GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı"

Transkript

1 GÜÇLÜ BETA HESAPLAMALAI Güray Küçükkocaoğlu-Arzdar Kracı Özet Bu çalışaı aacı Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model) Beta katsayısıı hesaplarke yaygı olarak kulladığı sırada e küçük kareler regresyo yöte ola (ordary least squares) EKK (OLS) yöte İMKB de şle göre fralara uygulaak ve ardıda güçlü statstk yöte ola e küçük orta kareler KOK (LMS) yöte le Beta katsayılarıı yede hesaplaak ve yoru yapaktır. Çalışaı bulguları KOK yöte Beta katsayıları ı hesaplarke ver küesdek blgy çok daha başarılı (güçlü) br şeklde değerledrebldğdr. Aahtar sözcükler: KOK yöte Beta hesaplaaları I. Grş Hsse seed pyasalarıda beklee getr ögörüles ve bu getr sahp olduğu rsk hesaplaası gerek bu kou hakkıda akadek çalışa yapaları gerekse yatırı yapak ç e y yatırı aracıı araya yatırıcıları lgledre kou oluştur. Hsse seed getrs ve şle gördüğü pazarı getrs eler olableceğe dar bu güe kadar pek çok aalz hesaplaa ve tah tekkler gelştrlş olup bütü bu çalışaları aacı hsse seed pazara göre gelecekte asıl br perforas sergleyeceğ ögörek ve bu blg yatırılarda değerledrles sağlaaktır. Bu çalışalar arasıda e çok ble fas lteratürüe Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model CAPM) olarak 964 yılıda Wlla Sharpe tarafıda taıtılıştır. CAPM seraye varlıklarıı beklee getrler açıklaak ç ortaya koyduğu yapı oldukça bast ve lg çekc görüektedr. Acak çeştl varsayılara dayaılarak öerle bu odel pyasadak getrler açıklaada e derece başarılı olduğu her zaa tartışıla gelştr. Bu tartışaları odağıda yer ala kou se Beta katsayısıı asıl hesaplaacağı yöüdedr. Herhag br hsse seed ç sabt br rsk gösterges ola Beta hsse seed getrs hsse seed pyasasıa göre e del değşkelk göstereceğ açıklaaya çalışa br ateatksel katsayıdır. İlk açıkladığı yıllarda güüüze değ CAPM odel ve Beta katsayısı hesaplaa yöteler tutarlılığı test edlş uygulaablrlğ tartışılış ve hakkıda br çok akadek çalışa yapılıştır. Bu odel üzere yapıla brçok eleştrye rağe ekul kıyet yöetde çok yaygı kullaı alaı buluştur. Bruer ve dğerler (996) yaptıkları çalışa CAPM odel destekler telktedr. Bu çalışaya göre CAPM ekul değer alyet hesaplaada e çok kullaıla e yaygı odel olduğu ve Beta katsayılarıı ye brçok yatırıcı tarafıda terch edldğ tespt edlştr. Güüüzde Beta katsayısıı hesaplaasıda e sık kullaıla tekk e küçük kareler yöte ola EKK (ordary-least squares OLS) regresyo yötedr. Yrd. Doç. Dr. Arzdar Kracı: Başket Üverstes Güray Küçükkocaoğlu: Başket Üverstes İktsad İdar Bller Fakültes Bağlıca Kapüsü Akara. Tel: 90 (32) / 728 Fax: 90 (32) E-posta:

2 Fakat Mart ve S (999) Aerka ekul kıyetler borsasıdak hsseler ç EKK yöte le yalış tahler yapılableceğ gösterşlerdr. EKK yöte le Beta hesaplaasıı fasta göster ve kısa br yoruu bu çalışada kc bölüde yer alaktadır. Üçücü bölü EKK ve KOK yöteler hesaplaa felsefes takp ede dördücü bölü ateatksel fade edlş bç le hesaplaa yöte ayrıtılarıı çerektedr. Beşc bölü her k yöte uygulaasıa ve so bölü bulguları yorulaasıa ayrılıştır. II. Fasta Beta Katsayısı Beta katsayısıı hesaplaada kullaıla regresyo aalz fasal uygulaalarda ve ver kullaarak tahlerde bulua dğer br çok dalda öel br yer tutaktadır. Güüüzde ver set kullaılarak yapılakta ola tahlerde brçok farklı etod kullaılakla beraber e çok kullaıla hesaplaa tekğ e küçük kareler yöte ola EKK (ordary-least squares OLS) regresyo yötedr. Bu yöte belrl br hsses ç fastak ateatksel göster bç ve açıklaası aşağıdak gbdr: t t ε t () t : hsse seed t zaadak getrs : kesş (tercept) : Beta/rsk/eğ katsayısı (slope) t : ekul kıyet pazarıı t zaadak getrs ε t : hata katsayısı t : ver toplaa aralığı yapıla aalze göre gü ay yıl olablr Bu odele göre hsse seed getrler le pazar getrler arasıda yapıla br regresyo aalz ateatksel olarak değşke gb gösterle belrl br hsses ç söz kousu hsse seed Beta katsayısıı verecektr. Beta katsayısıı fade ettğ ala se hsse seed getrs pazar getrse ola duyarlılığıdır. Bu katsayı ayı zaada dekle 2 de gösterldğ gb hsse seed getrs pazar getrse göre kovaryası le pazarı varyasıı bölüü le de buluablr. cov( ) 2 σ ( ) (2) Pazarı Beta katsayısıı rakasal değer doğal olarak dr. Beta katsayısı de fazla ola hsse seed ekstra pazar rske sahptr ve buu soucu olarak ekstra pazar kovaryası gözleektedr. Bua göre de fazla br Beta değere sahp ola hsse seed pazarı sahp olduğu getrde daha yüksek br getr vaat etektedr. Ayı şeklde de az Beta değere sahp ola hsse seed daha düşük br kovaryas dolayısıyla pazarı sahp olduğu getrde daha az br getrye sahp olacaktır. III. Doğrusal egresyo ç Güçlü Tahler EKK yöte kullaılası ç br çok sebep evcuttur ve bular çde ver set oluşurke verler oral hata ktarıı çerebleceğ varsayılarak yapılış tahler optu souç veres öeldr. Bua lavete yapılış ola br çok sadeleştrc varsayıla brlkte bu yöte çok kullaışlıdır ve dğer hesaplaa yötelere göre daha kolay hesaplaablektedr. Bu edele bu yöte düyada çok geş br lteratür oluşturablş ve sıkça kullaı alaı bulablştr.

