Electronic Letters on Science & Engineering 2(1) (2006) Available online at

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Electronic Letters on Science & Engineering 2(1) (2006) Available online at www.e-lse.org"

Transkript

1 Electronc Letters on Scence & Engneerng ) 6) Avalable onlne at An Approxmaton to Multsource Suppler Selecton Problem usng Extended Fuzzy AHP and GA Bars Yuce, Ibrahm Dokuzer Sakarya Unversty, Industry Engneerng Department, Esentepe Campus Sakarya Unversty, Computer Engneerng Department,Esentepe Campus Abstract:Nowadays, wthn new mportant strateges for producton prce and qualty, suppler plays a key role n the corporate competton. Because of ths reason, suppler selecton must be consderate for all corporate. Suppler selecton may nclude a mult crtera problem whch ncludes both qualtatve and quanttatve factors for example purchase cost, qualty level, suppler rsk etc... Selectng best suppler s necessary to make a trade off between tangble and ntangble factors. In ths work we suggested to ntegrate Analytc Herarchy Process AHP), Fuzzy AHP and Genetc Algorthm GA) to determne best supplers. Fuzzy set wll be utlzed lngustc factor to organze crtera and sub crtera weght,wth parwse compare wth fuzzy AHP; t wll be utlzed to organze all factors and whch assgned weghtng for related factor. Fnally, a hypothetcal suppler selecton problem wll be solved by proposed GA) algorthm. Keywords: Fuzzy Logc; Analytc Herarchy Process; Genetc Algorthms Çoklu Tedarkç Seçm Problemne Gensletlms Bulank AHP ve GA Yaklasm Özet: Günümüzde sletmelern arasndak rekabette üretm malyet ve kalte strateler klt rol oynar.bu sebebden dolay tedarkç seçm tüm sletmeler çn göz önünde bulundurulmaldr.tedarkç seçm satn alma malyet, kalte durumu, tedarkç rsk gb kalte ve mktar a dayal br çok krtere bagl problemler çereblr.en y tedarkçy secmek çn soyut ve somut faktorler arasnda lsk kurmak gerekldr. Bu çalsmada en y tedarkçy belrlemek çn AHPAnalytc Herarchy Process),Bulank-AHP Fuzzy-AHP) ve Genetk AlgortmaGA) nn brlkte kullanlmas önerlmstr. Alakal faktörlere atanan agrlklar faktörlern kend aralarnda snfladrlmasna yardmc olacaktr. Sonuç olarak kuramsal tedarkç seçm problem önerlen genetk algortma tarafndan çözülmüs olacaktr. Anahtar Kelmeler: Bulank Mantk, Analtk Hyerars Islemler, Genetk Algortmalar Reference to ths paper should be made as follows bu makaleye asagdak seklde atfta bulunulmal): B.Yuce-I.Dokuzer, An Approxmaton to Multsource Suppler Selecton Problem usng Extended Fuzzy AHP and GA, Elec Lett Sc Eng, vol. ), 6), -.Grs Hemen hemen tüm endüstrlerde ham madde ve ürünü olusturan parçalarn malyet ürünün ana malyetn olusturur.degsk fabrkalarn tedarkç seçmnde toplam malyet,servs durumu, kalte oran, zamannda teslm gb degsk krterlere gore secm yapmas talebn karslanmasn zor br problem halne getrr. Bu manada sletmenn satn alma bölümü anahtar rol oynar.bu nedenden dolay bu model çok degskenl karar verme problem olarak adlandrlr.[].stamm and Golhar[],Ellram[], Roa ve Kser[] srasyla,8 ve 6 adet tedarkç seçm krter belrlemstr. En y tedarkçy bulmak çn soyut ve somut krterler arasnda y br seçm yaplmaldr. Correspondng author ISSN All rghts reserved.

2 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Bu makalede dlsel degmler den olusan kesn olmayan agrlklar çn rough set metodu kullanlms daha sonra belrlenen faktörlern agrlklar kullanlarak her tedarkçnn agrlklar belrlenmstr.son olarak genetc algortma kullanlarak her spars ksm çn en y tedarkç belrlenmstr...bulankfuzzy)ahp yaklasm Model Bulank küme teors kesn olamayan belrsz durumlar çn üstünlügünü kantlamstr. Bulank küme teors nsanlarn karar verrken kullandklar yaklask blglere ve dlsel degskenlere benzer br yaklasmla belrszlkler çözer.tedarkç seçm slemnde tedarkçlern agrllar bulank numaralar olarak verlr. Bz bulank küme kurallarn bulank olan bu agrlklar kesnlestrmek çn kullanablrz. Genel olarak tedarkç seçm problemnde Felx T.S. Chan ve Nra Kumar[6] gb arastrmaclar bulank küme teors le AHP y kullanr veya A.Amd, S.H.Ghodsypour ve C.O Bren[] gb arastrmaclar bulank mantk le çoklu amaç problem çözümünü arastrr...analtk hyerarsk slemlerahp) AHP Saaty[8] tarafndan gelstrlmstr. Bu yöntem kendsn br çok özellge göre karar verme metodolos olarak kantlamstr.özellkle brbrleryle lskl faktörlern brlesmesyle olusan karmask problemlern çözümünde güçlüdür.ahp tekng krter çft arasndak önem derecesn karslastrr ve belrler.eger problemde br kstlama yoksa AHP makalede soz edlen tek kaynak problemlernde karar vermek çn yeterldr.fgür te tedarkç seçm fak törlernn hyerarsk yapsn göreblrz. Eger alternatf l ve nn deger srasyla W ve W J se I den ye olan alternatve lern üstünlügü w, w / w ye esttr.bundan dolay çftler araskarslastrma matrs I w / w w / w. w / n w / w w / w. w / w n, w n / w w n / w. w n / w n, Bu matrs dek her elementn normallestrlms mktarlar gerçek agrlklaryla tutarllk gösterr.[] w I nc elemann agrlg = n w = den ye kadar malyet gb negatve krterler çn alternatflern öncelg w / w ye esttr.eslestrlms karslastrma matrs ; Bu matrs alternatflern normalze edlms tersler ne est olan tüm normalze edlms sutun degerler le normalze edlms elementlern agrlklarylada tutarllk sergler. w nc elemann agrlgnegatf krter çn) = [] n = w.bulankfuzzy) AHP

3 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Bulank küme teors yaklask ve tam olarak belrl olmayan durumlarda nsann muhakeme yetenegne benzer br seklde karar verdg çn avantaldr.bulank küme verler snrlar çok belrgn olmayan br seklde snflara ayrr. Genelde AHP brebr karslastmada est, lml,güçlü,daha güçlü mükemmel gb 9 ayr kademede nsan davransna benzeyen br sstem kullanr.ayrk AHP tablosunun kullanm ko laylg ve bastlk gb avantalar olmasna ragmen bulank durumlar çözmede yeterl degldr.nsan hs ve davranslarnn dlsel degerlern kesn saylarla temsl etmek tam olarak mümkün degldr.bell br aralk dahlnde karar vermek sabt br say le karar vermeye gore daha y sonuç verr.bu sebebten dolay br karar degskenn dgerne gore üstünlügüne karar verrken üçgensel bulank numaralar kullanlr. Yapay alan analz metodu üçgensel bulank numaralar temel alarak agrlklarn en son öncelklkernn karar verlmesnde kullanlr ve bu teknk bulank kapsaml AHP fuzzy extended AHP) olarak adlandrlr. FEAHP)[6].FEAHP en y tedarkçnn seçmnde kullanlan verlern netlestrlmes görevn basaryla üstlenr. Bu teknk kaltesel ve mktarsal verler olan çoklu özellge bagl karar problemlernde etkn olarak kullanlr.bu makalede bz sekl- gözüktügü gb üçgensel bulank numaralar kullandk. µa ly) r y) A A a a a A Sekl-.Üçgensel üyelk fonksyonu Her nesne çn le deger arasnda br üyelk dereces atanms olan üyelk fonksyonu tarafndan bulank küme tanmlanr.[,].bu kümede saysal degerlern aralgn belrlemek çn büyük, orta, küçük gb dlsel degskenler vardr.asagda tanmlandg gb bulank numarlar bulank kümedr. M = { x, µ M x), x R} x R n elemandr. x ve µ M x) R den [,] aralgna yaklasarak devam eder ve µ M x) her bulank küme üyelk fonksyonunda estlk. de gösterldg gb tanmlanr.[6] M x a) / a a) a x a x) = a x) / a a ) a x a dger µ ). Her br AHP degernn Fuzzy-AHP Modelyle hesaplanmas Eger nesne kümes P= { p, p... p n } le fade edlrse hedef kümes Q= { q, q... q n } le fade edlr.daha sonra kapsaml kavram analzne göre [6] tüm nesneler srasyla alnr ve kavram analz O gerçeklestrlr m Her nesne çn gözlenen analz degerler A o, A o,... A o =,,...,n, saretler le fade edlr. k=,,...m) k A o

