Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması"

Transkript

1 Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN 1 Esra AKDENİZ Esra YİĞİT 3 Özet Avrua, Amerka ve Jaoya borsalarıda mekul kıymetler üzere yaıla çalışmalarda hata termler sıklıkla homoje olmaya varyasa sah oldukları gözlemştr. Mekul kıymet getrler modellemede yasa model kullaıldığıda, homoje olmaya varyas yaısıı varlığı arametre tahm ve arametreler alamlılık testlerde roblemlere yol açmaktadır. Bu çalışmada, homoje olmaya varyas yaısıı olu olmadığıı test edlmes ç kullaıla olablrlk ora yöteme dayalı testlerde geel olablrlk ora test, koşullu olablrlk ora test, artık olablrlk ora test, uyarlamış olablrlk ora test ve Bartlett-düzeltlmş olablrlk ora test ele alımıştır. Ayrıca smülasyo çalışması le bu testler erformasları karşılaştırılmalı olarak celemştr. Aahtar Kelmeler: Artık Olablrlk Ora Test,Bartlett-Düzeltlmş Olablrlk Ora Test, Geel Olablrlk Ora Test, Heteroje Varyas, Koşullu Olablrlk Ora Test, Pyasa Model, Profl Olablrlk Ora Test,Uyarlamış Olablrlk Ora Test JEL Sııfladırma Kodları: C01, C1, C15 A Mote Carlo Comarso Of Lkelhood Based Costructve Heteroscedastcty Tests For The Market Model Abstract The market model of Share whe aled to Euroea, U.S.A. ad Jaa stock markets usually results wth heteroscedastc error structure. Sce heteroscedastcty error terms cause effcet arameter estmato, t should be tested before data aalyss. The objectve of ths aer s to reset fve wdely used lkelhood based costructve heteroscedastcty tests whch are the ordary lkelhood rato test, the codtoal lkelhood rato test, the corrected modfed lkelhood rato test, the modfed lkelhood rato test, the rofle lkelhood rato test ad the resdual lkelhood rato test. Also smulato study s erformed to comare these tests. 1 Yrd.Doç.Dr., Gaz Üverstes, Fe Edebyat Fakültes, İstatstk Bölümü ) Arş. Gör., Gaz Üverstes, Fe Edebyat Fakültes, İstatstk Bölümü ) 3 Arş. Gör., Gaz Üverstes, Fe Edebyat Fakültes, İstatstk Bölümü ( )

2 Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss Key Words: Bartlett-Corrected Lkelhood Rato Test, Codtoal Lkelhood Rato Test, Heteroscedastcty, Market Model, Modfed Lkelhood Rato Test, Ordary Lkelhood Rato Test, Profle Lkelhood Rato Test, Resdual Lkelhood Rato Test JEL Classfcato Codes: C01, C1, C15 1. Grş Yatırımcıı e y ortföyü oluşturmasıa yöelk öerle lk ve e çok ble model ola Markowtz Ortalama-Varyas Model hesalama karmaşıklığı edeyle ratk kullaıma elverşl bulumamıştır Share (1963,1964) tarafıda Markowtz model gelştrmek amacıyla öerle yasa model ortföy teorse öeml katkıda bulumuştur. Pyasa model (1) olu deklemde fade edldğ gbdr. R R e (1) t mt t R t, t eryodudak mekul, t eryodudak yasa getrs ve e t hata term Burada mekul kıymet sstematk rsk, kıymet getrs, R mt göstermektedr. ı doğru tahm edlmes yatırımcılar ç, rskl varlıklarda oluşa ortföyler getrler tahm ç çeştledrlmş ortföy seçm ve sstematk olmaya rsk e küçük yama alamıda öemldr. Geleeksel e küçük kareler (EKK) yötem ı tahm ç kullaılablr. Acak hata termler varyasıı homoje olmaması tahm etk br tahm olmaması le souçlaır. Mekul kıymetler üzere yaıla çalışmalarda, hata termler sıklıkla homoje olmaya varyasa sah oldukları gözlemştr. Homoje olmaya varyas mekul kıymet yasaya göre daha değşke olu olmadığıı belrlemek ç yaıla 1 hotez test edlmesde hatalı souçlar vereblr. Bu edele le lgl aalzler yaılmada öce varyas homojelğ güvelr ve güçlü br test le sıaması gerekldr (Lyo ve Tsa, 1996: ). Varyas homojelğ test edlmes ç lteratürde geel olarak kabul görmüş br test statstğ yoktur. Varyas homojelğ testler yaısal ve yaısal olmaya testler olarak k gruta celeeblr. Yaısal olmaya testler sadece varyası heteroje olu olmadığı hakkıda blg verrke, yaısal testler bua ek olarak varyası heterojelğ foksyoel yaısı hakkıda da blg verr. Yaısal testler Olablrlk Ora ve Wald testlerdr (Edmoto, 1984:199). 136

