ değer doğrusal varyas foksyou le egatf bom dağılımı yardımıyla hesalamış ola V = φµ foksyouda hesalamaktadır. [ y ] Geelleştrlmş doğrusal modeller yardımıyla hesalaa Posso kestrcs brc derecede koşullar le; ( y ex( x β ) x = 0 φ = deklemde hesalamaktadır (Camero ve Trved, 998). βˆ GLM,.. Regresyo Souçlarıı Kullaılması Br öcek bölümde kullaıla yötemler yardımıyla hesalaa katsayılar doğru br şeklde yorumlamadığı sürece model ç hçbr alam fade etmemektedr. Ayrıca hesalaa bu değerler yardımı le bağımlı değşke y değerler ç de kestrmler yaılmalıdır. Bu bölümde regresyo katsayılarıı yorumlaması ve bağımlı değşke kestrm koularıa değlecektr.... Katsayıları Yorumlaması Regresyo katsayılarıı yorumlaması, regresyo sürecdek öeml koularda brdr. Öreğ; 0, olmasıı e alama geldğ açıklaması βˆ j gerekmektedr. Doğrusal regresyo modelde beklee değer; [ ] β () E y x = x şeklde 63

6 Özlem Dez hesalamaktaydı. Bu fadedek β değer yalız bırakılır ve E[ y x] x j = β j şlem gerçekleştrlrse; ˆ β j = 0, ç, j c bağımsız değşkedek brmlk değşm, koşullu ortalamayı 0, brm artırmaktadır yorumu yaılır. Acak Posso regresyo model üstel br yaı taşıdığı ç katsayıları yorumlaması bu kadar kolay olmayacaktır. Üstel koşullu ortalama; [ y x] ex( x β ) E = () şeklde gösterlmekteyd. x j değer ç j c bağımsız değşke olduğu düşüülsü. Bezer şlemler tekrarlaması soucuda; E [ y x] x j = β ex x soucua ulaşılır. Öreğ, eğer ˆ = 0, j j ( β ) β ve ex ( ) β =, 5 (3) x ˆ se; j c bağımsız değşkedek br brmlk değşm, y bağımlı değşkede 0,5 brmlk artışa ede olacağı, eştlkte hesalaablmektedr (McCullagh ve Nelder, 983).... Kestrlmş Değer Hesalaması Gözlem değerlerde oluşa x bağımsız değşke tahm değer de = E [ y x = ] µ olarak gösterls. x x, koşullu ortalamaı Taımlaa fadeler doğrultusuda üstel koşullu ortalama foksyou ç, ortalamaı tahm; şeklde hesalaır. Bu değer %95 güve aralığı ç; ( β ) ˆ µ = ex ˆ (4) x [ β ] x µ ˆ µ µ z ˆ µ x V ˆ (5) 0,5 64

7 İstabul Tcaret Üverstes Fe Blmler Dergs Bahar 005/ aralığıda yer almaktadır. βˆ kestrcs; ˆ β ~ [ β, V [ ˆ β ] N olduğu blmektedr. Daha dar güve aralıklarıda β ç daha kes tahmler yaılablmektedr. Bağımlı değşke y ç, ortalamaı tahm yere gerçek değer tahm steleblr. Gözlemler x = x olarak taıtıldığıda, üstel koşullu ortalama formülü olarak hesalaa tahmler; y ˆ = ex βˆ (6) eştlğde elde edlr. x ( ) Posso model ç varyas foksyou dkkate alıırsa, ( µ, ˆ α ) ω ˆ olarak fade edlr. Bu durumda y ç; y y ( ˆ µ, ˆ α ) + ˆ µ x V [ ˆ β ] x kestrle varyası yˆ ± z ω (7) aralığıda olduğu söyleeblr (a.g.e., Camero ve Trverd, 998)..3. Artıkları Aalz Artıklar, bağımlı değşke ç gerçek değerler le kestrlmş değerler arasıdak farka eşttr. Artıklar uç değerler belrlemede, zayıf uyum göstere gözlemler kestreblmekte, etk gözlemler test etmede ve etk gözlemler seçeblmede kullaılablrler. Doğrusal modellerde artıklar, gerçek ve kestrle değerler arasıdak fark olarak fade edlmektedr. Acak doğrusal olmaya modeller ç artık taımı br tae değldr. Posso ve dğer geelleştrlmş doğrusal modeller ç artıklar farklı yollarla ve farklı adlarla hesalaır. Geel alamda artıklar ( ) r = µˆ (8) y olarak fade edlr. Burada uyum ortalaması ˆ µ µ ( x β ) = ı koşullu ortalamasıdır. Normal dağılımlı klask doğrusal regresyo modelde homoskedastk hata y µ ~ N 0, σ olarak taımlaır. Böylece geş öreklerde artıklar sabt varyas ( ) [ ] le 0 etrafıda smetrk olarak dağılırlar. Sayma verler ç se ( ) µ y, heteroskedastk ve asmetrktr. Böylece geş örekler ç hata termler heteroskedastk ve asmetrk olduğu söyleeblr. 65