4 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Üçgensel bulank numaralardr. I nc nesne çn bulank yapay kapsam degerler estlk) de tanmlanmstr. F m k= = m n m A k o A k o k= = k= k A o deger m kapsam analz deger le ksm matrsden delen kapsam analz degernn çarpmyla denklem. dek gb bulunablr. ) m k= n A k o m = k= m m m = a k, ak, ak ) k= k = k = k A o = k= n m k A o nn deger estlk. de görüldügü gbdr; = n n n a k, ak, ak = = = Estlk. nedenyle estlk. ü estlk. e dönüstürmelyz.,, n n n ak ak ak = = = A = { a, a, a } A = { a, a a } V nn olaslk dereces Px,y) çftnde x y oldugu zaman, A A ) = sup[ mn µ A x), µ x)) ] A x y A x) = µ y) = A A A seklnde tanmlanr. µ daha sonra V ) = elde edlr. 6) A ve A convex numaralar olduklarnda eger a a se V A A) = ve eger V A A ) se V A A) = hgt A A ) =µ ) olur ve d y eksenn kesen en yüksek kesm noktasdr. A d, a, a A = a a, oldugunda D A A A = a ) and, a ) µ ve µ A nn arasndadr.bz olaslgn derecesn asagdak estlktek gb hesaplayablrz. a a V A A) = hgt A A ) = 7) a a) a a) A ve A nn karslastrlmas çn V A A) ve V A A ) degerlerne htyaç vardr.convex bulank saylarn olaslk dereces convex bulank saydan daha büyük olmaldr A =,,..., ) söyle tanmlanablr; V A, A,... A ) = V A A ) and A A ) and... A A ) A [ ] = mn A A ), =,,..., k. 8) f mp ) = mn V F F ), 9) ) )

5 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - T =,,..., n;. çn P = =,,... n) de agrlk vektörü W P = m P ), m P ),... m P n )) olarak tanmlanr. W P normalze edldkten sonra bulank olmayan alternatfler arasndak öncelk agrlklarn veren T W = m P ), m P ),... m P n )) ) normalze edlms agrlk vektörlern elde ederz.[6]..genetk Algortma Genetk algortma br çok problem çözümünde kullanlan karslastrmaya dayal modern br teknktr. GA John Holland tarafndan 96 ylnda gelstrlmstr. GA özellesms sertlern saysal saysal kromozom) degerleryle çalsr. Her kromozoma ayr ayr uygunluk degerler uygunluk fonksyonun sonuçlarna göre atanr. Dgerlerne göre y kromozomlar dger kromozomlara göre daha uzun süre hayatta kalacak ve böylece yenden üretlme ve yavru olarak ana kromozomlardan gelen özellkler alma avanta daha çok bulacaktr. Bu karslastrma optmzasyonu algortmas dogal genetk mekanzmay taklt etmektedr. Eger br problemn çözüm uzay çok büyük se GA y problem çözümünde kullanablrz. GA da lk öce çözüm havuzu belrlenrher çözüm br kromozom olarak adlandrlr ve her kromozom problemn br özellg olarak gen haln alr. Genel de baslangç havuzu rastgele olusturulur.[7]. Problem Tanm Bu makalede bz çok faktörlü br tedarkç seçm problem çn br model gelstrdk. Modelmze btms br ürünün br çok alt ko mpleler mevcut, bu alt komplelernde brden fazla tedarkçden sagladgmz düsünürsek bunlarn herbr farkl bölgelerde olableceklernden dolay modelmz çoklu kaynak tedarkç seçm poblem halne dönüsür.ayrca problem olusturan faktörler saylablr ve saylamayan faktörlern bulunmasndan dolay problem komplekslesmektedr.bunun çn gelstrdgmz algortmann admlar söyledr.. Fuzzy AHP kullanlarak dlsel olan krter agrlklar net hale getrrlerek her br krtern problem çndek agrlklarn belrledk..ga en y tedarkçler ve bunlara atanacak optmumma yakn spars mktarlar belrlenr. Mevcut makalede uygulanan modeln algortmas Sekl- de gözükmektedr. Fuzzy küme teores Tedarkçler gözden geçrme Ver toplama Her br krter ve altkrtern agrlgn belrleme Fuzzy AHP le fnal Agrlgn belrleme Baslangç havuzunun populasyon büyüklügünü belrle Çaprazlama orann belrle Mutasyon orann belrle Sona erdrme kuraln, nesl boyutunu vb.lern bul. nesl Dur Hayr Gözden Geçr Yenden Üret Çaprazla Mutasyon Evet En y tedarkçler ve onlara atanacak mktarlar belrleme Genetk Algortma +. nesl Dur

6 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Sekl-. Mevcut modeln algortmas 6. GA ve Fuzzy AHP le br model gelstrme Öncelkle, Sekl- de görülen ve tedarkç seçm slemn etkleyen krter ve alt krterlern ve bunlarn agrlklarn belrlemelyz. Tedarkç Degerlendrme ve Seçm Malyet C) Kalte C) Servs Performans C) Tedarkç Profl C) Rsk Faktörü C) C C C C C C C C C C C C C Tedar. Tedar. Tedar Tedar Tedar Tedar 6 Sekl-. Tedarkç seçm hyerarss Sekl- te olan krterler ve o krterlere at krterler görülmektedr. Öncelkle, her br krtern agrlgn belrlemek çn belrsz ve dlsel verlerden olusan kl karslastrma matrsn fuzzy set teorsn kullanarak net degerlere ndrgedk ve bu degerlerde krter üstünlügününü göstermek çn AHP yöntem le belrlerz.modelmzde fuzzy degerler tablo,,,, te gözükmektedr.amacmz bu degerlerden net degerler elde edp bunlarda AHP yöntemyle kl kyaslama yaparak her br krtere at agrlklar bulmak.son admdada AHP den elde edlen verler Genetk Algortmada kullanarak en y tedarkç ve ona at spars mktarmktarn belrlemektr. 6

7 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Satnalma sorumlumuz bütün aday tedarkçler ncelyor ve ncelemeden sonra bu tedarkçlere her br krterler açsndan sahp oldugu durumu göre puan veryor.bu agrlklandrmalar bazen dlsel bazende net deger olablyor.dlsel degerler çn üçgensel fuzzy üyelk fonksyonlar kullanlms ve tedarkçnn sahp oldugu durum eger dlsel veya fuzzy br fade se tablo. dek, gözüken Saaty nn-9 skalasn fuzzy olarak kullarak puanlama yapacak. Tablo. Saaty n -9 skalasnn fuzzy sstemde gösterm Dlsel Ifadeler a a a Est Est -Az Az Az Az üstün Az üstün 6 Az üstün Çok üstün 6 7 Çok üstün Çok üstün üstün üstün Tablo. Ana krterler çn Fuzzy puanlama Krter AK AK AK AK AK Agrlk AK AK AK AK AK,,),,),,),,),,),6 /,/,/),,),,),,),,). /,/,/) /,/,/),,),,),,).6 /,/,/) /,/,/) /,/,/),,),,).7 /,/,/) /,/,,/) /,/,/) /,/,/),,).6 Her br krter fuzzy küme le srassyla söyle tanmlanr ; F, F, F, F, F F =,, 9) /.7,/.97, /.)=.6,.7,.6) F =9.,.,.) /.7,/.97, /.)=.7,.9,.96) F =., 7.8,.) /.7,/.97, /.)=.,.8,.8) F =.6,.8, 6.67) /.7,/.97, /.)=.68,.,.96) F =.9,.67,.67) /.7,/.97, /.)=.6,.,.8) F nn F k ya göre k. mümkünyet dereces; estlk 6-8 dek gbr. V F F ) =, V F F) =, V F F ) =, V F F ) =; 7

8 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) V F F) = =.8 ; V F F ) = V F F ) = ;.9.96 ).7.6) V F F ) =, V F F ) =.9 ; V F F ) =.6 ; V F F ) = ; V F F) = V F F) =. ; V F F ) =.7; V F F ) =.9 ; V F F ) = V F ) F =.6; V F F ) =.7; V F F ) =. ; V F F ) =.9 F F F F MC )= mn { V ), V ), V F F ), V F F ) }=mn{,,,}=benzer yolla MC )=.8 ; MC )=.9; MC )=. ; MC )=.olarak bulunur. Böylece rter agrlk vektörü W C ={,.8,.9,.,.} T dr. Smd bu degerler normalze etmelyz, çünkü krter agrlklar toplamnn olmasn styoruz. Eger onlar normalze ederesek krter agrlklarmz srasyla W C ={,6,.,.6,.7,.6} T olark bulunur. Benzer yöntem alt krterlerede uygularsak tablo,,,6 dak degerler buluruz. Tablo. Kalte faktörünün alt faktörler çn fuzzy degerler. Alt Krter SC SC SC SC SC SC SC SC Agrlk,,) /,/,/),,6),,).,,),,) /,/,),,).98 /6,/,/),,),,) /,/,). /,/,/) /,/,),,),,).7 Tablo. Servs performansnn alt faktörler çn fuzzy degerler. Alt Krter SC SC SC SC SC SC Agrlk,,),,6) /,/,/). /6,/,/),,),,).,,) /,/,),,).8 Tablo. Tedarkç profl krternn alt krterler çn fuzzy degerler. Alt Krter SC SC SC Agrlk SC SC,,),,),,).686 /,/,/),,),,).7 8