3 Çok yaygı olarak kullaılakta ola EKK yötede tahler yapakta kullaıla varsayılar geçersz olaya başladığıda yapıla paraetre tahler hç bekleedk kötü br perforas göstereblektedr. Bu durularda br ver setde geel eğle (pater) aykırı uzak verler (outler) yer alasıda dolayı gerçekleşektedr. Ekoo fas ve statstk lteratürüde EKK uygulaaları le yapılış aalzler uzak verler e küçük kareler yöte tahler öel ölçüde etkledğ gösterektedr. Aşağıdak şekller (Şekl a Şekl b) böyle br duruda EKK yötee dayalı tahler sergleektedr. Getrler arasıda brkaç aykırılık (hsse başı aşırı getr veya kayıp) buluası ver setlerde uzak verler oluşasıa sebep olaktadır. Şekllerde de görülebleceğ gb brkaç hsse seed getrsde oluşuş ver setde yer ala br getr (ver) değşes ve buu soucu olarak getr uzak ver duruua geles tahler bütüüyle değştrştr. Brc şeklde Beta poztf br değer alırke kc şeklde Beta ı eks br değer aldığıı görekteyz. Buu sebeb EKK yöte tah yaparke kulladığı felsefede yataktadır. Şekl a. Uzak Ver Olada EKK Tah Şekl b. Uzak Ver Duruuda EKK Tah EKK yöte le yapıla tahler felsefes yapılacak ola br tah soucu oluşacak ola hataları toplaıı dğer yapılacak tahlere göre e düşük sevyede olası gerektğdr. Fakat böyle br uygulaada ver setde uzak verler buluası duruuda şekllerde görüle proble ortaya çıkaktadır. Bu proble açıklaası se bu oktaları oluşturablecekler hatalar toplaıı e düşük sevyeye drek ç yapıla tah ver set çoğuluğu tarafıda verle blgye ters düşesdr. Bütü hataları toplaıı drgeek ver set çoğuluğuu oluştura ve gerçek blgy çere verler hata ktarıı haksız yere arttıraktadır. Böyle br durula karşılaşaak ç uzak verler tespt edles ve doğrusal regresyo ç güçlü tahler gerekektedr. Lteratürde bu kou le uğraşa dal güçlü statstktr (robust statstcs). Güçlü statstksel yötelerle yapılış ola tahler güçlü regresyo (robust regresso) tarafıda yapılaktadır. Bu yöte ousseeuw ve Leroy (987) tarafıda bu lteratüre taıtılış ve gelştrlştr. Burada kullaıla yötede se bütü oktaları hataları dkkate alıada ortaca hata ktarıı e aza dre tah araır ve böylece verler yüksek kalıtı değer alablese z verlr. Bu tah tespt edldkte sora bu tahler kullaıı geellkle uzak verler tespt ve bu verler etkler eledkte sora klask tah yöteler uygulaası şeklde olaktadır. Uzak verler tespt ç gelştrlş br çok güçlü regresyo tekğ evcuttur. Bu çalışada seçle yöte se yaygı kullaıı ola ortaca kalıtıyı (eda resdual) e düşük sevyeye getrecek ola sıralı e küçük orta kareler (least eda squares) ya da KOK (LMS) yötedr.

4 IV. EKK (OLS) ve KOK (LMS) yöteler ateatksel göster IV.. Sırada e küçük kareler (EKK): Ver sayısı ola doğrusal br odel hsse seed ç getrler; aşağıdak gb fade edleblr: r r r ε ε ε M M (3) Bu forülde yer ala ve paraetreler odel ve paraetreler tah ve r kalıtıları değer fade etektedr. Mateatksel olarak aşağıda gösterldğ gb EKK yötede paraetre tah kalıtıları kareler toplaı e düşük olacak şeklde yapılaktadır: 2 r (3) Daha öcede açıkladığı gb br adet uzak ver dah bu yötele tah yapayı kasız hale getrektedr. EKK yöte br adet uzak ver buluası duruuda ble çöktüğü ç çöke oktasıı değer %0 olaktadır. IV.2. E Küçük Orta Kareler (KOK): EKK yöte terse güçlü statstk le yapılış güçlü regresyo tahler ç çöke oktası %50 olaktadır. Ortaca kalıtıı drgees bu kalıtıı daha yüksek kalıtı değerlerde etklees egelleekte ve böylece ver set yarısı ble uzak verde oluşablekte fakat verler çoğuluğuu gösterdğ yö değşeektedr. Güçlü yöteler sık kullaılalarıda br e küçük orta kareler yötedr ve ateatksel fade edlş bç aşağıda gösterlştr: ) ( 2.. r ed (4) IV.3.Uzak verler tespt: Yukarıdak ateatksel forülde de alaşılableceğ gb uzak verler tespt ç cebrsel veya aaltk çözü çok şle gerektrektedr. Çok kullaışlı ola EKK yöte yaıda bu yöte yaygılaşasıı egelleye edelerde br budur. Bu sebeple bu şlev yere getreblek ç C ve Gauss dllerde hazırlaış progralar kullaılıştır. Kracı (996) tarafıda bu hesaplaaları yapak ç C ve Gauss dllerde yazılış prograda kullaıla aşağıdak algorta böyle br prograı üteaddt defalar yere getrdğ şleler gösterekte ve bu sayede uzak verler tespt edeblektedr. Fasal br ver setde yer ala adet getr ç aşağıdak sıralaaya göre şleler tekrarlaır:. Getr setdek adet oktada br defa kullaılak üzere farklı p adet okta seçlr. Br tah yalış souç vereye başlaası ç gerekl ola uzak ver ktarı çöke oktası (breakdow pot) olarak taılaıştır.