3 Kardye-Akdez-Yğt/Olablrlk Oraı Bu çalışmada, varyas homojelğ test edlmesde kullaıla olablrlk ora testler ola geel olablrlk ora test, koşullu olablrlk ora test, uyarlamış olablrlk ora test, artık olablrlk ora test ve Bartlett-düzeltlmş olablrlk ora test ele alıacaktır. Bu testler hata termler çarımsal homoje olmaya yaı gösterdğ durumlarda, farklı örek çalarıa göre, I. t hata, güç değerler ve heterojelk yaısı ve dağılım varsayımlarıa duyarlılıkları bakımıda Mote Carlo Metodu le karşılaştırılacaktır.. Değşe Varyas Model ve Testler Geel doğrusal regresyo model () dek deklem gbdr. () Burada, Y, -c 1,..., brme at bağımlı değşke değer, x -c brm bağımsız değşkee lşk değerlerde oluşa 1 boyutlu vektör,, 1boyutlu blmeye arametre vektörüü ve -c brme lşk brbrde bağımsız hata termler göstermektedr. w z z K z (3) * 1 q q w yaısıdadır ve burada w bağımsız değşkeler br foksyou ola varyas ağırlıkladırma vektörüdür. z, heterojelk yaısıı yarata bağımsız değşkeler göstermek üzere z, q 1 boyutlu vektördür ( q). E çok karşılaşıla homoje olmaya varyas yaıları tolamsal ve çarımsal formlardır. * Heterojelk arametrelerde oluşa vektör [ 1K q ] olsu. Hldreth ve Houck (1968) ve Amemya (1977) tolamsal formu bağımsız değşkeler doğrusal br foksyou olarak ele almış ve ağırlıkladırma vektörüü (3) olu deklemdek gb fade etmştr. Harvey (1976) çarımsal formu geel formülüde ağırlıkladırma vektörüü (4) olu deklemdek gb ele almıştır. w z z K z (4) * ex( ) ex( 1 q q ) Just ve Poe (1978,1979) se çarımsal formu * 1 q [log K ] ve 137

4 Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss z [1 log x ] olduğu (4) olu deklemdek özel ağırlıkladırma vektörüü ele ' almıştır. w ex( z ) z K z (5) * q 1 q Bu makalede (5) olu deklemdek çarımsal heterojelk yaısı ele alımıştır. Yokluk hotezde sıaması yaıla arametre vektörü [ K q ] dür. Yokluk hotezdek vektörüü değer 0 0 olduğuda, w 1 olur ve () olu model 1 homoje varyas yaısıa sah olur. Model homoje br yaıya sah olu olmadığıı sıamak ç kullaıla olablrlk ora yöteme dayalı yaısal homoje varyas testler alt bölümlerde verlmştr..1. Geel Olablrlk Ora Test () olu modelde hata termler bağımsız ve ormal dağılıma sah olduğuda, olablrlk foksyouu logartması sabt termler göz ardı edlerek (6) olu deklemdek gb elde edlr. 1 1 ( y x ) ' ( ;,, ) log log w 1 1 w L Y (6) arametres e çok olablrlk tahm edcs (7) olu deklemde verle rofl olablrlk foksyou maksmze edlerek buluur. 1 L Y L Y w z (7) ˆ ( ; ) ( ;, ˆ, ) log ˆ log (, ) 1 Burada, ˆ 1 1 ' 1 x w x xw y 1 1 ve 1 ˆ ( ˆ ) dr. ' 1 y x w 1 Profl olablrlk foksyou arametre vektörüü doğrusal olmaya br foksyou olduğuda arametre vektörü teratf yötemlerle buluur ve (8) olu deklemdek test statstğde yere kour. LRT { LR ( Y; ) LR ( Y; ˆ )} (8) 0 Olablrlk ora test statstğ dağılımı Tsa,1996:340). dr (Lyo ve ( q 1) 138