9 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - SC /,,) /,/,/),,).7 Tablo.6 Rsk faktörünün alt faktörler çn fuzzy degerler Alt Krter SC SC SC Agrlk SC SC SC,,),,6) /,/,/). /6,/,/),,),,).,,) /,/,),,).8 7. Çoklu kaynak tedarkç seçm slem çn örnek br model Bu makaledek amacmz H.S Wang and Z.H.Che.[9]. Gb baz arastrmaclardan lham aldgmz fuzzy AHP metodunu çoklu kaynak modelne uygulayarak tedarkçlern agrlklarn bu yöntemle belrleyerek buldugumuz bu agrllarda GA da uygunluk fonksyonunda kullandk daha sonra en y tedarkç ve bunlara verlecek spars mktarlarn belrledk. Bunu yaparken Sekl- te görülen örnek model üzernde br çalsma yaptk ve bu ürün agacndan hareketle modelmz lerlettk. Ürün agacndak her br ürün parçadan olusmaktadr.) R T W X Y Z Sekl-. R ürününe at ürün agac Bz bu çalsmada özellkle R btms ürünün alt parças olan ve Sekl-. te görülen X ürünü ve onu lusturan hammalzemelerle lglendk. X A B C D E Sekl-. X yar mamulunün ürün agac Tablo.7 de X yarmamulunü olusturan komponentlern tedarkçler gözükmektedr. 9

10 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Tablo7.Her br hammadde ve bunlar saglayan tedarkçler A B C D E Tedarkç,, Tedarkç,, Tedarkç Tedarkç, Tedarkç, Tablo8.Tedarkçlerle lgl kaltatf ve kanttatf blg Tedar. Malyet $) *) Teknk Sevye Bulank) Ölçek *) Kusur Oran %) *) Güvenrlk Oran %) Esneklk Oran %) Zamannda Teslm Oran %) Yant Oran %) S A B S A B.. Olduk S A D 6 Çok S B E Olduk S C D E 6 Olduk Tedar. Ilet sm Durumu Bulank) Fnansal Durum Bulank) Tedarkç Kapastes Bölüm) Tedarkç Tecrübes Yl) Cografk Durum Bulank ) *) Mekank Durum Bulank ) *) Çalsan Durumu Bulank ) *) S A 8 Çok B Olduk. - Çok S A Çok Çok B 7 Olduk. - Çok Çok S A Çok 6 Olduk. Olduk. Çok D Çok S B Çok Çok Çok E 6 S C D Çok

11 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - E Olduk. - *) n = w w, n w = w Çok. Olduk. - Çok Tablo.9 Fnal tedarkç agrlklar Tedarkçler A ürünü B ürünü C ürünü D ürünü E ürünü Tedarkç Tedarkç Tedarkç Tedarkç Tedarkç Tedarkç agrlklarnn bulundugu sonuç tablosu tablo.9 da görülmektedr. Bu çalsmada teadrkç seçm problem çn br örnek uygulama kullandk. Modelmzde kapaste, talep, zamannda teslmat, klate kst göz önüne alnark hazrland ve ürün agacmz bu örnekteknden çok büyük olursa bunun çnde br temel ve örnek çalsma olmas açsndan kullanld. Estlk.. da GA çn uygunluk fonksyonumuz gözükmektedr. Bu çalsma çn düsündügümüz GA çn kromozon yaps Sekl-6 dak gbdr. En bastan brnc oka kadar A hammaddes, devamnda B hammaddes knc oktan sonra C, üçüncü oktan sonras D, dördüncü oktan sonra E hammaddes göstermektedr. Ayrca dkkat edersek her br gende br veya daha fazla sradan olusan br dz yaps vardr buda spars verlen br hammaddenn eger spars en y tedarkç tarafnan karslanamyorsa srasyla dahaaz y olan tedarkçeden toplamlar karslanncaya kadar dzy dolduruyo eger spars bu tedarkç toplam tarfndan karslanamazsa spars reddedlr. Karslayamyorsa en tedarkç ve onu saglayan tedarkçler enyden en kötüye dogru sralanamaktadr; örnegn Sekl-6 da gözüken gözükmektedr.ga çn uygunluk fonksyonu estlk. da gözükmektedr. Parent chromosomes Çocuk kromozom Çaprazlama noktas Sekl-6. Çaprazlama slem Uygunluk Fonksyonu:

12 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Talep, kapaste, zaman ve teslmat kstlar altnda Kabul edleblr br uygunluk fonksyonu toplam karn maxmzasyonuyla saglanr. S. Parçann tedarkç kümes K.tedarkç tarafndan sunulan mktar w. Ürün çn teadrkçnn agrlg q. Tedarkç tarafndan. Ürün çn önerlen hatal ürün oran. Q. Parçann kabul edleblr kusurlu ürün oran t. Tedarkçnn. ürün çn önerdg zamannda teslmat oran. T.parça çn satn almacnn kabul ettg mnmum zamannda teslmat oran C tedarkçnn. ürün çn önerdg maxmum tedarkç kapastes. D. ürün toplam taleb X.tedarkçden alnacak.ürün mktar N. tedarkçden soars edlme oran Maxmum w X n m = = N Kst:. tedarkçnn. ürün çn sagladg Kapaste mktar C X kapaste mktarndan az olmaldr. K X N K C S ) Talep kst: Her br parçann toplam spars. satnalmacnn toplam taleb; S X = D N K S Kalte kst: Q Satnalmacnn.ürün çn Kabul edleblr kusutlu ürün oran ve q. ürünün kusurlu ürün oran, kalte kst asagdak gbdr. q X N S S Q D

13 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - Teslmat kst: T satnalmacnn mnmum zamannda kabul edleblr ürün oran ve. tedarkçnn. ürün çn zamannda teslm edlen ürün oran bu asagda gözükmektedr. t ) X T ) D S S S I N = X / X K, S Amacmz elmzde geçerl br modeln olmasn saglamak. Bundan dolay numerk br örnek kullandk ve bunun çalsmas performe etmektr. 7.. Saysal br örnek Bu problemn sonucunda satnalmac en y tedarkçy ona atanacak spars mktarn belrlemek styor. Örnek olarak A,B,C,D,E ve adet spars verlms olsun. Her br hammadde çn srasyla kabu ledleblr zamannda teslm edlen ürün oran.8,.7,.9,.8,.8,maxmum kabul edleblr kusurlu ürün oran.,.,.,.,.. Her br parça çn fnal agrlg tablo.9da görülmek üzeredr.uygunluk fonksyonumuz söyle bulunur; Ugunluk fonksyonu Max Z=. N X +, N X +, NX +,99 NX +,7 N X +, N X + N X +,N X +,6 N X +, N X +,96 N X N X + NX + NX = NX + N X + N X = N X = N X + N X = N X + N X = X + X + X 8N + N + N X + X + X N + N + N X N X + X N + N X + X 6N + N. N X +. NX +. NX 7. NX +. N X +. N X. N X.6 N X +. N X 7. N X +. N X 7. N X +. NX +. NX. NX +. N X +. N X 7

14 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) -. N X. N X +. N X. N X +. N X N = X / X / S I X S I X =,,) ; N = X / =,) ; N = X X S I / X =,) S I X, X,X, X, X, X,X,X, X, X, X N, N, N, N, N, N, N, N, N, N, N =,,) ; N = X / S I X =) ; N GA nn sonucubr genetk program yardmyla mutasyon oran. çaprazlama oran.9 ve populasyon büyüklügü ve 67 tearsyon 8 dakka sürdükten sonra fnal deger söyle bulunmustur; X: 799,99; X: 97,89; X:,;X: 98,79; X: 778,77; X:,7; X: 99,977; X: 6,9; X: 9,8;X:,9; X: 999,; N =., N =.6, N =., N =., N =.9, N =.9, N =, N =.78, N =.6; N =.; N =.667 = Sekl-7. Sonuç kromozomu 8. Tartsma ve Sonuç Bu makalede bütünlesk br model tartslmstr ve amacmz çoklu kaynak br tedarkç seçm problemne etkl br model üretmektr.ve burda belrsz tedarkç faktörlern fuzzy küme ve AHP nn bütünlesmesn saglayarak bu belrsz degerler, dlsel degerler slem yaplacak hale getrp ardndan bunlar kl karslastrmayla brbrlerne gore kyaslamasn yaptk. Son olarak buldugumuz bu agrlklar genetk algortmann uygunluk fonksyonunda katsay olarak kullanarak en y tedarkçler ve onlardan spars edlecek mktarlar genetk algortma le belrledk. Bu güne kadar br çok makalede tedarkç seçm slem yaplms ancak br çogu çoklu kaynak konusuna egelmemstr bu makalede hem bu konu düsünülmüs hemde belrsz veya dlsel olan degerlere kars etkn br çözüm gelstrlmeye çalslmstr References Referanslar) [l] A. Ghobadan, A. Staner, T. Kss, A computersed vendor ratng system. Proc. st Internat. Symp. Logstcs. 99. pp. -8. [] A.Amd, S.H. Ghodsypour,C. O'Bren,Fuzzy multobectve lnear model for suppler selecton n a suppler chan Int.ourn.of Producton economcs..-.