8 Özlem Dez Sayma verler ç sıfır ortalama, sabt varyas ve smetrk dağılıma sah br artık yoktur. Yaıla düzelemeler soucuda heteroskedaste roblemde kurtarılmış artıklar Pearso artıklar olarak adladırılır ve P ( y ˆ µ ) = (9) ˆ ω şeklde hesalaır. ωˆ ; bağımlı değşke ω varyasıı kestrmdr. Bu artıkları kareler tolamı Pearso statstklerde kullaılır. Posso modellerde ω = µ, geelleştrlmş doğrusal modellerde ω = αµ ve karesel varyas foksyoua sah egatf bom modellerde ω = µ + αµ olarak hesalaır. Pearso artık değerler 0 ortalama ve homoskedasteye sahtr. Acak bu değerler asmetrk dağılıma sah olduğu belrtlmeldr. Eğer y, doğrusal üstel ale yoğuluk foksyou olarak hesalaırsa, sama artıklar kullaılır ve şeklde fade edlr. λ ( µˆ ) ; µ ˆ µ logartmk yoğuluk foksyou, ( y) ( y ˆ µ ) { λ( y ) λ( ˆ )} d = sg µ (0) = olarak fade edldğde y ç belrlemş λ ; µ = y olarak fade edldğde y ç belrlemş logartmk yoğuluk foksyoudur. Hesalaa bu artık değerler kareler tolamı sama statstğde kullaılmaktadır. σ olduğu ble ormal dağılım altıda; ( ) σ Varyası d = y şlemyle stadartlaştırılmış artıklara ulaşılır. Posso ç bu artıklar; µ ( y ˆ µ ) { y l( y ˆ µ ) ( y ˆ )} d = sg µ () olarak fade edlr. Bu eştlkte eğer y = 0 se y l y = 0 olacağı görülmektedr (Log, 997). 66

9 İstabul Tcaret Üverstes Fe Blmler Dergs Bahar 005/.4. Uyum İylğ Geelleştrlmş doğrusal modeller ç e sık kullaıla uyum ylğ ölçüler, Pearso ve Sama statstklerdr. Bu ölçüler kullaılması le elde edle souçlar, regresyo katsayılarıdak kestrm hatalarıı kotrolü ç, k-kare uyum ylğ testde kullaılırlar..4.. Pearso İstatstğ µ ortalamalı ve ω varyaslı bağımlı değşke y ye at herhag br model ç stadart uyum ylğ ölçüm yötem earso statstğdr ve P = = ( ˆ µ ) y ˆ ω () olarak fade edlr. Bu değer ser yayılımıı aşırı olu olmadığıı belrlemede kullaılır. Burada µˆ ve ωˆ değerler, µ ve ω kestrm değerlerdr. Hesalaa P değer, µˆ ç belrlemş serbestlk dereces ( k) le karşılaştırılır. Bu formül Posso regresyo ç uyguladığıda, ω = µ olacaktır ve P = = ( y ˆ µ ) ˆ µ (3) şekl alacaktır. Hesalaa karşılaştırılacaktır. Burada; olduğu söyler. P > k P < k P değer de bezer şeklde ( k) serde aşırı yayılım serde eksk yayılım değer le.4.. Sama İstatstğ Uyum ylğ ölçülmesde kullaıla dğer br tekk de sama statstğdr. Bu statstk değere ayı zamada G kare statstğ de delmektedr. 67