5 2. Seçlş p okta ç EKK uygulaır ve paraetreler tespt edlr. 3. Tespt edlş paraetreler bütü getr setde yer ala oktaya uygulaıp kalıtılar hesaplaır. 4. Kalıtıları kares alııp büyükte küçüğe sıralaır. 5. Sıralı kalıtılarda ortaca değer ot edlr. 6. Not edle ortaca değer daha öce ot edlş ortaca değerlerde küçükse e y paraetreler olarak ye paraetreler ot edlr.! Bütü p okta kobasyoları ya kez yukarıda yer ala şleler tekrarlaır.!( p)! Yukarıdak algorta soucu elde edle e küçük ortaca kalıtıı kares vere KOK ve KOK paraetreler ç tekrar bütü kalıtılar hesaplaır. Ve aşağıda taılaış σ stadart sapa yardıı le uzak verler tespt ükü olur. w r 2.5 σ 5 σ.4826( ) r p 0 > 2.5 σ ed r 2 (5) r Yukarıdak w değer > 2. 5 şartıı sağlaası duruuda 0 değer alır ve uzak ver olarak σ tespt edlş olur. So olarak bu uzak verler getr setde çıkarılır ve EKK regresyou le daha güçlü tah (robust estato) gerçekleşş olur. Şekl c. Uzak Ver Olada EKK Tah Şekl d. Uzak Ver Duruuda KOK Tah Yukarıdak şekllerde de alaşılacağı gb uzak verler getr setde çıkarılıp ardıda EKK yöteyle Beta katsayısı hesapladığıda elde edle değerler verler çerdğ blgy daha y yasıtaktadır. Daha öce hsse seed getrlerde brde gerçekleşe aoral değş hsse seed Beta katsayısıı egatf olarak hesaplaasıa ede olurke KOK yöte Beta katsayısıı hesaplarke aoral getry ve poztf lşky tespt edeblektedr. Bu yöte sayesde bulua Beta katsayısı daha sağlıklı ve doğru br şeklde hesaplaış olaktadır. Yukarıda bahs geçe EKK (OLS) ve KOK (LMS) yöteler İstabul Mekul Kıyetler Borsası da rastsal seçlş fralara uygulaıştır. Aalz ç İMKB de şle göre Arçelk

6 Aygaz Dezl Ca ve Tüpraş fralarıı yılları arasıdak düzeltlş fyatlarıı aylık getrler kullaılıştır. egresyo ç seçle ekul kıyet pazarıı oluştura ver tabaı se İMKB-00 edeks ve bu edeks yılları arasıdak aylık getrlerdr. Souçları yer aldığı tablolar bu aaç ç hazırlaış prograı çıktılarıdır. V. EKK ve KOK yöteler uygulaaları Tablo Arçelk frası ç EKK regresyou ve KOK regresyou le yapılış beta tahler özetleektedr. EKK regresyoua göre Arçelk frasıı Beta katsayısı.02 olarak hesaplaakta fakat KOK yöte le regresyo yapıldığıda Beta katsayısıı.35 olduğu ve bu katsayıya göre Arçelk frasıı pazara göre daha rskl br yapıya sahp olduğu tespt edlektedr. Bu farklılığı edeler takp ede şekllerde (Şekl 2a Şekl 2b) daha y alaşılaktadır. Tablo. AÇELİK EKK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata KOK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata Şekl 2a. Arçelk EKK egresyou

7 Şekl 2b. Arçelk KOK egresyou Şekl 2a EKK regresyou soucu elde edle tred ya da tah gösterektedr. Bekledğ gb bu tred çzgs uzak verler tarafıa doğru eğlş ve düşük br rsk tah yapaktadır. Fakat ver set daha dkkatl celedğde brk ola ve ver set çoğuluğuu gösterdğ tred daha dk br yö gösterektedr (Şekl 2b). EKK yöte uzak verlerde çok etkledğ blcde olarak getrler yoğulaştığı bölgede oluşturulacak tred Beta tah ç uygu olacak bölüdür. Şekllerde görüldüğü gb KOK yöte Beta ç bu eğl (pater) tespt edeblektedr. Aşağıdak tablo 2 de Aygaz frasıı EKK regresyou ve KOK regresyou le yapılış Beta tahler görülektedr. EKK regresyoua göre Aygaz frasıı Beta katsayısı.09 olarak hesaplaakta fakat KOK yöte le regresyo yapıldığıda Beta katsayısıı 0.9 olduğu ve bu katsayıya göre aslıda bu hsse pazara göre daha az rske sahp br yapıda olduğu tespt edlektedr. KOK odel ver set daha y tesl ettğ r 2 lerde de görüleblektedr. Bua göre EKK Beta katsayısı ç r 2 değer %58 KOK Beta katsayısı ç %82 olduğu Tablo 2 de görülektedr. Tablo 2. AYGAZ EKK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata KOK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata

8 Şekl 3a. Aygaz EKK egresyou Şekl 3b. Aygaz KOK egresyou Şekllerde (Şekl 3a Şekl 3b) tespt edlebleceğ gb Aygaz frasıı getrler çoğuu oluşturduğu doğrusal tred EKK regresyouu hesaplaası soucu oluşa doğrusal tredle uyuşaaktadır. Uzak verler varlığı hsse seed olduğuda daha rskl gösterş ve odel doğrusallığıı bozuştur. Tablo 3 Dezl Ca frasıı EKK regresyou ve KOK regresyou le yapılış Beta tahler özetleektedr. EKK regresyoua göre Dezl Ca frasıı Beta katsayısı 0.73 fakat KOK yöte le regresyo yapıldığıda Beta katsayısıı.25 olduğu ve Dezl Ca frasıı aslıda pazara göre daha fazla rske sahp br yapıda buluduğu görülektedr. Takp ede şekllerde (Şekl 4a Şekl 4b) bu farklılığı sebepler görülektedr.