15 Bars YÜCE,Ibrahm DOKUZER / Elec Lett Sc Eng ) 6) - [] C.L. Stamm, D.Y. Golhar,JIT purchasng: Attrbute classfcaton and lterature revew. Prod. Plannng Control. 99.), 7-8. [] L.M. Ellram,The suppler selecton decson n strategc partnershps. J. Purchasng Mater. M,gmt ). 8-. [] C.P. Roa, G.E. Kser,Educatonal buyers perceptons of vendor attrbutes. J. Purchasng Mater. Mgmt.98.6,-. [6] F. T. S Chan, N.Kumar,Global suppler development consderng rsk factors usng fuzzy extended AHP based approach.. [7] W. Xa, Z.Wu Suppler selecton wth multple crtera n volume dscount envorements,the Journal of Managemnt Scence,.-. [8] TL. Saaty. The analytc herarchy process. Newyork: CGraw-Hll; 98. [9] A.Teltumbe. A framework for evaluaton ERP procects.int. ounarnal of producton research ;87):7-. [] L.R Wnkler Decso n modelng and ratonal chose: AHP and utlty theory. Management Scence ):7-7 [] T. L. Saaty, J. M Alexander, Thnkng Wth Models: Mathematcal Models n the Phscal Bologcal and Socal Scences. 98. Chapter &, Pergamon Press, London [] S.H Ghodsypour, C. O Bren A decson support system for suppler selectn usng an ntegrated analytc hearshy process and lnear programmng.998.int. Producton Economcs 99- [] Kwong CK, Ba H. Determnng the mportance weghts for the customer requrements n QFD usng a fuzzy AHP wth an extent analyss approach IIETransactons ;7):69 6. [] Ross TJ. Fuzzy logc wth engneerng applcatons. New York: McGraw-Hll Book Co; 997. [] Zadeh LA. Fuzzy sets. Informaton and Control 96;8.8. [6] Chang DY. Extent analyss and synthetc decson. Optmzaton technques and applcatons. vol.. Sngapore: World Scentfc;99. p.. [7] F.T.S Chan, S.H Chung Multcrteron genetc optmzason for due date assgned dstrubton network problems, Decson Support Systems.9) [8] H. Dng, L. Denyoucef, X. Xe A smulaton optmzaton approach usng genetc search for suppler selecton Wnter smulaton conference.6-67 [9] H.S. Wang, Z.H. Che An ntegrated model for suppler selecton decsons n confguraton changes. 6

AHP-TOPSIS YÖNTEMİNE DAYALI TEDARİKÇİ SEÇİMİ UYGULAMASI *

AHP-TOPSIS YÖNTEMİNE DAYALI TEDARİKÇİ SEÇİMİ UYGULAMASI * Ekonometr ve İstatstk Sayı:13 (12. Uluslararası Ekonometr, Yöneylem Araştırması, İstatstk Sempozyumu Özel Sayısı) 2011 1 22 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ AHP-TOPSIS

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

TEDARİKÇİ SEÇİMİNDE ANALİTİK HİYERARŞİ PROSESİ VE HEDEF PROGRAMLAMA YÖNTEMLERİNİN KOMBİNASYONU: OTEL İŞLETMELERİNDE BİR UYGULAMA

TEDARİKÇİ SEÇİMİNDE ANALİTİK HİYERARŞİ PROSESİ VE HEDEF PROGRAMLAMA YÖNTEMLERİNİN KOMBİNASYONU: OTEL İŞLETMELERİNDE BİR UYGULAMA TEDARİKÇİ SEÇİMİNDE ANALİTİK HİYERARŞİ PROSESİ VE HEDEF PROGRAMLAMA YÖNTEMLERİNİN KOMBİNASYONU: OTEL İŞLETMELERİNDE BİR UYGULAMA Yrd. Doç. Dr. Meltem KARAATLI * Yrd. Doç. Dr. Gonca DAVRAS ** ÖZ Otel şletmelernde,

Detaylı

AN IMPLEMENTATION OF INTEGRATED MULTI-CRITERIA DECISION MAKING TECHNIQUES FOR ACADEMIC STAFF RECRUITMENT

AN IMPLEMENTATION OF INTEGRATED MULTI-CRITERIA DECISION MAKING TECHNIQUES FOR ACADEMIC STAFF RECRUITMENT Journal of Management, Marketng and Logstcs (JMML), ISSN: 48-6670 Year: 04 Volume: Issue: AN IMPLEMENTATION OF INTEGRATED MULTI-CRITERIA DECISION MAKING TECHNIQUES FOR ACADEMIC STAFF RECRUITMENT Kemal

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Bulanık TOPSIS ve Bulanık VIKOR Yöntemleriyle Alışveriş Merkezi Kuruluş Yeri Seçimi ve Bir Uygulama

Bulanık TOPSIS ve Bulanık VIKOR Yöntemleriyle Alışveriş Merkezi Kuruluş Yeri Seçimi ve Bir Uygulama EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 14 Sayı: 3 Temmuz 2014 ss. 463-479 Bulanık TOPSIS ve Bulanık VIKOR Yöntemleryle Alışverş Merkez Kuruluş Yer Seçm ve Br Uygulama Selecton of Shoppng Center

Detaylı

Çok ölçütlü karar verme yaklaşımlarına dayalı tedarikçi seçimi: elektronik sektöründe bir uygulama

Çok ölçütlü karar verme yaklaşımlarına dayalı tedarikçi seçimi: elektronik sektöründe bir uygulama 346 Çok ölçütlü karar verme yaklaşımlarına dayalı tedarkç seçm: elektronk sektöründe br uygulama Murat ARIKAN 1, Berat GÖKBEK 1 1 Endüstr Mühendslğ Bölümü, Mühendslk Fakültes, Gaz Ünverstes, Maltepe-Ankara

Detaylı

YAZILIM GELİŞTİRME PROJELERİNİN GERÇEK OPSİYON DEĞERLEME MODELİYLE ÇOK ÖLÇÜTLÜ BULANIK DEĞERLEMESİ

YAZILIM GELİŞTİRME PROJELERİNİN GERÇEK OPSİYON DEĞERLEME MODELİYLE ÇOK ÖLÇÜTLÜ BULANIK DEĞERLEMESİ İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl: 8 Sayı: 5 Bahar 009/ s. 3-6 YAZILIM GELİŞTİRME PROJELERİNİN GERÇEK OPSİYON DEĞERLEME MODELİYLE ÇOK ÖLÇÜTLÜ BULANIK DEĞERLEMESİ A. Çağrı TOLGA, Cengz KAHRAMAN

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

BALİ KHO BİLİM DERGİSİ CİLT:23 SAYI:2 YIL:2013. BULANIK BOYUT ANALİZİ ve BULANIK VIKOR İLE BİR ÇNKV MODELİ: PERSONEL SEÇİMİ PROBLEMİ.