5 Kardye-Akdez-Yğt/Olablrlk Oraı.. Koşullu Olablrlk Ora Test Profl olablrlk ora test lglelmeye arametre (usace arametre) sayısı çok küçük olduğuda ble y souç vermeyeblr. Hoda (1989) lglelmeye arametreler ortak olasılık yoğuluk foksyolarıı kullaarak koşullu rofl olablrlk ora test öermştr. CL ( ; ) ( ˆ, ˆ Y CL Y ; ) 1 ' 1 L ( ; ) {( )log ˆ Y log x w x } (9) Koşullu olablrlk ora test statstğ (9) olu deklemde verlmştr. CLRT { CL ( Y; ) CL ( Y; ˆ )} (10) 0.3. Uyarlamış Olablrlk Ora Test Cox ve Red (1987), lglelmeye arametreler le test edlmek stee arametre ı ortogoal olmamasıda dolayı rofl olablrlk ora test uyarlayarak (10) olu deklem elde etmşlerdr. ML ( Y; ) CL ( Y; ) 1 log w (11) Uyarlamış olablrlk ora test statstğ (1) olu deklemde verlmştr. MLRT { ML ( Y; ) ML ( Y; ˆ )} (1).4. Artık Olablrlk Ora Test 0 Ölçü ve ağırlıkladırma arametreler, test etmek stedğmz arametre olduğuda, ˆ ı e çok olablrlk ora tahm edcs vere koşullu rofl olablrlk ora foksyou artık olablrlk foksyou hale gelr. Böylece serbestlk dereces kaybıı dkkate alarak test etmey sağlar (Verblya, 1993:6) RL ˆ ( Y;, ) RL ( Y ;, ), 139

6 Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss CL (Y ; ) log ˆ (13) Artık olablrlk ora test statstğ (14) olu deklemde verlmştr. RLRT CLRT (log ˆ 0 log ˆ ) (14).5. Bartlett-Düzeltlmş Olablrlk Ora Test Örek çaı yeter kadar büyük olmadığıda ve lglemedğmz arametre sayısı çok olduğuda olablrlk ora test statstğ y souç vermeyeblr. Cordero (1993), olablrlk ora teste Bartlett düzeltmes uygulayarak düzeltlmş olablrlk ora test statstğ (15) olu deklemdek gb elde etmştr. LRT * LRT 1 c (15) - Burada A R( R ' R) 1 R ', R [1 Z ], H x (x x' ) 1 x', 1, tüm elemaları 1 1 lerde oluşa x1 boyutlu vektör, d ds se buluduğu matrs köşegeleştrlmş bçm fade etmektedr. sembolü se, ayı boyuttak matrs Hadamard çarımıı göstermektedr (Ferrar ve Neto, 00) 3. Smülasyo Çalışması Bu bölümde.1-.5 te verle test statstkler örek çaları, I. t hata, güç değerlere ve heterojelk yaısıa ve dağılım varsayımlarıa duyarlılıkları bakımıda karşılaştırılacaktır. Profl olablrlk foksyoları arametres doğrusal olmaya br foksyou olduğuda arametres e çok olablrlk tahm buluamaz. Bu edele arametres tahm BFGS quas-newto algortması le elde edlmştr. MATLAB rogramı kullaılarak elde edle smülasyo souçları (16) 140