9 Tablo 3. DENİZLİ CAM EKK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata KOK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata Şekl 4a. Dezl Ca EKK egresyou Şekl 4b. Dezl Ca KOK egresyou

10 Yukarıdak şekllerde verler çoğuu tred tespt etek zor olaktadır ve hatta ver sayısı yüksek ktarlara ulaştığı ç bu tred göz le tespt etek kasız hale gelektedr. Uzak verler dağılış olası yüzüde EKK regresyou düşük br r 2 değer le souçlaış ve doğrusal br odel varlığı ble tartışa kousu oluştur. Fakat KOK yöte Dezl Ca frası ç tred her k tarafıda bulua bu uzak verler eledkte sora verler gerçek yöüü tespt edeblş ve verler çoğuu br tred olduğuu görülüştür. So olarak Tüpraş frası celedğde Tablo 4 le özetlee souçlar elde edlektedr. Bua göre EKK regresyo Beta katsayısı le KOK regresyo Beta katsayısı arasıda çok büyük br fark oladığı ve EKK regresyoua göre buluuş ola.00 Beta katsayısıa sahp ola fraı aslıda pazara göre braz rskl olduğu ve KOK yötee göre Beta ı gerçekte.05 olası gerektğ tespt edlştr. Bu çalışadak vurgu se şekllerde de görüleblecek ola odel açıklayablrlğ ya da EKK regresyou yalış tespt ettğ ve gerçekte %82 lk r 2 katsayısıdır. İstabul Mekul Kıyetler Borsası da yer ala ve İMKB Ulusal-00 Edeks de büyük pazar payıa sahp ola Tüpraş hsse seed pazar le ayı eğle (pater) sahp olası ve bu fraı rsk olarak da pazarı sahp olduğu ssteatk rske yakı br rske sahp olası İMKB Ulusal-00 Edeks dek ağırlığıda dolayı beklee br durudur. Fakat EKK regresyouu bulduğu düşük r 2 değer bu hsse çok yüksek br volatlteye sahp olduğuu söyleektedr. Takp ede şekllerde buu tekk sebeb zaa zaa bu fraı hsse seed getrler pazara göre yüksek oralarda değşler gösteres ve EKK regresyouu bu uzak verler dkkate alarak souçlarda bu sefer farklı br yaılsaaya sebep olduğudur. KOK regresyou se yüksek oralardak değşler uzak ver olarak regresyo aalze aladığıda bu hsse he volatles düşük he de r 2 daha yüksek olableceğ söyleektedr. Tablo 4. TÜPAŞ EKK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata KOK Souçları Değşke Katsayı Stadart Hata t-değer beta F r stdhata

11 Şekl 5a. Tüpraş EKK egresyou Şekl 5b. Tüpraş KOK egresyou VII. Souç EKK ve KOK yöteler İstabul Mekul Kıyetler Borsası da rastgele seçlş fralara uyarladığıda her k regresyo yöte farklı Beta katsayıları le souçladığı buluuştur. Klask EKK yöte le bulua Beta katsayılarıı yatırılarda kullaılası duruuda gerçek getr le beklee getr arasıda ortaya çıkacak farklar çok büyük olacak ve çok hatalı tahler yapılasıa ede olacaktır. Br örekle açıklaak gerekrse eğer eekllk folarıda uzu sürel br yatırı düşüe br fo yöetcs EKK yöteyle bulua Beta yı kullaarak yatırı kararı verecek olursa yatırıı souçladığı gü yatırıda bekledğ getr le gerçekleşe getr arasıda büyük fark buluduğuu görecektr. Bu yatırıcı ver setdek aoaller yalış yöledres soucu yalış karar verştr. Halbuk pyasa getrs le varlığı getrs arasıdak lşky daha y br şeklde tesl ede KOK yöte le yapılacak tahde beklee getr le gerçek getr arasıdak fark ze edlş olacağı ç hata payı da düşektedr. Özetle KOK yöte le

12 bulua Beta katsayısı hsse seed rsk daha doğru yasıtaktadır ve gelecektek getr tahler ç bu yöte e uygu hesaplaa yöte olarak kabul edleye adaydır. Kayakça: Blue M. E. Betas ad Ther egresso Tedeces. Joural of Face 26: (March 97) -0. Bruer. ve dğerler. Best Practces Estatg the Cost of Captal: Survey ad Sythess Uversty of Washgto Workg Paper (March 996). Cha L. Lakoshok obust Measureet of Beta sk Joural of Facal ad Quattatve Aalyss 27:2 (Jue 992) Kracı A. obust egresso ad Applcatos Blket Üverstes Master Tez Eylül 996. Mart D.. S T. obust Estato of Beta Uversty of Washgto Workg Paper (March 999). Mosteller F. Tukey J. Data Aalyss ad egresso. Addso-Wesley Publshg Copay 977. ousseeuw P. Least Meda of Squares egresso Joural of the Aerca Statstcal Assocato 984 Vol ousseeuw P. Va Zoere B. Uaskg Multvarate Outlers ad Leverage Pots Joural of the Aerca Statstcal Assocato Septeber 990 Vol 85 No 44. ousseeuw P. Leroy A. obust egresso ad Outler Detecto. Joh Wley & Sos 987. Sharpe W. Captal Asset Prces: A Theory of Market Equlbru Uder Codtos of sk Joural of Face Vol 9 Septeber 964. Sharpe W. Mea-Absolute-Devato Characterstc Les for Securtes ad Portfolos. Maageet Scece Vol 8:2 October 97. The Gauss Syste Verso 3. Aptech Systes Ic. Maple Valley WA