BALİ KHO BİLİM DERGİSİ CİLT:23 SAYI:2 YIL:2013. BULANIK BOYUT ANALİZİ ve BULANIK VIKOR İLE BİR ÇNKV MODELİ: PERSONEL SEÇİMİ PROBLEMİ. BULANIK BOYUT ANALİZİ ve BULANIK VIKOR İLE BİR ÇNKV MODELİ: PERSONEL SEÇİMİ PROBLEMİ Özkan BALİ ÖZET Personel seçm organzasyonların başarısını etkleyen en öneml problemlerden brdr. Bu seçm, belrszlk çeren

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 28, 224-234, 2010 PhD Research Artcle / Doktora Çalışması Araştırma Makales APPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Detaylı

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA

BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA Gaz Ünv. Müh. Mm. Fak. Der. J. Fac. Eng. Arch. Gaz Unv. Clt 22, No 4, 855-862, 2007 Vol 22, No 4, 855-862, 2007 BULANIK AKIŞ TİPİ ÇİZELGELEME PROBLEMİ İÇİN ÇOK AMAÇLI GENETİK ALGORİTMA İzzettn TEMİZ ve

Detaylı

TRANSPORTATION MODE SELECTION THROUGH LOGISTICS MANAGEMENT: AN APPLICATION IN THE TEXTILE INDUSTRY

TRANSPORTATION MODE SELECTION THROUGH LOGISTICS MANAGEMENT: AN APPLICATION IN THE TEXTILE INDUSTRY DA Kerem Toker da, uygun alternat - d mod sonucunda, karayolu - denzyolu - Anahtar Kelmeler: TRANSPORTATION MODE SELECTION THROUGH LOGISTICS MANAGEMENT: AN APPLICATION IN THE TEXTILE INDUSTRY ABSTRACT

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 29, 244-260, 2011 Research Artcle / Araştırma Makales PERFORMANCE EVALUATION USING AHP - VIKOR AND AHP - TOPSIS APPROACHES: THE

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI

MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI Fath ÇİL GAZİ ÜNİVERSİTESİ Mühendslk Mmarlık Fakültes Endüstr Mühendslğ Bölümü 4. Sınıf

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

BALİ-GENCER AHP, BULANIK AHP VE BULANIK MANTIK LA KARA HARP OKULUNA ÖĞRETİM ELEMANI SEÇİMİ. Özkan BALİ 1 Cevriye GENCER 2 ÖZET

BALİ-GENCER AHP, BULANIK AHP VE BULANIK MANTIK LA KARA HARP OKULUNA ÖĞRETİM ELEMANI SEÇİMİ. Özkan BALİ 1 Cevriye GENCER 2 ÖZET AHP, BULANIK AHP VE BULANIK MANTIK LA KARA HARP OKULUNA ÖĞRETİM ELEMANI SEÇİMİ Özkan BALİ Cevrye GENCER ÖZET Çalışmada, br karar problem olarak Kara Harp OkuluKHO) na öğretm elemanı seçm ele alınmış ve

Detaylı

AHP AND GRA INTEGRATED APPROACH IN INNOVATION PERFORMANCE REVIEW PROCESS: AN APPLICATION IN DAIRY INDUSTRY

AHP AND GRA INTEGRATED APPROACH IN INNOVATION PERFORMANCE REVIEW PROCESS: AN APPLICATION IN DAIRY INDUSTRY Dumlupınar Ünverstes Sosyal Blmler Dergs / Dumlupınar Unversty Journal of Socal Scences İNOVASYON PERFORMANSI DEĞERLENDİRME SÜRECİNDE AHS VE GİA BÜTÜNLEŞİK YAKLAŞIMI: SÜT ÜRÜNLERİ SEKTÖRÜNDE BİR UYGULAMA

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 31, 203-213, 2013 Research Artcle / Araştırma Makales ANALYTIC NETWORK PROCESS AND TOPSIS METHODS WITH SELECTION OF OPTIMAL INVESTMENT

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

Bulanık Analitik Hiyerarşi Süreci ve İdeal Çözüme Yakınlığa Göre Sıralama Yapma Yöntemleri ile Tekstil Sektöründe Finansal Performans Ölçümü

Bulanık Analitik Hiyerarşi Süreci ve İdeal Çözüme Yakınlığa Göre Sıralama Yapma Yöntemleri ile Tekstil Sektöründe Finansal Performans Ölçümü Sosyal Blmler 8/1 (010) s 19516 SOSYAL BİLİMLER Yıl : 010 Clt :8 Sayı :1 Celal Bayar Ünverstes S.B.E. Bulanık Analtk Hyerarş Sürec ve İdeal Çözüme Yakınlığa Göre Sıralama Yapma Yöntemler le Tekstl Sektöründe

Detaylı

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Avalable onlne at www.alphanumercournal.com alphanumerc ournal The Journal of Operatons Research, Statstcs, Econometrcs and Management Informaton Systems Receved: January 25, 2017 Accepted: June 22, 2017

Detaylı

Depo operatörü lojistik firmasının seçimi için bulanık VIKOR ve bulanık TOPSIS yöntemlerinin uygulanması

Depo operatörü lojistik firmasının seçimi için bulanık VIKOR ve bulanık TOPSIS yöntemlerinin uygulanması İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Clt/Vol:42, /No:2, 2013, 198-218 ISSN: 1303-1732 wwwfdergsorg 2013 Depo operatörü lostk frmasının seçm çn bulanık

Detaylı

NAKLĠYE FĠRMASI SEÇĠMĠNDE BULANIK AHP VE BULANIK TOPSIS YÖNTEMLERĠNĠN KARġILAġTIRILMASI

NAKLĠYE FĠRMASI SEÇĠMĠNDE BULANIK AHP VE BULANIK TOPSIS YÖNTEMLERĠNĠN KARġILAġTIRILMASI Marmara Ünverstes Ġ.Ġ.B.F. Dergs YIL 008, CĠLT XX, AYI NAKLĠYE FĠRMAI EÇĠMĠNDE BULANIK AHP E BULANIK TOPI YÖNTEMLERĠNĠN KARġILAġTIRILMAI Prof. Dr. Ahmet ÖZTÜRK * Yrd. Doç. Dr. Ġrfan ERTUĞRUL ** ArĢ. Grv.

Detaylı

2nd International Symposium on Accounting and Finance ISAF 2014

2nd International Symposium on Accounting and Finance ISAF 2014 2nd Internatonal Symposum on Accountng and Fnance MUHASEBE PAKET PROGRAMI SEÇİM PROBLEMİNE BULANIK VIKOR YÖNTEMİ İLE BİR ÇÖZÜM ÖNERİSİ ÖZET Hasan UYGURTÜRK Turhan KORKMAZ Dnamk br çevrede faalyet gösteren

Detaylı

Dokuz Eylül Üniversitesi Yayına Kabul Tarihi:

Dokuz Eylül Üniversitesi Yayına Kabul Tarihi: Yayın Gelş Tarh: 22.10.2014 Dokuz Eylül Ünverstes Yayına Kabul Tarh: 19.04.2016 Sosyal Blmler Ensttüsü Dergs Onlne Yayın Tarh: 12.07.2016 Clt: 18, Sayı: 2, Yıl: 2016, Sayfa: 255-272 http://dx.do.org/10.16953/deusbed.78956

Detaylı

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI Mehmet Aktan Atatürk Ünverstes, Endüstr Mühendslğ Bölümü, 25240, Erzurum. Özet: Dövz kurlarındak değşmler,

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

Çok noktadan bağlı tanker-şamandıra bağlama sistemi seçiminde bulanık çok ölçütlü karar verme

Çok noktadan bağlı tanker-şamandıra bağlama sistemi seçiminde bulanık çok ölçütlü karar verme tüdergs/d mühendslk Clt:10, Sayı:1, 68-80 Şubat 011 Çok noktadan bağlı tanker-şamandıra bağlama sstem seçmnde bulanık çok ölçütlü karar verme Ayhan MENTEġ *, Ġsmal Hakkı HELACIOĞLU İTÜ Fen Blmler Ensttüsü,

Detaylı

İKİ AŞAMALI STRATEJİK TEDARİKÇİ SEÇİMİNİN BULANIK TOPSIS YÖNTEMİ İLE ANALİZİ

İKİ AŞAMALI STRATEJİK TEDARİKÇİ SEÇİMİNİN BULANIK TOPSIS YÖNTEMİ İLE ANALİZİ İKİ AŞAMALI STRATEJİK TEDARİKÇİ SEÇİMİNİN BULANIK TOPSIS YÖNTEMİ İLE ANALİZİ Yrd. Doç. Dr. Al İhsan ÖZDEMİR * Arş. Gör. Neşe Yalçın SEÇME ** ÖZET İşletmeler açısından tedarkç seçmnn uzun sürel şbrlğ çnde

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and atural Scences Mühendslk ve Fen Blmler Dergs Sgma 9, -4, 0 Research Artcle / Araştırma Makales FUZZY TOPSIS METHODS I GROUP DECISIO MAKIG AD A APPLICATIO FOR BAK BRACH LOCATIO

Detaylı

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ

KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ KIRIKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENDÜSTRİ MÜHENDİSLİĞİ ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİNDEN AHP VE TOPSIS İLE KAMP YERİ SEÇİMİ Burak KARAHAN Burak PEKEL Neşet BEDİR Cavt CAN Kırıkkale -2014-

Detaylı

Çok Kriterli Karar Verme Teknikleriyle Lojistik Firmalarında Performans Ölçümü

Çok Kriterli Karar Verme Teknikleriyle Lojistik Firmalarında Performans Ölçümü EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Clt: 3 Sayı: 4 Ekm 03 ss. 449-459 Çok Krterl Karar Verme Teknkleryle Lostk Frmalarında Performans Ölçümü Performance Measurement of Logstcs Frms wth Mult-Crtera