7 Kardye-Akdez-Yğt/Olablrlk Oraı ve bağımsız ola bast regresyo modele dayamaktadır ve olarak alımıştır. Burada varsayıla (16) olu deklemdek heterojelk yaısı gereğ x ler oztf olması ç x ler U (0,15) dağılımıda bağımsız olarak üretlmştr. Hataları ormal dağıldığı (16) olu doğrusal regresyo model ç geel olablrlk (LR), Bartlett-düzeltlmş olablrlk (LR*), uyarlamış olablrlk (MLR), artık olablrlk (RLR) ve koşullu olablrlk (CLR) ora test statstkler elde edlmş ve bu şlemler I. t hata ayı 0.05 ç 1000 kez tekrarlamıştır. Tablo 1:Test statstkler I.t hataları LRT LRT* CLRT MLRT RLRT = = = Tablo 1 de bu test statstkler 0,50,80 ola farklı örek çaları ç I. t hataları ve hata termler dağılımı logormal(0,1), lojstk(0,1) ve t3 dağılımları olduğuda duyarlılıklarıa bakılmıştır. Tablo 1 souçlarıa bakıldığıda LRT ve CLRT statstkler I. t hataları ögörüle 0.05 değerde büyük olma eğlmdedr. Örek çaı küçük olduğuda (=0) LRT* ve MLRT statstkler, LRT statstğe göre ögörüle I. t hata değere daha yakı souç vermektedr, örek çaı artıkça aralarıdak fark azalmaktadır. Hata termler dağılımı logormal(0,1), lojstk(0,1) ve 141

8 Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss t3 dağılımları olduğuda tüm test statstkler I. t hata değerler yüksek olduğuda sağlam test statstkler olmadıkları görülmektedr. (5) olu deklemdek çarımsal yaıya uygu olarak elde edle test statstkler e : N 0, x olduğuda ı farklı değerler ç 1, 1.5, 1, 0.5, 0.5,1,1.5, test statstkler güç değerler Tablo de Tablo : Test statstkler güç değerler (,, 0 ) LRT LRT* CLRT MLRT RLRT verlmştr. ı 0 a yakı değerlerde heterojelk az olduğuda test statstkler ver homoje olu olmadığıı belrleme gücü düşüktür. 0 değerler ç CLRT statstğ, 0 olduğuda RLRT statstğ güç bakımıda dğer test statstklere göre daha ydr. Hata termler (3) olu deklemdek gb tolamsal yaıda heteroje olduğuda =0,50 ç bulua güç değerler Tablo 3 de verlmştr. Bua göre RLRT statstğ dğer test statstklere göre daha güçlüdür. Tablo 3: Tolamsal homoje olmaya varyas yaısı ç testler güç değerler LRT LRT* CLRT MLRT RLRT = =

9 Kardye-Akdez-Yğt/Olablrlk Oraı 5. Souç Mekul kıymet getrler modellemede kullaıla yasa model, mekul kıymet getrs bağımlı değşke, yasa getrs bağımsız değşke olduğu bast, doğrusal br regresyo modeldr. Pyasa modelde, regresyo katsayısı sstematk rsk göstergesdr ve doğru tahm edlmes yatırımcılar ç öemldr. Bu edele, doğrusal regresyoda arametre tahmler olumsuz etkleye, hata termler homoje olmaya varyas yaısıa sah olması, yasa modeller çde araştırılması gereke br koudur. Doğrusal regresyo modelde arametre tahmler yaılmada öce ver homoje olu olmadığıı test edlmes öemldr. Hata termler ormal dağıldığıda olablrlk ora test statstkler kullaılarak ver homoje olu olmadığı test edleblr. Hata termler ormal dağılmadığıda. bölümde verle artık olablrlk ora test, Bartlett-düzeltlmş olablrlk ora test, geel olablrlk ora test, koşullu olablrlk ora test veya uyarlamış olablrlk ora testler kullaılmamalıdır. Örek çaı küçük olduğuda Bartlettdüzeltlmş ve uyarlamş olablrlk ora test dğer test statstklere göre ögörüle I. t hata değere daha yakıdır. Bu souçlar, Lyo ve Tsa (1996) souçları le örtüşmektedr. Heterojelğ az olduğu ( 0.5, 0.5) durumlarda test statstkler gücü azalırke, heterojelğ yüksek olduğu durumlarda koşullu olablrlk ora test ve artık olablrlk ora test statstkler dğer test statstklere göre daha güçlüdür. Tüm test statstkler, elde edldkler varyas yaısıı dışıdak heteroje ver yaısıı test edeblme özellğe sahtr. Test statstkler çde artık olablrlk ora test statstğ heterojelk yaısı farklı olduğuda dğer test statstklere göre daha güçlüdür. Kayaklar Amemya, T. (1977), A Note o a Heteroscedastc Model, Joural of Ecoometrcs, 6, Cordero, G.M.(1993), Bartlett Correctos ad Bas Correcto for Two Heteroscedastc Regresso Models, Commucatos Statstcs Theory Methods,, Cox, D.R. ve Red, N. (1987), Parameter Orthogoalty ad Aroxmate Codtoal Iferece, Joural of the Royal Statstcal Socety, 49,