10 Özlem Dez G kare statstğ; G = = y y l µ (4) şeklde fade edlr. Bu statstk değer 0 a yakısıyor se model uyumu artıyor deleblr. Eğer bu statstk değer tam 0 a eşt se model uyumuu mükemmel olduğu söyleeblr Yaay R Ölçümü Doğrusal olmaya modeller ç kullaıla ortak br R taımı bulumamaktadır. Bu belrszlk yüzüde hesalaa değer fade edlrke yaay fades kullaılmaktadır. Doğrusal regresyo modellerde, R hesalaması ç başlagıç oktası geel kareler tolamlarıı ayrıştırılmasıdır. Geel olarak; = ( y y) = ( y ˆ µ ) + ( ˆ µ y) + ( y ˆ µ )( ˆ µ y) = = = (5) fadesde, lk fade geel kareler tolamı (TSS), kc fade artık kareler tolamı (RSS) ve üçücü fade açıklamış kareler tolamı (ESS) olarak açıklaır. So fade se eğer model sabt term çeryorsa, doğrusal regresyo model e küçük kareler kestrme göre sıfıra eşt olacaktır. Acak Posso u da çere ve doğrusal olmaya e küçük kareler le üstel koşullu ortalamaya sah tüm kestrcler ve modeller ç sıfıra eşt olmayacaktır. Bu durum da R, R = RSS TSS veya R = ESS TSS yötemde farklı br yolla hesalaması gerektğ ortaya çıkarmıştır (Camero ve Trverd, 998). Normallk varsayımı gerektrmeye Posso regresyo modele R ölçüsü olablrlk ora yaklaşımıa dayamaktadır. Doğrusal regresyo modele lşk EKK tahm, artık kareler tolamıı e çok olablrlk tahm ve sama değer le bezer özellkler göstermes edeyle öerle R ölçüsü; R log L = log L ( y) log L( ˆ µ ) ( y) log L( y) (6) 68

11 İstabul Tcaret Üverstes Fe Blmler Dergs Bahar 005/ şeklde taımlamaktadır. Burada log L( y), doygu model log-olablrlğ, log L ( µˆ ), lglele model log-olablrlğ ve log L( y), sadece sabt term buluduğu mmal model log-olablrlğ göstermektedr. y 0 gözlee değerler, ˆ µ ( ˆ = ex x β ) ya da ˆ µ ( ˆ = c ex x β ) tahm edle değerler ve ( ˆ = ex β 0 ) da y = ex( ˆ β ) ortalama değerler olmak üzere log-olablrlk foksyoları, c 0 ( y) = ( y log( y ) y log( y! )) = y ya log L (7) ( ˆ ) = ( y log( ˆ µ ) ˆ log( y! )) log L µ µ (8) = ( y) = ( y log( y ) y log( y! )) log L (9) = bçmde elde edlmektedr. Bu log-olablrlk foksyoları düzelerse yaay R ölçüsüe ulaşılmaktadır (Özme, 003) K-Kare Uyum İylğ Test Verlmş ola Posso regresyo model ç gözlee frekaslar j ve teork frekasları edlmş olsu. Uygu br test uygulamadığı sürece y = 0,,..., m olsu. Bu model ç ˆ j, j = 0,,..., m şeklde fade ˆ j ler j lere yakılığıı yeterl olu olmadığıı, dolayısıyla kurula model uygu olu olmadığıa karar verlemez. Uyum ylğ celemek ç kurula hotezler; H : Verler Posso modele uyguluk göstermektedr 0 H : Verler Posso modele uyguluk göstermemektedr şeklde kurulablr. 69