Detaylı

ANALİTİK AĞ SÜRECİ VE TOPSIS YÖNTEMLERİ İLE BİLİMDALI SEÇİMİ Doç.Dr. Nuri ÖMÜRBEK Süleyman Demirel Üniversitesi, İİBF, İşletme Bölümü

ANALİTİK AĞ SÜRECİ VE TOPSIS YÖNTEMLERİ İLE BİLİMDALI SEÇİMİ Doç.Dr. Nuri ÖMÜRBEK Süleyman Demirel Üniversitesi, İİBF, İşletme Bölümü ANALİTİK AĞ SÜRECİ VE TOPSIS YÖNTEMLERİ İLE BİLİMDALI SEÇİMİ DoçDr Nur ÖMÜRBEK Süleyman Demrel Ünverstes, İİBF, İşletme Bölümü Nazlı DEMİRCİ Süleyman Demrel Ünverstes, SBE, İşletme ABD, YL Pınar AKALİN

Detaylı

Yrd. Doç. Dr. Kemal Vatansever

Yrd. Doç. Dr. Kemal Vatansever Anadolu Ünverstes Sosyal Blmler Dergs Anadolu Unversty Journal of Socal Scences Tedarkç Seçm Kararlarında Bulanık TOPSIS Yöntemnn Kullanımı ve Br Uygulama Use of Fuzzy TOPSIS Method n Suppler Selecton

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 28, 24-223, 200 PhD Research Artcle / Doktora Çalışması Araştırma Makales FUZZY CHOQUET INTEGRAL APPROACH FOR MULTI CRITERIA

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

Yapay Sinir Ağı ve Bulanık-Yapay Sinir Ağı Yöntemleri Kullanılarak Tava Buharlaşma Tahmini

Yapay Sinir Ağı ve Bulanık-Yapay Sinir Ağı Yöntemleri Kullanılarak Tava Buharlaşma Tahmini Tarım Blmler Araştırma Dergs 3 (): 45-5, 00 ISSN: 308-3945, E-ISSN: 308-07X, www.nobel.gen.tr Yapay Snr Ağı ve Bulanık-Yapay Snr Ağı Yöntemler Kullanılarak Tava Buharlaşma Tahmn Özgür KIŞI Selcan AFŞA

Detaylı

Genetik Algoritma ile İki Boyutlu Şekil Yerleştirme ÖZET

Genetik Algoritma ile İki Boyutlu Şekil Yerleştirme ÖZET Genetk Algortma le İk Boyutlu Şekl Yerleştrme Metn Özşahn 1 ve Mustafa Oral 2 1) Çukurova Ünverstes Fen Blmler Ensttüsü Endüstr Mühendslğ Bölümü, Adana, Turkey 2 Çukurova Ünverstes Blgsayar Mühendslğ Bölümü,

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt: 16 Sayı: 48 sh. 61-75 Eylül 2014 KRİL SÜRÜSÜ ALGORİTMASI İLE ATÖLYE ÇİZELGELEME (JOB SHOP SCHEDULING WITH KRILL HERD ALGORITHM) İlker GÖLCÜK

Detaylı

TÜRKİYE DEKİ 380 kv LUK 14 BARALI GÜÇ SİSTEMİNDE EKONOMİK YÜKLENME ANALİZİ

TÜRKİYE DEKİ 380 kv LUK 14 BARALI GÜÇ SİSTEMİNDE EKONOMİK YÜKLENME ANALİZİ TÜRİYE DEİ 38 kv LU 4 BARALI GÜÇ SİSTEMİDE EOOMİ YÜLEME AALİZİ Mehmet URBA Ümmühan BAŞARA 2,2 Elektrk-Elektronk Mühendslğ Bölümü Mühendslk-Mmarlık Fakültes Anadolu Ünverstes İk Eylül ampüsü, 2647, ESİŞEHİR

Detaylı

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA

TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Araştırma Makaleler TOPSIS ÇOK KRİTERLİ KARAR VERME SİSTEMİ: TÜRKİYE DEKİ KAMU BANKALARI ÜZERİNE BİR UYGULAMA Dr., Dokuz Eylül Ünverstes, İİBF İşletme Bölümü erhan.demrel@deu.edu.tr ÖZET Ekonomk faalyetlern

Detaylı

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ Eskşehr Osmangaz Ünverstes Sosyal Blmler Dergs Clt: 6 Sayı: 2 Aralık 2005 BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ İrfan ERTUĞRUL Pamukkale Ünverstes İİBF, Denzl ÖZET Günümüzde

Detaylı

BULUT TEKNOLOJ S F RMALARININ BULANIK AHP MOORA YÖNTEM KULLANILARAK SIRALANMASI

BULUT TEKNOLOJ S F RMALARININ BULANIK AHP MOORA YÖNTEM KULLANILARAK SIRALANMASI BULUT TEKNOLOJ S F RMALARININ BULANIK AHP MOORA YÖNTEM KULLANILARAK SIRALANMASI Bahad r Fath YILDIRIM.Ü. letme Fakültes Say sal Yöntemler ABD. Onur ÖNAY.Ü. letme Fakültes Say sal Yöntemler ABD. ÖZET Bulut

Detaylı

KURUMSAL FİRMALAR İÇİN BİR FİNANSAL PERFORMANS KARŞILAŞTIRMA MODELİNİN GELİŞTİRİLMESİ

KURUMSAL FİRMALAR İÇİN BİR FİNANSAL PERFORMANS KARŞILAŞTIRMA MODELİNİN GELİŞTİRİLMESİ Gaz Ünv. Müh. Mm. Fak. Der. Journal of thefaculty of Engneerngand Archtecture of Gaz Unversty Clt 30, No 1, 71-85, 2015 Vol 30, No 1, 71-85, 2015 KURUMSAL FİRMALAR İÇİN BİR FİNANSAL PERFORMANS KARŞILAŞTIRMA

Detaylı

Emrah 70 Ekim 2011. kat edilen mesafenin en. mizasyonu (PSO) sezgisel. (PSO), Genetik Algoritma (GA), Optimizasyon, Meta-Sezgisel

Emrah 70 Ekim 2011. kat edilen mesafenin en. mizasyonu (PSO) sezgisel. (PSO), Genetik Algoritma (GA), Optimizasyon, Meta-Sezgisel METAplam kat edlen mesafenn en mzasyonu (PSO) sezgsel k (PSO), Genetk Algortma (GA), Optmzasyon, Meta-Sezgsel 74 OPTIMIZATION OF MULTI- PROBLEM OF ISTANBUL HALK EKMEK A.S. (IHE) BY USING META-HEURISTIC

Detaylı

AHP VE TOPSIS YÖNTEMLERİ İLE KURUMSAL PROJE YÖNETİM YAZILIMI SEÇİMİ

AHP VE TOPSIS YÖNTEMLERİ İLE KURUMSAL PROJE YÖNETİM YAZILIMI SEÇİMİ Süleyman Demrel Ünverstes Sosyal Blmler Ensttüsü Dergs Yıl: 2015/1, Sayı:21 Journal of Süleyman Demrel Unversty Insttute of Socal Scences Year: 2015/1, Number:21 AHP VE TOPSIS YÖNTEMLERİ İLE KURUMSAL PROJE

Detaylı

A Multi Criteria Approach For Statistical Software Selection in Education. Eğitimde İstatistiksel Yazılım Seçimine Çok Kriterli Bir Yaklaşım

A Multi Criteria Approach For Statistical Software Selection in Education. Eğitimde İstatistiksel Yazılım Seçimine Çok Kriterli Bir Yaklaşım Hacettepe Ünverstes Eğtm Fakültes Dergs H. U. Journal of Educaton 292, 129-143 [Nsan 2014] A Mult Crtera Approach For Statstcal Software Selecton n Educaton Eğtmde İstatstksel Yazılım Seçmne Çok Krterl

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

BULANIK ÇOK AMAÇLI HÜCRESELTASARIM PROBLEMİNİN İKİ AŞAMALI BULANIK PROGRAMLAMA YAKLAŞIMI İLE ÇÖZÜMÜ

BULANIK ÇOK AMAÇLI HÜCRESELTASARIM PROBLEMİNİN İKİ AŞAMALI BULANIK PROGRAMLAMA YAKLAŞIMI İLE ÇÖZÜMÜ V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 25-27 Kasım 25 BULANIK ÇOK AMAÇLI HÜCRESELTASARIM PROBLEMİNİN İKİ AŞAMALI BULANIK PROGRAMLAMA YAKLAŞIMI İLE ÇÖZÜMÜ Feyzan ARIKAN Gaz

Detaylı

FUZZY TOPSİS YÖNTEMİ İLE SANAL MAĞAZALARIN WEB SİTELERİNİN DEĞERLENDİRİLMESİ

FUZZY TOPSİS YÖNTEMİ İLE SANAL MAĞAZALARIN WEB SİTELERİNİN DEĞERLENDİRİLMESİ FUZZY TOPSİS YÖNTEMİ İLE SNL MĞZLRIN WEB SİTELERİNİN DEĞERLENDİRİLMESİ Süleyman DÜNDR (*) Fath EER (**) Şuayb ÖZDEMİR (***) Özet: Bu çalışmanın amacı, fuzzy TOPSİS yöntemn kullanarak sanal mağazaların