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA

BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE BİR UYGULAMA İstabul Tcaret Üverstes Fe Bller Dergs Yıl:7 Sayı:4 Güz 2008/2 s.5-34 BULANIK ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNDE DUYARLILIK ANALİZLERİ: YENİ BİR ALTERNATİFİN EKLENMESİ - ENERJİ KAYNAĞININ SEÇİMİ ÜZERİNDE

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Paukkale Üverstes ühedslk Bller Ders, Clt 9, Sayı, 0, Sayfalar 6-6 Paukkale Üverstes ühedslk Bller Ders Paukkale Uversty Joural of Eeerg Sceces BULANIK KARAR VERE SİSTELERİNDE PARALEL HESAPLAA PARALLEL

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

HAVA SAVUNMA SEKTÖRÜ TEZGAH YATIRIM PROJELERİNİN BULANIK ANALİTİK HİYERARŞİ PROSESİ İLE DEĞERLENDİRİLMESİ

HAVA SAVUNMA SEKTÖRÜ TEZGAH YATIRIM PROJELERİNİN BULANIK ANALİTİK HİYERARŞİ PROSESİ İLE DEĞERLENDİRİLMESİ HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 0 CİLT 5 SAYI 3 (3-33) HAVA SAVUNA SEKTÖRÜ TEZGAH YATIRI PROJELERİNİN BULANIK ANALİTİK HİYERARŞİ PROSESİ İLE DEĞERLENDİRİLESİ Hv.üh.Yzb. Sezg KAPLAN* HHO K.lığı

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

TEDARİK ZİNCİRİ AĞ TASARIMINA BULANIK ULAŞTIRMA MODELİ YAKLAŞIMI

TEDARİK ZİNCİRİ AĞ TASARIMINA BULANIK ULAŞTIRMA MODELİ YAKLAŞIMI 0 Ercyes Üverstes İktsad ve İdar Bller Fakültes Dergs, Sayı:, Ocak-Hazra 009, ss.19-7 TEDARİK ZİNCİRİ AĞ TASARIMINA BULANIK ULAŞTIRMA MODELİ YAKLAŞIMI A. İhsa ÖZDEMİR * Gökha SEÇME ** ÖZ Ye s çevresdek

Detaylı

Polinom Filtresi ile Görüntü Stabilizasyonu

Polinom Filtresi ile Görüntü Stabilizasyonu Polno Fltres le Görüntü Stablzasonu Fata Özbek, Sarp Ertürk Kocael Ünverstes Elektronk ve ab. Müendslğ Bölüü İzt, Kocael fozbek@kou.edu.tr, serturk@kou.edu.tr Özetçe Bu bldrde vdeo görüntü dznnde steneen

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

BULANIK AHP YAKLAŞIMINDA DUYARLILIK ANALİZLERİ: YENİ BİR HAMMADDE TEDARİKÇİSİNİN ÇÖZÜME EKLENMESİ

BULANIK AHP YAKLAŞIMINDA DUYARLILIK ANALİZLERİ: YENİ BİR HAMMADDE TEDARİKÇİSİNİN ÇÖZÜME EKLENMESİ İstabul Tcaret Üverstes Fe Bller Dergs Yıl:7 Sayı:3 Bahar 2008/ s.5-72 BULANIK AHP YAKLAŞIMINDA DUYARLILIK ANALİZLERİ: YENİ BİR HAMMADDE TEDARİKÇİSİNİN ÇÖZÜME EKLENMESİ Aşkı ÖZDAĞOĞLU ÖZET Mateatksel progralaa

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ

MANYETİK OLARAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLARDA KÜTLE AKTARIM KATSAYILARININ İNCELENMESİ MANYETİK OLAAK STABİLİZE EDİLMİŞ AKIŞKAN YATAKLADA KÜTLE AKTAIM KATSAYILAININ İNCELENMESİ Metn ŞENGÜL, Ahet. ÖZDUAL* Şeker Enttüü Etegut/ANKAA; *H.Ü. Kya Mühendlğ Bölüü Beytepe/ANKAA ÖZET Bu çalışanın

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ FEN BİLİMLERİ DERGİSİ ISTANBUL COMMERCE UNIVERSITY JOURNAL OF SCIENCE

İSTANBUL TİCARET ÜNİVERSİTESİ FEN BİLİMLERİ DERGİSİ ISTANBUL COMMERCE UNIVERSITY JOURNAL OF SCIENCE İSTANBUL TİCARET ÜNİVERSİTESİ FEN BİLİMLERİ DERGİSİ ISTANBUL COMMERCE UNIVERSITY JOURNAL OF SCIENCE Yıl:7 Sayı:3 2008/ BAHAR Sahb İstabul Tcaret Üverstes Adıa Rektör Prof. Dr. Ateş VURAN Yayı Kurulu Prof.

Detaylı

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Eoometr ve İstatst Sayı:5 0-4 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Arzdar KİRACI* Özet Gücel yazıda,

Detaylı

DİŞLİ ÇARKLAR PLANET SİSTEMLERİ 12-02. 2013 Nisan. www.guven-kutay.ch. M. Güven KUTAY / 2013-Nisan-14 Yeniden elden geçirilmiş çıktı.

DİŞLİ ÇARKLAR PLANET SİSTEMLERİ 12-02. 2013 Nisan. www.guven-kutay.ch. M. Güven KUTAY / 2013-Nisan-14 Yeniden elden geçirilmiş çıktı. 3 Nsa www.guve-kutay.ch DİŞLİ ÇARLAR LANET SİSTELERİ -. üve UTAY / 3-Nsa-4 Yede elde geçrlş çıktı. 3-Nsa4 www.guve-kutay.ch Sevgl eş FİSUN ' a ÖNSÖZ Br kouyu blek deek, ou eldek kalara göre kullaablek