10 Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss Edmoto, B.A. (1984), Tests for Addtve Hetoskedastcty, Emrcal Ecoomcs, 9, Ferrar, S.L.P. ve Crbar-Neto F. (00), Corrected Modfed Profle Lkelhood Heteroscedastcty Tests, Statstcs ad Probablty Letters, 57(4), Harvey, A.C. (1976), Estmatg Regresso Models wth Multlcatve Heteroscedastcty, Ecoometrca, 44, Hldreth, C. ve Houck, J.P. (1968), Some Estmators for a Leer Model wth Radom Coeffcets, Joural of Amerca Statstcal Assocato, 63, Hoda, Y. (1989), O The Otmalty of Some Tests of the Error Covarace Matrx the Lear Regresso Model, Joural of Royal Statstcal Socety, 51, Just, R.E. ve Poe, R.D. (1978), Stochastc Secfcato of Producto Fuctos ad Ecoomc Imlcatos, Joural of Ecoometrcs, 7, Lyo, J.D., Tsa, C. (1996), A Comarso of Tests for Heteroscedastcty, The Statstca, 45, Share, W. (1963), A Smlfed Model of Portfolo Aalyss, Maagemet Scece, 9, Share, W. (1964), Catal Asset Prces: A Theory of Market Equlbrum Uder Codtos of Rsk, Joural of Face,19(3), Verbyla, A.P. (1993), Modellg Varace Heterogeety: Resdual Maxmum Lkelhood ad Dagostcs, J.R. Statst.Soc. B, 55 (),

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc.), 008, 18(1): 1-5 Araştırma Makales/Artcle Gelş Tarh: 10.06.007 Kabul Tarh: 7.1.007 Lojstk Regresyoda Meydaa Gele Aşırı Yayılımı İcelemes

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

POISSON REGRESYON ANALİZİ

POISSON REGRESYON ANALİZİ İstabul Tcaret Üverstes Fe Blmler Dergs Yıl:4 Sayı:7 Bahar 005/ s. 59-7 POISSON REGRESYON ANALİZİ Özlem DENİZ * ÖZET Herhag br olayı belrlee br süreç çersde yaıla deemeler soucuda meydaa gelme sayısı,

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Pel İYİ GENETİK ALGORİTMA UYGULANARAK VE BİLGİ KRİTERLERİ KULLANILARAK ÇOKLU REGRESYONDA MODEL SEÇİMİ İSTATİSTİK ANABİLİM DALI ADANA, 006

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ STRES DAYANIKLILIK GÜVENİLİRLİĞİNİN MASKELİ VERİLERE DAYALI TAHMİNİ Demet SEZER DOKTORA TEZİ İstatstkAablm Dalı Aralık-03 KONYA Her Hakkı Saklıdır TEZ

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2015 yılı fo getrs 02/01/2015-04/01/2016 tarhl brm pay değerler kullaılması le hesaplamıştır. 2015 yılı karşılaştırma ölçütü getrs

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI MUSTAFA ÇAĞATAY KORKMAZ YÜKSEK LİSANS TEZİ İSTATİSTİK ANA BİLİM DALI KONYA, 2

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:0-Sayı/No: : 455-465 (009) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE İKİ PARAMETRELİ WEIBULL DAĞILIMINDA

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,

Detaylı

Sağlam Ridge Regresyon Analizi ve Bir Uygulama

Sağlam Ridge Regresyon Analizi ve Bir Uygulama Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:5, Sayı:, Yıl:010, ss.137-148. Sağlam Rdge Regresyo Aalz ve Br Uygulama Özlem ALPU 1 Hatce ŞAMKAR Ekrem ALTAN 3 Özet Çoklu regresyo aalzde

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

RAYLEIGH DAĞILIMININ ARDIŞIK OLASILIK ORAN TESTİ SEQUENTIAL PROBABILITY RATIO TEST OF RAYLEIGH DISTRIBUTION

RAYLEIGH DAĞILIMININ ARDIŞIK OLASILIK ORAN TESTİ SEQUENTIAL PROBABILITY RATIO TEST OF RAYLEIGH DISTRIBUTION Eskşehr Osmagaz Üverstes Müh.Mm.Fak.Dergs C.XX, S., 7 Eg&Arch.Fac. Eskşehr Osmagaz Uversty, Vol..XX, No:, 7 Makale Gelş Tarh :.3.6 Makale Kabul Tarh : 3..6 RAYLEIGH DAĞILIMININ ARDIŞIK OLASILIK ORAN TESTİ