12 Özlem Dez Pearso χ test statstğ; χ = j ( j ˆ j ) = ˆ j (30) k-kare uyum ylğ test olarak adladırılır. Bu formül yardımıyla bulua souç χ değeryle karşılaştırılır. N, brm sayısı, P, tahm ( N ) serbestlk derecel edlmek stee arametre sayısıdır. Hesalaa değer χ N değer aşıyorsa hotez reddedlr ve verle osso modele uyguluk göstermedğ kabul edlr (Dobso, 00)..5. Regresyo Katsayılarıı Alamlılığıı Test Hesalamış ola katsayıları b, b,..., bk şeklde gösterldğ varsayılsı. Hesaları bu katsayıları hçbr şlem uygulamada yorumlamasıı doğru olmadığı belrtlmşt. Çükü kestrle değerler, üstel foksyo yardımıyla türetlmşt. Katsayıları alamlılığıı test ç kullaılacak hotezler; H : β = 0,,..., (ß katsayısı alamsızdır) 0 = ( ) ( ) H : β 0,,..., (ß katsayısı alamlıdır) 0 = şekldedr. Bu hotezler testde e sık kullaıla yötem Wald ı statstğdr ve χ b χ w = (3) sb şeklde hesalaır. Bu eştlkte b, regresyo katsayılarıı; s b se, bast stadart hata değer φ sayısıı karekökü le çarımı yardımıyla elde edlr. b s b s = φ (3) şeklde fade edlr. Böylece düzeltlmş stadart hata değere ulaşılır. φ sayısı se, k kestrlecek arametre sayısı olmak üzere; 70

13 İstabul Tcaret Üverstes Fe Blmler Dergs Bahar 005/ eştlğde elde edlr. Hesalaa Wald ı = ( µ ) y φ = (33) k µ χ statstk değer, serbestlk derecel χ değeryle karşılaştırılır. Eğer hesalaa değer tablo değer aşıyorsa H 0 hotez reddedlr. Ya katsayıları alamlı olduğua karar verlr. Katsayıları alamlılığıı testde sora; α sb b µ z (34) fades yardımıyla, katsayılar ç alt ve üst lmt değerler hesalaır. 3. SONUÇ Bldğ gb, verler sürekl olduğu durumlarda doğrusal regresyo aalz kullaılablmektedr. Acak aalzlerde kullaılacak verler her zama sürekl halde bulumayablr. Bu gb durumlarda ya; verler keskl olması durumuda da doğrusal regresyo modeller kullaılarak yaılacak aalzler etksz, tutarsız ve çelşkl souçlar verecektr. Bu sebete dolayı keskl verler ç tüm koşullar sağladığıda kulaılablecek e etk model Posso regresyo modellerdr. Bu modeller kullaılablmes ç dkkat edlmes gereke e öeml koşul, koşullu varyas değer koşullu ortalama değere eşt olmasıdır. Br çok uygulamada koşullu varyas değer, koşullu ortalama değer aşar. Böyle durumlarda Posso regresyou kullaılması doğru değldr. Buu yere egatf bom regresyo kullaılır. Negatf bom dağılımıda varyası, ortalamaı karesel foksyou olduğu varsayılır. Posso regresyo model üstel br model olması sebebyle katsayı yorumlamalarıda zorluk ve karmaşıklık yaratması dezavatajıı yaıda, bağımlı değşke sayma verlerde oluştuğu durumlarda doğrusal regresyo aalze alteratf olable br modeldr. Bu sebele so yıllarda ek çok alada kullaım mkaı bulablmektedr. 7

14 Özlem Dez KAYNAKÇA Akı, F., (00), Kaltatf Terch Modeller Aalz, Bursa, Ek Ktabev. Camero, C.- Trved, P., (998), Regresso Aalyss of Cout Data, Cambrdge, Cambrdge Uversty Pres. Dobso, A., (00), A Itroducto to Geeralzed Lear Models, Boca Rato, Chama ad Hall. Log, S., (997), Regresso Models for Categorcal ad Deedet Varables, Lodo, Sage Publcatos. McCullagh, P.- Nelder, J.A., (983), Geeralzed Lear Models, Lodo Chama ad Hall. Özme, İ., (003), Posso Regresyo Model ç Düzeltlmş Belrtme Katsayıları, Atalya İstatstk Semozyumu Bldrs. 7

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc.), 008, 18(1): 1-5 Araştırma Makales/Artcle Gelş Tarh: 10.06.007 Kabul Tarh: 7.1.007 Lojstk Regresyoda Meydaa Gele Aşırı Yayılımı İcelemes

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Pel İYİ GENETİK ALGORİTMA UYGULANARAK VE BİLGİ KRİTERLERİ KULLANILARAK ÇOKLU REGRESYONDA MODEL SEÇİMİ İSTATİSTİK ANABİLİM DALI ADANA, 006