Detaylı

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ

TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ ZKÜ Sosyal Blmler Dergs, Clt 3, Sayı 6, 2007, ss. 109 125. TAŞIMACILIK SEKTÖRÜNÜN İŞLEYİŞ SÜRECİ, BULANIK DAĞITIM PROBLEMİNİN TAMSAYILI DOĞRUSAL PROGRAMLAMA MODEL DENEMESİ Yrd.Doç.Dr. Ahmet ERGÜLEN Nğde

Detaylı

ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI

ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI M. Sedat HAYALİOĞLU *, S. Özgür DEĞERTEKİN * * Dcle Ünverstes, Müh.-Mm. Fak., İnşaat Müh. Böl., Dyarbakır ÖZET Bu çalışmada çelk uzay çerçevelern, Amerkan

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

ERGONOMİK KOŞULLAR ALTINDA MONTAJ HATTI DENGELEME

ERGONOMİK KOŞULLAR ALTINDA MONTAJ HATTI DENGELEME ERGONOMİK KOŞULLAR ALTINDA MONTAJ HATTI DENGELEME Pamukkale Ünverstes Fen Blmler Ensttüsü Yüksek Lsans Tez Endüstr Mühendslğ Anablm Dalı Elf ÖZGÖRMÜŞ Danışman: Yrd. Doç. Dr. Özcan MUTLU Ağustos, 2007 DENİZLİ

Detaylı

ÇOK KRİTERLİ KARAR VERME PROBLEMLERİNDE ARAS YÖNTEMİ

ÇOK KRİTERLİ KARAR VERME PROBLEMLERİNDE ARAS YÖNTEMİ ÇOK KRİTERLİ KARAR VERME PROBLEMLERİNDE ARAS YÖNTEMİ Makale Sunum Tarh : 02.03.2015 Yayına Kabul Tarh : 27.03.2015 Bahadır Fath YILDIRIM Araştırma Görevls Kafkas Ünverstes, İİBF, İşletme Bölümü, Sayısal

Detaylı

Afet Sonrası Hizmet Verecek Ekiplerin Konuşlanma Yerlerinin Belirlenmesi

Afet Sonrası Hizmet Verecek Ekiplerin Konuşlanma Yerlerinin Belirlenmesi 2016 Publshed n 4th Internatonal Symposum on Innovatve Technologes n Engneerng and Sccene 3-5 November 2016 (ISITES2016 Alanya/Antalya - Turkey) Afet Sonrası Hzmet Verecek Ekplern Konuşlanma Yerlernn Belrlenmes

Detaylı

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : 1 : 951-957

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

Zaman pencereli çok araçlı dağıtım toplamalı rotalama problemi için gerçek değerli genetik algoritma yaklaşımı

Zaman pencereli çok araçlı dağıtım toplamalı rotalama problemi için gerçek değerli genetik algoritma yaklaşımı İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Clt/Vol:43, Sayı/No:2, 2014, 391-403 ISSN: 1303-1732 www.fdergs.org Zaman pencerel çok araçlı dağıtım toplamalı

Detaylı

SERMAYE KISITLARI ALTINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMANIN EN İYİ FİYAT BELİRLEME SÜREÇLERİNDE KULLANILMASI VE BİR UYGULAMA

SERMAYE KISITLARI ALTINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMANIN EN İYİ FİYAT BELİRLEME SÜREÇLERİNDE KULLANILMASI VE BİR UYGULAMA SERMAYE KISITLARI ALTINDA HEDEF PROGRAMLAMA VE BULANIK HEDEF PROGRAMLAMANIN EN İYİ FİYAT BELLEME SÜREÇLERİNDE KULLANILMASI VE B UYGULAMA Melke Güngör Dokuz Eylül Ünverstes Ekonometr ABD Y.Lsans melkegungorr@gmal.com

Detaylı

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı *

Şehiriçi Karayolu Ağlarının Sezgisel Harmoni Araştırması Optimizasyon Yöntemi ile Ayrık Tasarımı * İMO Teknk Derg, 2013 6211-6231, Yazı 392 Şehrç Karayolu Ağlarının Sezgsel Harmon Araştırması Optmzasyon Yöntem le Ayrık Tasarımı * Hüseyn CEYLAN* Halm CEYLAN** ÖZ Bu çalışmada, şehrç ulaştırma ağlarının

Detaylı

Titresimli Genetik Algoritma ile Hizlandirilmis Kanat Profili Optimizasyonu

Titresimli Genetik Algoritma ile Hizlandirilmis Kanat Profili Optimizasyonu HAVACILIK VE UZAY TEKNOLOJILERI DERGISI OCAK 2003 CILT 1 SAYI 1 (1-10) Ttresml Genetk Algortma le Hzlandrlms Kanat Profl Optmzasyonu Abdurrahman HACIOGLU HHO Dekanlg Havaclk Mühendslg Bölümü, 34806, Yeslyurt,

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

PRODUCTION PLANNING BASED ON GOAL PROGRAMMING FOR MASS CUSTOMIZATION IN A COMPANY

PRODUCTION PLANNING BASED ON GOAL PROGRAMMING FOR MASS CUSTOMIZATION IN A COMPANY BİR İŞLETMEDE KİTLESEL ÖZEL ÜRETİME YÖNELİK HEDEF PROGRAMLAMA TABANLI ÜRETİM PLANLAMA PRODUCTION PLANNING BASED ON GOAL PROGRAMMING FOR MASS CUSTOMIZATION IN A COMPANY ESRA AKBAL Başkent Ünverstes Lsansüstü

Detaylı

Bulanık Çok Kriterli Karar Verme Yöntemlerinin Altı Sigma Projeleri Seçiminde Uygulanması*

Bulanık Çok Kriterli Karar Verme Yöntemlerinin Altı Sigma Projeleri Seçiminde Uygulanması* Busness and Economcs Research Journal Volume 7 Number 2 2016 pp. 167-201 ISSN: 1309-2448 DOI Number: 10.20409/berj.2016217536 Bulanık Çok Krterl Karar Verme Yöntemlernn Altı Sgma Projeler Seçmnde Uygulanması*

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

TESİS YERİ SEÇİMİNDE FARKLI BİR YAKLAŞIM: BULANIK ANALİTİK SERİM SÜRECİ

TESİS YERİ SEÇİMİNDE FARKLI BİR YAKLAŞIM: BULANIK ANALİTİK SERİM SÜRECİ TESİS YERİ SEÇİMİNDE FARKLI BİR YAKLAŞIM: BULANIK ANALİTİK SERİM SÜRECİ Aşkın ÖZDAĞOĞLU (*) Özet: Kuruluş yer seçm br frma çn en öneml kararlardan brdr. Yönetm kademesndek kşler seçm yaparken ster stemez

Detaylı

HATA TÜRÜ VE ETKİLERİ ANALİZİNDE BULANIK AHP VE BULANIK VIKOR YÖNTEMLERİ İLE OTOMOTİV SEKTÖRÜNDE RİSK DEĞERLENDİRMESİ

HATA TÜRÜ VE ETKİLERİ ANALİZİNDE BULANIK AHP VE BULANIK VIKOR YÖNTEMLERİ İLE OTOMOTİV SEKTÖRÜNDE RİSK DEĞERLENDİRMESİ HATA TÜRÜ VE ETKİLERİ ANALİZİNDE BULANIK AHP VE BULANIK VIKOR YÖNTEMLERİ İLE OTOMOTİV SEKTÖRÜNDE RİSK DEĞERLENDİRMESİ RISK EVALUATING BY FUZZY AHP AND FUZZY VIKOR METHODS IN FAILURE MODE AND EFFECTS ANALYSIS

Detaylı

GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ

GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ 2. Ulusal Tasarım İmalat ve Analz Kongres 11-12 Kasım 21- Balıkesr GRİ İLİŞKİSEL ANALİZ YÖNTEMİNE GÖRE FARKLI SERTLİKLERDE OPTİMUM TAKIM TUTUCUSUNUN BELİRLENMESİ Esra YILMAZ*, Ferhat GÜNGÖR** *ylmazesraa@gmal.com

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

TOPSIS Metodu Kullanılarak Kesici Takım Malzemesi Seçimi

TOPSIS Metodu Kullanılarak Kesici Takım Malzemesi Seçimi Makne Teknolojler Elektronk Dergs Clt: 9, No: 3, 2012 (35-42) Electronc Journal of Machne Technologes Vol: 9, No: 3, 2012 (35-42) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn:1304-4141 Makale