Detaylı

İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI

İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI İŞLETMELERDE DAĞITIM SİSTEMİ MALİYETLERİ MİNİMİZASYONU İÇİN ÇÖZÜM MODELİ: BİR FİRMA UYGULAMASI Ahmet ERGÜLEN * Halm KAZAN ** Muhtt KAPLAN *** ÖZET Arta rekabet şartları çersde karlılıklarıı korumak ve

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

Orkun COŞKUNTUNCEL a Mersin Üniversitesi

Orkun COŞKUNTUNCEL a Mersin Üniversitesi Kuram ve Uygulamada Eğtm Blmler Educatoal Sceces: Theory & Practce - 3(4) 39-58 03 Eğtm Daışmalığı ve Araştırmaları İletşm Hzmetler Tc. Ltd. Şt. www.edam.com.tr/kuyeb DOI: 0.738/estp.03.4.867 Sosyal Blmlerde

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

WEIBULL PARAMETRELERİ VE YÜZDELİKLERİ İÇİN GÜVEN ARALIĞI TAHMİN ALGORİTMALARI

WEIBULL PARAMETRELERİ VE YÜZDELİKLERİ İÇİN GÜVEN ARALIĞI TAHMİN ALGORİTMALARI Gaz Üv. Müh. Mm. Fak. Der. J. Fac. Eg. Arch. Gaz Uv. Clt 4, No 1, 11918, 009 Vol 4, No 1, 11918, 009 WEIBULL PARAMETRELERİ VE YÜZDELİKLERİ İÇİN GÜVEN ARALIĞI TAHMİN ALGORİTMALARI Mehmet Akf DANACI, Burak

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİESİ BİLİM VE EKNOLOJİ DERGİSİ ANADOLU UNIVERSIY JOURNAL OF SCIENCE AND ECHNOLOGY Clt/Vol.:8Sayı/No: : 5359 (7) ARAŞIRMA MAKALESİ /RESEARCH ARICLE SEMİPARAMERİK OPLAMSAL REGRESYON MODELİ

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ

PERDE ÇERÇEVE SİSTEMLERİN DEPLASMAN ESASLI DİZAYNI İÇİN DEPLASMAN PROFİLİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : - PERDE ÇERÇEVE

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE

İSTATİSTİKSEL TAHMİNLEME VE 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı

Detaylı

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract SESSION 1 Türkye dek Kout Fyatlarıı Tahmde Hedok Regresyo Yötem le Yapay Sr Ağlarıı Karşılaştırılması Comparso of Hedoc Regresso Method ad Artfcal Neural Networks to Predct Housg Prces Turkey Asst. Prof.

Detaylı

TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ

TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ Clt 2, Sayı 2, 2010 ISSN: 1309-8020 (Ole) TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ Ahmet AYDIN Balıkesr Üverstes Badırma İ.İ.B.F. Kampüsü, Çaakkale Yolu 2.Km. Badırma/Balıkesr E-posta: ahmetayd10@gmal.com

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

AÇIK ARTIRMALI EKONOMİK YÜK DAĞITIM PROBLEMİ İÇİN FARKLI BİR YAKLAŞIM

AÇIK ARTIRMALI EKONOMİK YÜK DAĞITIM PROBLEMİ İÇİN FARKLI BİR YAKLAŞIM AÇIK ARTIRMALI EKONOMİK YÜK DAĞITIM ROBLEMİ İÇİN FARKLI BİR YAKLAŞIM Adem KÖK () Takut YALÇINÖZ () Nğde Tedaş, Nğde, ademkok@yahoo.com Nğde Üverstes, Elektrk-Elektrok Mühedslğ Bölümü, tyalcoz@gde.edu.tr

Detaylı

Biyoistatistik (Ders 9: Korelasyon ve Regresyon Analizi)

Biyoistatistik (Ders 9: Korelasyon ve Regresyon Analizi) KORELASYON ve REGRESYON ANALİZLERİ Yrd. Doç. Dr. Üal ERKORKMAZ Sakarya Üverstes Tıp Fakültes Byostatstk Aablm Dalı uerkorkmaz@sakarya.edu.tr SİSTEM, ALT SİSTEM ve SİSTEM DİNAMİKLERİ Doğa br aa sstemdr.