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ

FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı

Detaylı

ORTAK BAĞIMSIZ DENETİM VE MALİ MÜŞAVİRLİK LİMİTED ŞİRKETİ

ORTAK BAĞIMSIZ DENETİM VE MALİ MÜŞAVİRLİK LİMİTED ŞİRKETİ ORTAK BAĞIMSI Z DENETİ M VE MALİ MÜŞAVİ RLİK LİMİTED ŞİRKETİ 6102 SAYILI YENİ TÜRK TİCARET KANUNUNUN ANONİM VE LİMİTED ŞİRKETLERE GETİRDİKLERİ www.ortakusavr.co Sayfa 1 ÖNSÖZ Tcar hayatııza br çok yelk

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2015 yılı fo getrs 02/01/2015-04/01/2016 tarhl brm pay değerler kullaılması le hesaplamıştır. 2015 yılı karşılaştırma ölçütü getrs

Detaylı

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc.), 008, 18(1): 1-5 Araştırma Makales/Artcle Gelş Tarh: 10.06.007 Kabul Tarh: 7.1.007 Lojstk Regresyoda Meydaa Gele Aşırı Yayılımı İcelemes

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

Kademe ayarlı transformatörlere ait kademe ayar değerlerinin jacobian matrise kontrol değişkeni olarak sokulması

Kademe ayarlı transformatörlere ait kademe ayar değerlerinin jacobian matrise kontrol değişkeni olarak sokulması SAÜ. Fe Bl. Der. 7. Clt, 3. Sayı, s. 337-348, 03 SAU J. Sc. Vol 7, o 3, p. 337-348, 03 Kadee ayarlı trasforatörlere at adee ayar değerler acoa atrse otrol değşe olara soulası Faru Yalçı *, Uğur Arfoğlu

Detaylı

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarhl ve 25391 sayılı Resm Gazete'de yayımlamıştır.) Amaç BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayaak Madde 1 Bu Yöetmelğ amacı, 4857 sayılı İş Kauuu 53 ücü maddes

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı

Detaylı

AES S Kutusuna Benzer S Kutuları Üreten Simulatör

AES S Kutusuna Benzer S Kutuları Üreten Simulatör AES S Kutusua Bezer S Kutuları Ürete Smulatör M.Tolga SAKALLI Trakya Üverstes Blgsayar Mühedslğ tolga@trakya.edu.tr Erca BULUŞ Trakya Üverstes Blgsayar Mühedslğ ercab@trakya.edu.tr Adaç ŞAHİN Trakya Üverstes

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

ARMATÜRLERİN ÜÇ BOYUTLU IŞIK ŞİDDET DAĞILIMLARININ BİLGİSAYAR ORTAMINDA FORMÜLASYONU VE GÖRSELLEŞTİRİLMESİ

ARMATÜRLERİN ÜÇ BOYUTLU IŞIK ŞİDDET DAĞILIMLARININ BİLGİSAYAR ORTAMINDA FORMÜLASYONU VE GÖRSELLEŞTİRİLMESİ Gaz Üv. Müh. M. Fak. Der. J. Fac. Eg. Arch. Gaz Uv. Clt, No, -7, 7 Vol, No, -7, 7 ARMATÜRLERİN ÜÇ BOYUTLU IŞIK ŞİDDET DAĞILIMLARININ BİLGİSAYAR ORTAMINDA FORMÜLASYONU VE GÖRSELLEŞTİRİLMESİ İsal Serka ÜNCÜ

Detaylı

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği

Bağıl Değerlendirme Sisteminin Simülasyon Yöntemi ile Test Edilmesi: Kilis 7 Aralık Üniversitesi Örneği Akademk Blşm 11 - III. Akademk Blşm Koferası Bldrler 2-4 Şubat 2011 İöü Üverstes, Malatya Bağıl Değerledrme Sstem Smülasyo Yötem le Test Edlmes: Kls 7 Aralık Üverstes Öreğ Kls 7 Aralık Üverstes, Blgsayar

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama

Kuruluş Yeri Seçiminde Bulanık TOPSIS Yöntemi ve Bankacılık Sektöründe Bir Uygulama KMÜ Sosyal ve Ekoomk Araştırmalar Dergs (8): 37-45, 00 ISSN: 309-93, wwwkmuedutr Kuruluş Yer Seçmde Bulaık TOPSIS Yötem ve Bakacılık Sektörüde Br Uygulama Nha Tırmıkçıoğlu Çıar Yıldız Tekk Üverstes, Kmya-Metalür

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

Biyoistatistik (Ders 9: Korelasyon ve Regresyon Analizi)

Biyoistatistik (Ders 9: Korelasyon ve Regresyon Analizi) KORELASYON ve REGRESYON ANALİZLERİ Yrd. Doç. Dr. Üal ERKORKMAZ Sakarya Üverstes Tıp Fakültes Byostatstk Aablm Dalı uerkorkmaz@sakarya.edu.tr SİSTEM, ALT SİSTEM ve SİSTEM DİNAMİKLERİ Doğa br aa sstemdr.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ

GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ Joural of Ecoomcs, Face ad Accoutg (JEFA), ISSN: 48-6697 Year: 4 Volume: Issue: 3 CURRENCY EXCHANGE RATE ESTIMATION USING THE GREY MARKOV PREDICTION MODEL Omer Oala¹ ¹Marmara Uversty. omeroala@marmara.edu.tr

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

Orkun COŞKUNTUNCEL a Mersin Üniversitesi

Orkun COŞKUNTUNCEL a Mersin Üniversitesi Kuram ve Uygulamada Eğtm Blmler Educatoal Sceces: Theory & Practce - 3(4) 39-58 03 Eğtm Daışmalığı ve Araştırmaları İletşm Hzmetler Tc. Ltd. Şt. www.edam.com.tr/kuyeb DOI: 0.738/estp.03.4.867 Sosyal Blmlerde

Detaylı

BİRİKİMLİ HASAR TEORİLERİ VE YORULMA ÇATLAĞINA GÖRE ÖMÜR DEĞERLENDİRMELERİ

BİRİKİMLİ HASAR TEORİLERİ VE YORULMA ÇATLAĞINA GÖRE ÖMÜR DEĞERLENDİRMELERİ Brkl Hasar Teorler ve Yorula Çatlağına Göre Öür Değerlendreler HAVACILIK VE UZAY TEKOLOJİLERİ DERGİSİ TEMMUZ 00 CİLT SAYI (-9) BİRİKİMLİ HASAR TEORİLERİ VE YORULMA ÇATLAĞIA GÖRE ÖMÜR DEĞERLEDİRMELERİ Gökhan