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi

Antalya Đlinde Serada Domates Üretiminin Kâr Etkinliği Analizi Tarım Blmler Dergs Tar. Bl. Der. Derg web sayfası: www.agr.ankara.edu.tr/derg Journal of Agrcultural Scences Journal homepage: www.agr.ankara.edu.tr/journal TARIM BİLİMLERİ DERGİSİ JOURNAL OF AGRICULTURAL

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI YÜKSEK LİSANS TEZİ Müh. Ramadan VATANSEVER Anablm Dalı: İşletme Mühendslğ Programı: İşletme

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

MALZEME TAŞIMA SİSTEMİ ALTERNATİFLERİNİN DEĞERLENDİRİLMESİNDE BULANIK-PROMETHEE YAKLAŞIMI

MALZEME TAŞIMA SİSTEMİ ALTERNATİFLERİNİN DEĞERLENDİRİLMESİNDE BULANIK-PROMETHEE YAKLAŞIMI Doğuş Ünverstes Dergs 12 (1) 2011 144-155 MALZEME TAŞIMA SİSTEMİ ALTERNATİFLERİNİN DEĞERLENDİRİLMESİNDE BULANIK-ROMETHEE YAKLAŞIMI EVALUATING MATERIAL HANDLING SYSTEM ALTERNATIVES USING FUZZY-ROMETHEE

Detaylı

PORTFÖY SEÇİMİNDE MARKOWITZ MODELİ İÇİN YENİ BİR GENETİK ALGORİTMA YAKLAŞIMI

PORTFÖY SEÇİMİNDE MARKOWITZ MODELİ İÇİN YENİ BİR GENETİK ALGORİTMA YAKLAŞIMI Yönetm, Yıl: 18, Sayı: 56, Şubat 2007 PORTFÖY SEÇİMİDE MARKOWITZ MODELİ İÇİ YEİ BİR GEETİK ALGORİTMA YAKLAŞIMI Arş. Grv. Tmur KESKİTÜRK İstanbul Ünverstes - İşletme Fakültes Sayısal Yöntemler Anablm Dalı

Detaylı

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON

EVRİMSEL ALGORİTMA İLE SINIRLANDIRMALI DİNAMİK OPTİMİZASYON EVRİMEL ALGORİTMA İLE INIRLANDIRMALI DİNAMİK OPTİMİZAYON Ş. BALKU, R. BERBER Ankara Ünvetes Mühendslk Fakültes, Kmya Mühendslğ Bölümü Tandoğan, 06100 Ankara ÖZET Aktf çamur proses atıksu arıtımında kullanılan

Detaylı

Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS in eğitilmesi

Karaciğer mikrodizi kanser verisinin sınıflandırılması için genetik algoritma kullanarak ANFIS in eğitilmesi Karacğer mkrodz kanser versnn sınıflandırılması çn genetk algortma kullanarak ANFIS n eğtlmes Bülent Haznedar 1*, Mustafa Turan Arslan 2, Adem Kalınlı 3 ÖZ 21.06.2016 Gelş/Receved, 30.11.2016 Kabul/Accepted

Detaylı

TAKIM LİDERİ SEÇİMİNDE BULANIK KALİTE FONKSİYONU AÇINIMI MODELİ UYGULAMASI

TAKIM LİDERİ SEÇİMİNDE BULANIK KALİTE FONKSİYONU AÇINIMI MODELİ UYGULAMASI 2403 TAKIM LİDERİ SEÇİMİNDE BULANIK KALİTE FONKSİYONU AÇINIMI MODELİ UYGULAMASI APPLICATION OF A FUZZY QUALITY FUNCTION DEPLOYMENT MODEL FOR TEAM LEADER SELECTION ÖZET A. Fahr ÖZKÖK *, Orkun KOZANOĞLU

Detaylı

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA

TRİSTÖR VE TRİYAK HARMONİKLERİNİN 3 BOYUTLU GÖSTERİMİ VE TOPLAM HARMONİK BOZUNUMA EĞRİ UYDURMA PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİL İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : : : : 5- TRİSTÖR VE TRİYAK

Detaylı

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü ECAS Uluslararası Yapı ve Deprem Mühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye Üç Boyutlu Yapı-Zemn Etkleşm Problemlernn Kuadratk Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak

Detaylı

International Journal of Academic Value Studies (Javstudies) ISSN: Vol: 3, Issue: 11, pp

International Journal of Academic Value Studies (Javstudies) ISSN: Vol: 3, Issue: 11, pp Internatonal Journal of Academc Value Studes (Javstudes) ISSN:2149-8598 Vol: 3, Issue: 11, pp. 159-170 www.javstudes.com Javstudes@gmal.com Dscplnes: Busness Admnstraton, Economy, Econometrcs, Fnance,

Detaylı

FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Sevil ŞENTÜRK

FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Sevil ŞENTÜRK FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM Sevl ŞENTÜRK Anadolu Ünverstes, Fen Fakültes, İstatstk Bölümü,26470, ESKİŞEHİR, e-mal:sdelgoz@anadolu.edu.tr

Detaylı

SİMÜLASYON İLE BÜTÜNLEŞİK ÇOK KRİTERLİ KARAR VERME: BİR HASTANE ACİL DEPARTMANI İÇİN SENARYO SEÇİMİ UYGULAMASI

SİMÜLASYON İLE BÜTÜNLEŞİK ÇOK KRİTERLİ KARAR VERME: BİR HASTANE ACİL DEPARTMANI İÇİN SENARYO SEÇİMİ UYGULAMASI İstanbul Tcaret Ünverstes Fen Blmler Dergs Yıl: 11 Sayı: 22 Güz 2012 s. 1-18 SİMÜLASYON İLE BÜTÜNLEŞİK ÇOK KRİTERLİ KARAR VERME: BİR HASTANE ACİL DEPARTMANI İÇİN SENARYO SEÇİMİ UYGULAMASI Muhammet GÜL

Detaylı

İstanbul Ünverstes İşletme Fakültes Dergs Istanbul Unversty Journal of the School of Busness Admnstraton Clt/Vol:39, Sayı/No:2,, 310-334 ISSN: 1303-1732 www.fdergs.org Stokastk envanter model kullanılarak

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

DETERMINATION OF THE ECONOMIC DISPATCH IN ELECTRIC POWER SYSTEMS USING SIMULATED ANNEALING(SA) ALGORITHM

DETERMINATION OF THE ECONOMIC DISPATCH IN ELECTRIC POWER SYSTEMS USING SIMULATED ANNEALING(SA) ALGORITHM 5 Uluslararası İler Teknolojler Sempozyumu (IATS 09), 3-5 Mayıs 2009, Karabük, Türkye ELEKTRİK GÜÇ SİSTEMİNDE OPTİMAL YAKIT MALİYETİNİN BENZETİM TAVLAMA (BT) ALGORİTMASI İLE BELİRLENMESİ DETERMINATION

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

Baml deikenin simetrik bulank say olmas durumunda parametre tahmini

Baml deikenin simetrik bulank say olmas durumunda parametre tahmini www.statstkcler.org statstkçler Dergs 3 (00) 54-6 statstkçler Dergs Baml dekenn smetrk bulank say olmas durumunda arametre tahmn Kamle anl Kula Ah Evran Ünverstes, Matematk Bölümü, 4000, Krehr, ürkye sanl004@hotmal.com

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YÜKSEK LİSANS TEZİ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YÜKSEK LİSANS TEZİ T.C. SÜLEYMAN EMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM ALI YÜKSEK LİSANS TEZİ PARANIN ZAMAN EĞERİ VE ÖĞRENME ETKİSİ ALTINAKİ KESİKLİ ZAMAN-EĞİŞKEN TALEPLİ PARTİ BÜYÜKLÜĞÜ MOELLERİ

Detaylı

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği

Kısa Vadeli Sermaye Girişi Modellemesi: Türkiye Örneği Dokuz Eylül Ünverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:24, Sayı:1, Yıl:2009, ss.105-122. Kısa Vadel Sermaye Grş Modellemes: Türkye Örneğ Mehmet AKSARAYLI 1 Özhan TUNCAY 2 Alınma Tarh: 04-2008,

Detaylı

Maliyetlerinin Bulanık Mantık (Fuzzy Logıc) Yaklaşımı Đle Yönetilmesi ve Finansal Performans Üzerindeki Etkisinin Đncelenmesi

Maliyetlerinin Bulanık Mantık (Fuzzy Logıc) Yaklaşımı Đle Yönetilmesi ve Finansal Performans Üzerindeki Etkisinin Đncelenmesi Yrd. Doç. Dr. Al Deran Yrd. Doç. Dr. Ahmet Ergülen Taşıma Malyetlernn Bulanık Mantık (Fuzzy Logıc) Yaklaşımı Đle Yönetlmes ve Fnansal Performans Üzerndek Etksnn Đncelenmes Yrd. Doç. Dr. Ahmet ERGÜLEN Yrd.

Detaylı