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Eoometr ve İstatst Sayı:5 0-4 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Arzdar KİRACI* Özet Gücel yazıda,

Detaylı

Politeknik Dergisi, 2015; 18 (1) : Journal of Polytechnic, 2015; 18 (1) : 35-42

Politeknik Dergisi, 2015; 18 (1) : Journal of Polytechnic, 2015; 18 (1) : 35-42 Poltekk Dergs, 015; 18 (1) : 35-4 Joural of Polytechc, 015; 18 (1) : 35-4 Atakya Bölgesde Rüzgâr Gücü Yoğuluğu ve Rüzgâr Hızı Dağılımı Parametreler İstatstksel Aalz İlker Mert *, Cuma Karakuş ** * Dezclk

Detaylı

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama KMÜ Sosyal ve Ekoomk Araştırmalar Dergs (8): 37-45, 00 ISSN: 309-93, wwwkmuedutr Kuruluş Yer Seçmde Bulaık TOPSIS Yötem ve Bakacılık Sektörüde Br Uygulama Nha Tırmıkçıoğlu Çıar Yıldız Tekk Üverstes, Kmya-Metalür

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı

GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı GÜÇLÜ BETA HESAPLAMALAI Güray Küçükkocaoğlu-Arzdar Kracı Özet Bu çalışaı aacı Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model) Beta katsayısıı hesaplarke yaygı olarak kulladığı sırada e küçük kareler

Detaylı

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim.

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim. 6..27 Tarhl Mühedslk ekooms fal sıavı Süre 9 dakka Sıav Saat: Sıav süresce görevllere soru sormayı. Başarılar dlerm. D: SOYD: ÖĞRENCİ NO: İMZ: Tek ödemel akümüle değer faktörü Tek ödemel gücel değer faktörü

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Hasar sıklıkları için sıfır yığılmalı kesikli modeller

Hasar sıklıkları için sıfır yığılmalı kesikli modeller www.statstkcler.org İstatstkçler Dergs 5 (01) 3-31 İstatstkçler Dergs Hasar sıklıkları çn sıfır yığılmalı keskl modeller Sema Tüzel Hacettepe Ünverstes Aktüerya Blmler Bölümü 06800-Beytepe, Ankara, Türkye

Detaylı

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455 İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj

Detaylı

ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI

ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Öer.C.9.S.. Temmuz 00.-. ÜRETİM PLANLAMASINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Semra ERPOLAT Mmar Sa Güzel Saatlar Üverstes Fe Edebyat Fakültes, İstatstk Bölümü,

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

FARKLI METALLERİN KAYNAĞINDA GERİLME YIĞILMALARININ İNCELENMESİ

FARKLI METALLERİN KAYNAĞINDA GERİLME YIĞILMALARININ İNCELENMESİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ Joural of Ecoomcs, Face ad Accoutg (JEFA), ISSN: 48-6697 Year: 4 Volume: Issue: 3 CURRENCY EXCHANGE RATE ESTIMATION USING THE GREY MARKOV PREDICTION MODEL Omer Oala¹ ¹Marmara Uversty. omeroala@marmara.edu.tr

Detaylı

İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ BILEVEL DISCRETE STOCHASTIC TRANSPORTATION PROBLEM

İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ BILEVEL DISCRETE STOCHASTIC TRANSPORTATION PROBLEM Electroc Joural of Vocatoal Colleges December/Aralı 20 İKİ SEVİYELİ KESİKLİ STOKASTİK TAŞIMA PROBLEMİ Hade GÜNAY AKDEMİR, Fatma TİRYAKİ 2 Özet Bu çalışmada, müşter talepler stoast, özellle esl rassal değşeler

Detaylı

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract YKGS2008: Yazılım Kaltes ve Yazılım Gelştrme Araçları 2008 (9-0 ekm 2008, İstabul) Yazılım Ürü Gözde Geçrmeler Öem, Hazırlık Sürec ve Br Uygulama Öreğ The Importace of the Software Product Revews, Preparato