Detaylı

Finansal Varlık Fiyatlama Modelleri Çerçevesinde Piyasa Risklerinin Hesaplanması: Parametrik Olmayan Yaklaşım

Finansal Varlık Fiyatlama Modelleri Çerçevesinde Piyasa Risklerinin Hesaplanması: Parametrik Olmayan Yaklaşım Bankacılar Dergisi, Sayı 6, 007 Finansal Varlık Fiyatlaa Modelleri Çerçevesinde Piyasa Risklerinin Hesaplanası: Paraetrik Olayan Yaklaşı Yrd. Doç. Dr. Kutluk Kağan Süer Aycan Hepsağ Bu çalışada, 05/01/000

Detaylı

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003 ISTANBUL BİLGİ UNİVERSİTY İşletme İstatstğ [Type the documet subttle] Ege Yazga ve Yüce Zerey 1/1/3 [Type the abstract of the documet here. The abstract s typcally a short summary of the cotets of the

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

Birlik Hava Savunma Önceliklerinin Tespitine Bulanık Bir Yaklaşım. A Fuzzy Approach to Determination of a Unit s Air Defense Priorities

Birlik Hava Savunma Önceliklerinin Tespitine Bulanık Bir Yaklaşım. A Fuzzy Approach to Determination of a Unit s Air Defense Priorities Savua Bller Dergs Kası 0 Clt 0 Sayı -7. Brlk Hava Savua Öcelkler Tespte Bulaık Br Yaklaşı Mehet Kabak Öz Hava savua desteğ belrlees proble savua ssteler verllğde öel br etkye sahp ve karaşık br koudur.

Detaylı

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract

Tuğba SARAÇ Yük. Endüstri Mühendisi TAI, Ankara tsarac@tai.com.tr. Özet. 1. Giriş. 2. Gözden Geçirmeler. Abstract YKGS2008: Yazılım Kaltes ve Yazılım Gelştrme Araçları 2008 (9-0 ekm 2008, İstabul) Yazılım Ürü Gözde Geçrmeler Öem, Hazırlık Sürec ve Br Uygulama Öreğ The Importace of the Software Product Revews, Preparato

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi Yöetim, Yil: 6 Sayi: 21 Hazira 1995, s. 55-60 SHARPE TEK indeks MODELi ile PORTFÖY SEciMi, Dr. Erha Özdemir I.Ü. Tekik Bilimler MY.O. Dr. I.Müfit GIRESUNLU i'ü. Tekik Bilimler M.Y.O. Bu çalismada her bir

Detaylı

DENGELEME PROBLEMİNE HEDEF PROGRAMLAMA YAKLAŞIMI

DENGELEME PROBLEMİNE HEDEF PROGRAMLAMA YAKLAŞIMI ÖE MMOB arta ve Kaastro Müesler Oası ürkye arta Blsel ve ekk Krltayı Mayıs Akara DENGELEME PROBLEMİNE EDEF PROGRAMLAMA AKLAŞIMI Mstaa ŞİMŞEK arta Geel Kotalığı Akara staassek@gkltr B çalışaa; e küçük karelerle

Detaylı

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar

Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,

Detaylı

Prof.Dr. Füsun ÜLENGİN

Prof.Dr. Füsun ÜLENGİN İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI YARDIMI İLE ŞİRKET BİRLEŞMELERİNİN KESTİRİMİ DOKTORA TEZİ Y. Müh. Rukiye DEMİR (50795255) Tezi Estitüye Verildiği Tarih : 7 Nisa

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ

TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ Clt 2, Sayı 2, 2010 ISSN: 1309-8020 (Ole) TÜRKİYE NİN TİCARİ HİZMETLER ENDÜSTRİ İÇİ TİCARETİ Ahmet AYDIN Balıkesr Üverstes Badırma İ.İ.B.F. Kampüsü, Çaakkale Yolu 2.Km. Badırma/Balıkesr E-posta: ahmetayd10@gmal.com

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

EGITIM AMAÇLI PNÖMATIK SERVO-KONTROL DÜZENEGIN DENEYSEL DEGERLENDIRMESI

EGITIM AMAÇLI PNÖMATIK SERVO-KONTROL DÜZENEGIN DENEYSEL DEGERLENDIRMESI 03 III. ULUSAL HIDROLIK PNÖMATIK KONGRESI VE SERGISI 411 EGITIM AMAÇLI PNÖMATIK SERVO-KONTROL DÜZENEGIN DENEYSEL DEGERLENDIRMESI Mehmet YUNT Ark YETIS Koray K. SAFAK Osma S. TÜRKAY ÖZET Pömatk sstemler

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract

SESSION 1. Asst. Prof. Dr. Fatih Ecer (Afyon Kocatepe University, Turkey) Abstract SESSION 1 Türkye dek Kout Fyatlarıı Tahmde Hedok Regresyo Yötem le Yapay Sr Ağlarıı Karşılaştırılması Comparso of Hedoc Regresso Method ad Artfcal Neural Networks to Predct Housg Prces Turkey Asst. Prof.