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE

İSTATİSTİKSEL TAHMİNLEME VE 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003 ISTANBUL BİLGİ UNİVERSİTY İşletme İstatstğ [Type the documet subttle] Ege Yazga ve Yüce Zerey 1/1/3 [Type the abstract of the documet here. The abstract s typcally a short summary of the cotets of the

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

Orkun COŞKUNTUNCEL a Mersin Üniversitesi

Orkun COŞKUNTUNCEL a Mersin Üniversitesi Kuram ve Uygulamada Eğtm Blmler Educatoal Sceces: Theory & Practce - 3(4) 39-58 03 Eğtm Daışmalığı ve Araştırmaları İletşm Hzmetler Tc. Ltd. Şt. www.edam.com.tr/kuyeb DOI: 0.738/estp.03.4.867 Sosyal Blmlerde

Detaylı

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ Joural of Ecoomcs, Face ad Accoutg (JEFA), ISSN: 48-6697 Year: 4 Volume: Issue: 3 CURRENCY EXCHANGE RATE ESTIMATION USING THE GREY MARKOV PREDICTION MODEL Omer Oala¹ ¹Marmara Uversty. omeroala@marmara.edu.tr

Detaylı

Bir tahmin edicinin sapması, beklenen değeriyle gerçek parametre arasındaki fark olarak tanımlanır.

Bir tahmin edicinin sapması, beklenen değeriyle gerçek parametre arasındaki fark olarak tanımlanır. 6. EN KÜÇÜK KARELER TAHMİNLERİNİN ÖZELLİKLERİ 6. TAHMİN EDİCİLERDE ARANAN ÖZELLİKLER Geellkle br tahm aa kütle parametres gerçek değere yakı olmasıı ve b gerçek parametre yakılarıda dar br aralıkta değşmes

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Eoometr ve İstatst Sayı:5 0-4 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Arzdar KİRACI* Özet Gücel yazıda,

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Biyoistatistik (Ders 9: Korelasyon ve Regresyon Analizi)

Biyoistatistik (Ders 9: Korelasyon ve Regresyon Analizi) KORELASYON ve REGRESYON ANALİZLERİ Yrd. Doç. Dr. Üal ERKORKMAZ Sakarya Üverstes Tıp Fakültes Byostatstk Aablm Dalı uerkorkmaz@sakarya.edu.tr SİSTEM, ALT SİSTEM ve SİSTEM DİNAMİKLERİ Doğa br aa sstemdr.

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ANALİZ Ders Notları MART 7, 06 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ PAÜ, Müh. Fak., Make Müh. Böl., Sayısal Aalz Ders Notları, Z.Grg Ösöz Mühedslkte aaltk olarak

Detaylı

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract SESSION 1 Türkye dek Kout Fyatlarıı Tahmde Hedok Regresyo Yötem le Yapay Sr Ağlarıı Karşılaştırılması Comparso of Hedoc Regresso Method ad Artfcal Neural Networks to Predct Housg Prces Turkey Asst. Prof.

Detaylı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı GÜÇLÜ BETA HESAPLAMALAI Güray Küçükkocaoğlu-Arzdar Kracı Özet Bu çalışaı aacı Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model) Beta katsayısıı hesaplarke yaygı olarak kulladığı sırada e küçük kareler

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE DOKTORA TEZİ Dez UÇAR DANIŞMAN Doç. Dr. Yaşar BOLAT MATEMATİK ANABİLİM DALI TEMMUZ AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

ANFIS VE ARMA MODELLERİ İLE ELEKTRİK ENERJİSİ YÜK TAHMİNİ

ANFIS VE ARMA MODELLERİ İLE ELEKTRİK ENERJİSİ YÜK TAHMİNİ Gaz Üv. Müh. Mm. Fak. Der. J. Fac. Eg. Arch. Gaz Uv. Clt 5, No 3, 60-60, 00 Vol 5, No 3, 60-60, 00 ANFIS VE ARMA MODELLERİ İLE ELEKTRİK ENERJİSİ YÜK TAHMİNİ Özka DEMİREL, Ada KAKİLLİ ve Mehmet TEKTAŞ Elektrk

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

DİŞLİ ÇARKLAR PLANET SİSTEMLERİ 12-02. 2013 Nisan. www.guven-kutay.ch. M. Güven KUTAY / 2013-Nisan-14 Yeniden elden geçirilmiş çıktı.