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

Karesel Olumsallık Tablolarında Asimetri ve Çarpık Simetri Modelleri

Karesel Olumsallık Tablolarında Asimetri ve Çarpık Simetri Modelleri ORİJİNAL ARAŞTIRMA ORIGINAL RESEARCH Karesel Olumsallık Tablolarında Asmetr ve Çarık Smetr Modeller Asymmetry and Skew-Symmetry Models for Square Contngency Tables Gökçen ALTUN, a Serl AKTAŞ a a İstatstk

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 25, Sayı: 1, 2011 225 Atatürk Ünverstes İktsad ve İdar Blmler Dergs, Clt: 25, Sayı:, 20 225 FİNANSAL ANALİZDE KULLANILAN ORANLAR VE HİSSE SENEDİ GETİRİLERİ ARASINDAKİ İLİŞKİ: EKONOMİK KRİZ DÖNEMLERİ İÇİN İMKB İMALAT SANAYİ

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

ROBUST TAHMİN EDİCİLERİ VE ÖZELLİKLERİ * Robust Estimators and Properties

ROBUST TAHMİN EDİCİLERİ VE ÖZELLİKLERİ * Robust Estimators and Properties Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 ROBUST TAHMİN EDİCİLERİ VE ÖZELLİKLERİ * Robust Estmators ad Propertes Yekta Stara KOÇ İstatstk Aablm Dalı Fkr AKDENİZ İstatstk Aablm Dalı ÖZET Robust tahm edcler,

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 13, Sayı 1, 2012 195

C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 13, Sayı 1, 2012 195 C.Ü. İktsad ve İdar Blmler Dergs, Clt 13, Sayı 1, 2012 195 TÜRKİYE DE TİCARİ BANKACILIK SEKTÖRÜNDE REKABET DÜZEYİNİN BELİRLENMESİ (2002-2009) Abdulvahap ÖZCAN * Özet Türkye nn yaşadığı 2000 ve 2001 krzler

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz *

Hisse Senedi Fiyatları ve Fiyat/Kazanç Oranı Đlişkisi: Panel Verilerle Sektörel Bir Analiz * Busness and Economcs Research Journal Volume. umber. 0 pp. 65-84 ISS: 309-448 www.berjournal.com Hsse Sened Fyatları ve Fyat/Kazanç Oranı Đlşks: Panel Verlerle Sektörel Br Analz * Mehmet argelecekenler

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI

T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI 15.09.015 T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI ISL4 İSTATİSTİK II HAZIRLAYAN PROF. DR. ALİ SAİT ALBAYRAK

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests

Obtaining Classical Reliability Terms from Item Response Theory in Multiple Choice Tests Ankara Unversty, Journal of Faculty of Educatonal Scences, year: 26, vol: 39, no: 2, 27-44 Obtanng Classcal Relablty Terms from Item Response Theory n Multple Choce Tests Hall Yurdugül * ABSTRACT: The

Detaylı

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003 ISTANBUL BİLGİ UNİVERSİTY İşletme İstatstğ [Type the documet subttle] Ege Yazga ve Yüce Zerey 1/1/3 [Type the abstract of the documet here. The abstract s typcally a short summary of the cotets of the

Detaylı

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ

FARKLI VERİ YAPILARINDA KULLANILABİLECEK REGRESYON YÖNTEMLERİ Anadolu Tarım Blm. Derg., 203,28(3):68-74 Anadolu J Agr Sc, 203,28(3):68-74 do: 0.76/anaas.203.28.3.68 URL: htt://dx.do.org/0.76/anaas.203.28.3.68 Derleme Revew FARKLI VERİ YAPILARINDA KULLANILABİLECEK

Detaylı

TRAFİK SİMÜLASYON TEKNİKLERİ

TRAFİK SİMÜLASYON TEKNİKLERİ TRAFİK SİMÜLASYON TEKNİKLERİ 2. HAFTA Doç. Dr. Haka GÜLER (2015-2016) 1. TRAFİK AKIM PARAMETRELERİ Üç öeml rafk akım parameres vardır: Hacm veya akım oraı, Hız, Yoğuluk. 2. KESİNTİSİZ AKIM HACİM E AKIM

Detaylı