Detaylı

PARÇALI ARİTMETİK DEĞİŞİMLİ GERİ ÖDEMELERE SAHİP ORTAKLIĞA DAYALI KONUT FİNANSMAN MODELİ

PARÇALI ARİTMETİK DEĞİŞİMLİ GERİ ÖDEMELERE SAHİP ORTAKLIĞA DAYALI KONUT FİNANSMAN MODELİ Süleya Deirel Üiversitesi İtisadi ve İdari Bililer Faültesi Dergisi Y.0, C.6, S., s.-7. Suleya Deirel Uiversity The Joural of Faculty of Ecooics ad Adiistrative Scieces Y.0, Vol.6, No., pp.-7. PARÇALI

Detaylı

Eczacılık Fakültesi Öğrencilerinin Mesleğe Yaklaşımları Pharmacy Students' Approach to Their Profession

Eczacılık Fakültesi Öğrencilerinin Mesleğe Yaklaşımları Pharmacy Students' Approach to Their Profession Eczacılık Fakültesi Öğrecilerii Mesleğe Yaklaşımları Pharmacy Studets' Approach to Their Professio Işıl ŞİMŞEK* Yıldır ATAKURT** Bihter YAZICIOĞLU*** ÖZET Bu çalışmada, Eczacılık Fakültesi öğrecilerii

Detaylı

AES S KUTUSUNA BENZER 4-BİT GİRİŞE VE 4-BİT ÇIKIŞA SAHİP S KUTULARININ TASARIMI

AES S KUTUSUNA BENZER 4-BİT GİRİŞE VE 4-BİT ÇIKIŞA SAHİP S KUTULARININ TASARIMI S S KUTUSUN NZR -İT GİRİŞ V -İT ÇIKIŞ SHİP S KUTULRININ TSRIMI M. Tola SKLLI, rca ULUŞ, daç ŞHİN, ata ÜYÜKSRÇOĞLU ilisaar Mühedisliği ölüü, Mühedislik-Miarlık akültesi,traka Üiversitesi, dire e-posta:

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

Yapay Sinir Ağları İle Tek Eksenli Bileşik Eğilme Altındaki Betonarme Kolon Kesitlerinin Donatı Hesabı

Yapay Sinir Ağları İle Tek Eksenli Bileşik Eğilme Altındaki Betonarme Kolon Kesitlerinin Donatı Hesabı Fırat Üiv. Fe ve Müh. Bil. Dergisi Sciece ad Eg. J of Fırat Uiv. 20 (1), 135-143, 2008 20 (1), 135-143, 2008 Yapa Siir Ağları İle ek Ekseli Bileşik Eğile Altıdaki Betoare Kolo Kesitlerii Doatı Hesabı Ahet

Detaylı

CAM TEMPERLEME FIRININDA ENERJİ ANALİZİ

CAM TEMPERLEME FIRININDA ENERJİ ANALİZİ MAKALE CAM TEMPERLEME FIRININDA ENERJİ ANALİZİ Yavuz Tütüoğlu * TMMOB Makia Mühedisleri Odası Kocaeli Şubesi, İzit-Kocaeli yavuztutuoglu@oorgtr Alpasla Güve TMMOB Makia Mühedisleri Odası Kocaeli Şubesi,

Detaylı

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları:

Şekil 1. Bir oda ısıtma sisteminin basitleştirilmiş blok diyagram gösterimi. 1. Kontrol Sistemlerindeki Blok Diyagramlarının Temel Elemanları: Blok yaraları: araşık teler, rok alt ten rrne uyun şeklde ağlanaından oluşur. Blok dyaraları, her r alt te araındak karşılıklı ağlantıyı öterek n kullanılır. Blok dyaralarında her r alt ten fonkyonu ve

Detaylı

Isı Pompası Ve Kombi Isıtma Sistemleri Maliyet Analizlerinin Karşılaştırılması

Isı Pompası Ve Kombi Isıtma Sistemleri Maliyet Analizlerinin Karşılaştırılması Makie Tekolojileri Elektroik Derisi Cilt: 6, No: 2, 2009 (39-47) Electroic Joural of Machie Techoloies Vol: 6, No: 2, 2009 (39-47) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastiralar.co e-issn:1304-4141 Makale

Detaylı

KOMPOZİT MALZEMELERİN SÜRÜNME DAVRANIŞININ SONLU ELEMANLAR YÖNTEMİ İLE İNCELENMESİ

KOMPOZİT MALZEMELERİN SÜRÜNME DAVRANIŞININ SONLU ELEMANLAR YÖNTEMİ İLE İNCELENMESİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING OLLEGE MÜHENDİ SLİ K BİL İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SIENES YIL İLT SAYI SAYFA : 2004 : 0 : : 59-66 KOMPOZİT

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

Binalarda Su ve Toprak Kaynakl Is Pompas Sistemlerinin Kullan m Avantajlar ve Türkiye deki Baz Uygulama Örnekleri

Binalarda Su ve Toprak Kaynakl Is Pompas Sistemlerinin Kullan m Avantajlar ve Türkiye deki Baz Uygulama Örnekleri Bnalarda Su ve Toprak Kaynakl s Popas Sstelernn Kullan Avantajlar ve Türkye dek Baz Uygulaa Örnekler Tunç Korun; Mak. Müh. TTMD Üyes :~' ÖZET Aerka Brleflk Devletlernde ve Avrupa Ülkelernde kullan konusunda

Detaylı

Bir Telekomünikasyon Probleminin Matematiksel Modellenmesi Üzerine

Bir Telekomünikasyon Probleminin Matematiksel Modellenmesi Üzerine Br Telekomükasyo Problem Matematksel Modellemes Üzere Urfat Nuryev, Murat Erşe Berberler, Mehmet Kurt, Arf Gürsoy, Haka Kutucu 2 Ege Üverstes, Matematk Bölümü, İzmr 2 İzmr Yüksek Tekolo Esttüsü, Matematk

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

BUZDOLABI KABĠN ĠÇĠ SICAKLIK SALINIMLARININ MODELLENMESĠ

BUZDOLABI KABĠN ĠÇĠ SICAKLIK SALINIMLARININ MODELLENMESĠ ESKON 205 / ERMODĠNAMĠK SEMPOZYUMU Bu br MMO yayınıdır MMO bu yayındak fadelerden, fkrlerden, toplantıda çıkan sonuçlardan, teknk blg ve bası hatalarından sorulu değldr. BUZDOLABI KABĠN ĠÇĠ SICAKLIK SALINIMLARININ

Detaylı