DİŞLİ ÇARKLAR PLANET SİSTEMLERİ 12-02. 2013 Nisan. www.guven-kutay.ch. M. Güven KUTAY / 2013-Nisan-14 Yeniden elden geçirilmiş çıktı. 3 Nsa www.guve-kutay.ch DİŞLİ ÇARLAR LANET SİSTELERİ -. üve UTAY / 3-Nsa-4 Yede elde geçrlş çıktı. 3-Nsa4 www.guve-kutay.ch Sevgl eş FİSUN ' a ÖNSÖZ Br kouyu blek deek, ou eldek kalara göre kullaablek

Detaylı

İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI

İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI Ahmet ERGÜLEN * Halm KAZAN ** Muhtt KAPLAN *** ÖZET Arta rekabet şartları çersde karlılıklarıı korumak ve

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : - PERDE ÇERÇEVE

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama KMÜ Sosyal ve Ekoomk Araştırmalar Dergs (8): 37-45, 00 ISSN: 309-93, wwwkmuedutr Kuruluş Yer Seçmde Bulaık TOPSIS Yötem ve Bakacılık Sektörüde Br Uygulama Nha Tırmıkçıoğlu Çıar Yıldız Tekk Üverstes, Kmya-Metalür

Detaylı

Termodinamiğin Yasaları:

Termodinamiğin Yasaları: NTR0PĐ trop kavramı, makroskopk görüş açısıda (klask trmodamk), mkroskopk görüş açısıda (statstksl trmodamk) v formasyo görüş açısıda (formasyo tors) olmak üzr, üç şkld l alıablr. trop statstksl taımlaması

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2015 yılı fo getrs 02/01/2015-04/01/2016 tarhl brm pay değerler kullaılması le hesaplamıştır. 2015 yılı karşılaştırma ölçütü getrs

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA İstabul Tcaret Üverstes Fe Bller Dergs Yıl:7 Sayı:4 Güz 2008/2 s.5-34 BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract YKGS2008: Yazılım Kaltes ve Yazılım Gelştrme Araçları 2008 (9-0 ekm 2008, İstabul) Yazılım Ürü Gözde Geçrmeler Öem, Hazırlık Sürec ve Br Uygulama Öreğ The Importace of the Software Product Revews, Preparato

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarhl ve 25391 sayılı Resm Gazete'de yayımlamıştır.) Amaç BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayaak Madde 1 Bu Yöetmelğ amacı, 4857 sayılı İş Kauuu 53 ücü maddes

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

TRAFİK SİMÜLASYON TEKNİKLERİ

TRAFİK SİMÜLASYON TEKNİKLERİ TRAFİK SİMÜLASYON TEKNİKLERİ 2. HAFTA Doç. Dr. Haka GÜLER (2015-2016) 1. TRAFİK AKIM PARAMETRELERİ Üç öeml rafk akım parameres vardır: Hacm veya akım oraı, Hız, Yoğuluk. 2. KESİNTİSİZ AKIM HACİM E AKIM

Detaylı

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ Anadolu Tarım Blm. Derg., 203,28(3):68-74 Anadolu J Agr Sc, 203,28(3):68-74 do: 0.76/anaas.203.28.3.68 URL: htt://dx.do.org/0.76/anaas.203.28.3.68 Derleme Revew FARKLI VERİ YAPILARINDA KULLANILABİLECEK

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI MUSTAFA ÇAĞATAY KORKMAZ YÜKSEK LİSANS TEZİ İSTATİSTİK ANA BİLİM DALI KONYA, 2

Detaylı

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ

ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 4, Sayı, 3 97 ÜSTEL VE Kİ-KARE DAĞILIMLARI ARASINDAKİ İLİŞKİNİN SİMULASYON İLE ÜRETİLEN RANDOM SAYILARLA GÖSTERİLMESİ Yalçı KARAGÖZ Cumhuriyet Üiversitesi

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı