HİPERBOLİK TANJANT YÖNTEMİNİN KLASİK BOUSSINESQ SİSTEMİNE UYGULANMASI. Application of Hyperbolic Tangent Method to Classical Boussinesq System

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HİPERBOLİK TANJANT YÖNTEMİNİN KLASİK BOUSSINESQ SİSTEMİNE UYGULANMASI. Application of Hyperbolic Tangent Method to Classical Boussinesq System"

Transkript

1 D.Ü.Ziya Gökalp Eğitim Fakültesi Dergisi 10, (008) HİPERBOLİK TANJANT YÖNTEMİNİN KLASİK BOUSSINESQ SİSTEMİNE UYGULANMASI Applicatio of Hyperbolic Taget Method to Classical Boussiesq System Mustafa MIZRAK 1 Abdulkadir ERTAŞ Özet Tah yötemi bir boyutlu lieer olmaya dalga ve değişimsel deklemlerii yöledirilmiş dalga çözümleride kullaıla çok güçlü bir çözüm yötemidir. Bu yötem çözümleri solu hiperbolik tajat kuvvet serileri şeklide yazılabilmesi temelie dayaır. Bu çalışmada, ayı yötem lieer olmaya Klasik Boussiesq kısmi diferasiyel deklem sistemie uyguladı. Aahtar kelimeler: Hiperbolik tajat (Tah) yötemi, değişimsel deklemler, dalga deklemleri, yöledirilmiş dalga çözümleri. Abstract Tah method is a powerful solutio method for the computatio of oedimesioal travellig wave solutios of evolutio ad wave equatios. This method is based o the fact that solutios may be writte as a fiite power series of a hyperbolic taget. I this work, we apply Hyperbolic Taget (Tah) method to solve Classical Boussiesq systems of partial differetial equatios. Keywords: Hyperbolic taget (Tah) method, evolutio equatios, wave equatios, travellig wave solutios. 1.GİRİŞ Lieer olmaya deklemler uygulamalı bilimi çok çeşitli alalarıda, öreği plazma fiziği, sıvı mekaiği, fiber optikler, katı hal fiziği, lieer olmaya optik vb. alalarda ortaya çıkmaktadır (Abdou, 007).Bu alalardaki karmaşık olayları taımlamasıda lieer olmaya değişimsel deklemler kullaılır. Lieer olmaya değişimsel deklemleri çözümleri de yöledirilmiş dalga olarak ortaya çıkar (Taoğlu, 007). Matematikte lieer olmaya değişimsel deklemleri çözümlerii bulmak içi birçok aalitik yötem geliştirilmiştir. Bu yötemlerde bazıları: Ters saçılım döüşümü 1 Dicle Üiversitesi, Fe-Edebiyat Fakültesi, Matematik Aabilim Dalı, 180 Diyarbakır, mmizrak@stu.dicle.edu.tr Doç. Dr.; Dicle Üiversitesi, Fe-Edebiyat Fakültesi, Matematik Aabilim Dalı, 180 Diyarbakır, aertas@dicle.edu.tr Lieer olmaya değişimsel ve dalga deklemleri zamaa bağlı birici veya ikici basamakta türevler içere kısmi diferasiyel deklemlerdir (Nuseir,1994). 159

2 (Ablowitz, Kaup, Newell ad Segur, 1974), Darboux döüşümü (Matveev ad Salle, 1991), Hirota bilieer yötemi (Hirota, 004), homoje degeleme yötemi (Wag, 1996), bezerlik idirgeme yötemi (Bluma ad Kumei (1989;Olver, 1986), Jacobi eliptik foksiyo yötemi (Li ad Liu, 00), Paileve açılımları (Cariello ad Tabor, 1989), Backlud döüşümü, Cole- Hopf döüşümü, sie-cosie yötemi (Ablowitz ad Clarkso (1991; Gu ad et al,1990) ve çeşitli tah yötemleridir. Bu yötemlerde e etkili olalarıda biri tah (hiperbolik tajat) foksiyou yötemidir. Bu yötem Malfliet(199),(004);Malfliet ad Herema (1996), (005); Che, Li ad Zhag (00);Fa(000);Wazwaz (00),(004) (005) gibi birçok araştırmacılar tarafıda çeşitli problemler üzeride uygulamıştır. Lieer olmaya kısmi diferasiyel deklemleri aalitik çözümlerii elde etmek içi geel bir yötem yoktur. Tah yötemi ile lieer olmaya değişimsel ve dalga deklemlerii tam ve yaklaşık çözümleri direkt ve sistematik bir şekilde elde edilebilir. Bu yötemi diğer yötemlere azara üstü olmasıı sebebi, çözümleri hiperbolik tajat foksiyolarıı seri toplamları şeklide yazılmasıdır. Bu da tahfoksiyouu türevlerii yie tah-foksiyou türüde yazılabilmesii bir soucudur. tah x 1 tah x tah x tah x tah x tah x tah x vb...hiperbolik TANJANT(TANH METHOD) YÖNTEMİ.1.Tah Yötemii Aa Hatları Tah yötemi, Willy Malfliet tarafıda ortaya komuştur (Malfliet,199). Daha sora Willy Malfliet ve Willy Herema tarafıda geliştirilmiştir (Malfliet ad Herema, 1996). Bu yötem yöledirilmiş dalga çözümlerii hiperbolik tajat foksiyoları şeklideki ilk kabulüe dayaır. Bu yötemi diğer yötemlere göre avatajı daha az cebirsel işlem ve çaba ile tam çözümleri kolaylıkla elde edilebilmesie dayaır Şimdi bu yötemi aahatlarıı adım adım iceleyelim: 1-Bir boyutlu lieer olmaya değişimsel ve dalga deklemleri geellikle u = G( u, u, u, u,...) veya u = G( u, u, u, u,...) (1) t x xx xxx tt x xx xxx şeklide gösterilir. Bu deklemleri çözümleri u( x, t) şeklidedir. - (1) deklemide iki farklı biçimde gösterile deklemleri yöledirilmiş dalga çözümlerii (travellig wave solutios) bulmak içi x ve t bağımsız değişkeleri tek bir k( x Vt) değişkei altıda birleştirilir. k( x Vt) değişke döüşümü yapıldığıda u( x, t ) 160

3 foksiyou,, ( ) u x t U k x Vt ifadesie döüşür. Buradaki k ( k > 0 ) dalga sayısıı, V dalgaı hızıı göstermektedir. u ( x, t) bağımlı değişkei U ile değiştirildiğide (1) kısmi diferasiyel deklemi - du du d U kv G( U, k, k,...) dx = dx dx veya k V d U = G( U, k du, k d U,...) dx dx dx adi diferasiyel deklemlerie döüşürler. -Adi diferasiyel deklemdeki tüm türevler içerdiğide, bu deklemi itegrali alıır. İtegral alıırke itegral sabiti sıfır olarak alıır. Böylece daha basitleştirilmiş bir adi diferasiyel deklem elde etmiş oluur. 4- Sora yei bir Y = tah x 4 bağımsız değişkei taımlaır ve d d (1 Y ) dx = - dy türev döüşümleri yapılır. 5-Daha sora d d d (1 Y )( Y (1 Y ) ) dx = - - dy + - dy N, ve tah tah 6 u x t U S Y ay Y k x Vt 0 adi diferasiyel deklemie yerleştirilir. 6- Buradaki N değeri, ( 6 ) deklemii adi diferasiyel dekleme yerleştirilmesiyle elde edile e yüksek dereceli lieer terim ile lieer olmaya terimleri eşitlemesi ile buluur. N değeri belirledikte sora, souç deklemideki Y i tüm kuvvetleri sıfıra eşitleir. Bu da bize ak, ( k = 0,1,..., N), k ve V ifadelerii içere cebirsel deklem sistemii verir. Bu deklem çözüldüğüde kapalı formda bir aalitik çözüm elde edilir. şeklide bir çözüm varsayılarak ( 5 ) ve ( 6 ) ifadeleri basitleştirilmiş ( 5) 161

4 Birçok durumda N değeri olarak buluduğuda, N = olması durumda 1. S Y F Y b 1Y 1bY 1 Y T Y ve T 1 0 7a ve 0 1 = = ( - ). S Y G Y d0 1 Y 7b şeklide olası iki çözüm elde edilir. 7-Uzu hesaplama işleride kurtulmak isteiyorsa bir ö kabul olarak d U içi U 0 ve 0 1,,,... 8 d sıır koşulları ekleebilir. Eğer çözüm ( Y 1 ) içi yok oluyorsa oluyorsa (6) serisi Nm m 1, 1,..., 9 F Y Y a Y m N 0 şeklidedir. Eğer çözüm ( Y 1 Nm )içi yok oluyorsa (6) serisi m 1, 1,..., 10 F Y Y a Y m N 0 şeklidedir. Her iki durumda da şok dalgası biçimide bir çözüm buluur. Eğer çözüm her iki tarafta da yok oluyorsa; yai ( Y 1 ) yok oluyorsa (6) serisi N p q p q 1 1, 0 0,..., 11 F Y Y Y a Y p q N 0 şeklidedir. Bu durumda ise tek dalga profili oluşur. Buula beraber her bir durum içi her zama tam souç elde etmeyebiliriz. S Y ifadesii bazı kısıtlamalarla gösterilmesi bize yöledirilmiş dalgaı hızıı belirlememizi sağlar. Bu hızı elde edilmesii pertürbasyo tekiğide öemli bir yeri vardır (Malfliet ad Herema (1996). Şimdi Tah yötemii çok iyi bilie lieer olmaya kısmi diferasiyel deklemleri çözümüde gösterelim. Ayrıca,.. Burgers Deklemi u u u u a 0 1 t x x şeklide ifade edile Burgers deklemi e öemli lieer olmaya yayılım deklemleride biridir. 16

5 Bu deklem akışkalar diamiğideki yayıla dalgalar içi e basit lieer olmaya deklem modelidir. İlk olarak Burger tarafıda bir boyutlu türbülası taımlamak içi kullaılmıştır (Debath, 1997). Öcelikle ux, t U Ukx Vt değişke değiştirmesi yapılarak kısmi diferasiyel deklem du du d U V U ak 0 1 d d d adi diferasiyel deklemie döüştürülür. Bu deklemi bir kez itegrali alıırsa, 1 du VU U ak C 14 d elde edilir. Bu deklemde itegral sabiti C = 0 alıarak Y tah tah k x Vt olmak üzere SY U N 0 a Y değişke değiştirmesi yapılırsa 1 ds Y - VS ( Y) + S( Y) - ak ( 1- Y ) = 0 15 dy elde edilir. Bu deklemde (6) açılımı yerleştirildiğide N N N N V ay ay ak a Y aka Y ifadesie ulaşılır. N Bu yerleştirmede sora, (16) deklemide ikici terimde Y ve so N 1 terimde Y + ifadeleri oluşur. N = N + 1 eşitliğide N = 1 buluur. S Y = b - Y şeklide bir tek çözüm elde edilir. Bu çözüm Burada, ( 1 0 ) ( 15 ) deklemide yerie koursa 1 V b0 Y b0 Y ak Y b0 elde edilir. Bu ise 1 V b 0 1Y b0 1Y ak 1Y b Y çarpaıı sadeleştirdiğimizde biçimide yazılır. Bu deklemde Vb 0 b0 Y akb 0 Y buluur. Burada Y 1 limit değeri alıırsa

6 - Vb0 + akb 0 ( + 1 ) = 0 ( a) V = ak ( 0b ) hız değeri elde edilir. ( 19 ) deklemi açık bir şekilde yazılırsa 1 1 ak V b0 ak b0 Y 0 1 olur. Buradaki tüm katsayılar; 0 1 Y terimli katsayılar: ak - V + b0 = 0 ( a) 1 1 Y terimli katsayılar: ak - b0 = 0 ( b ) sıfırı eşitleip çözüldüğüde b0 = V = ak ( ) buluur. Burada, şok dalgasıı bir çözümü F( Y ) ak(1 Y) ak1 tah( k( x Vt) (4) biçimidedir. Şekil 1. ( 4) deklemii [ ] [ ] x = - 5,5, t = - 0.5,0.5 ve a = k = V = 1 içi grafiği. 164

7 .. Korteweg-de Vries (KdV) Deklemi u u u u b 0 5 t x x şeklide yazılır. Buradaki b sabittir. Bu deklem sıvı diamiğide dikdörtge şeklideki bir kaaldaki sığ su dalgalarıı taımlamak içi kullaılır. İlk olarak iki Holladalı bilim adamı D.J.Korteweg ve G. de Vries tarafıda birleşik yölü sığ su dalgalarıı yayılımıı göstermek içi kullaılmıştır. Bu deklemi tam çözümüe solito 1 deir (Debath, 1997). Bu deklemi Tah yötemiyle çözelim. Öcelikle u x, t U U k x Vt değişke değiştirmesi yapılır. du du d U V U bk 0 6 d d d deklemi elde edilir. Bu deklemi bir defa itegralii alıırsa ( 6 ) deklemi 1 d U VU U bk C 7 d deklemie döüşür. Buradaki itegral sabitii C = 0 alıp, Y tah tah k x Vt olmak üzere SY U N 0 a Y değişke değiştirmesii yapılırsa 1 d ds( Y) VS Y S Y bk Y Y dy dy deklemi elde edilir. Daha sora bu deklem tah foksiyoua bağlı kuvvet serileri şeklide yazıldığıda N = N + eşitliğide; N = buluur. N = değeri içi ( 6 ) deklemi yazılırsa, uygu çözümlerde biri buluabilir yılıda Zabusky ve Kruskal tek dalgaları (Solitary waves) birbiriyle ola etkileşimlerii ve başlagıç durumlarıı korumalarıı araştırdılar. Zabusky ve Kruskal KdV deklemi üzerideki ümerik araştırmaları sırasıda; çarpıştıkta sora hızlarıı ve şekillerii koruya partikül bezeri bir davraış göstere dalgalar buldular. Bu dalgalara solito adıı verdiler. Solito kavramı Wadati tarafıda şöyle taımlamıştır: 1-Özelliklerii (şeklii, hızıı vb.) kaybetmede ilerleye yöresel bir dalgadır. -Çarpışmalarda özeliklerii koruya yöresel dalgalardır. Buu alamı solito partikül bezeri bir özelliğe sahiptir. Fizikte o so eki partikül bezeri davraış göstere kavramlarda (öreği foto, peako, compacto vb.) görülmektedir. Solitolar klasik olarak aalitik çözümlerdir (Kakutai ad Kawahara, 1970). 165

8 S ( Y) F ( Y ) b0 ( 1 Y )( 1 by 1 ) ( 8) deklemie yerleştirildiğide = = - + çözümüü ele alalım. Bu ifade 1 Vb 0 1Y 1bY 1 b0 1Y 1bY 1 d bk Y Y b b b b b dy deklemi elde edilir. Bu deklemi Y 1 limit değeri alıırsa V = 4 bk hızı elde edilir. ( 9 ) deklemideki tüm katsayılar sıfıra eşitlediğide, b0 = 1 bk ve b1 = 1 1 buluur. Burada F( Y) = 1bk 1- Y 1 + Y ve V = 4 bk a çözümü buluur. Ayrıca ( Y ) 1 sec - = h olduğuda u( x, t) = 1bk sec h k x - Vt b foksiyou ça şeklide iyi bilie bir tek dalgadır. Şekil. x = - 5,5, t = - 0.5,0.5 ve b = k = V = 1 içi ( b) deklemii [ ] [ ] grafiği. KdV deklemii diğer çözümüü bulmak içi ( 8 ) deklemie = = ( - ) ifadesii yerleştirilirse KdV deklemii ikici S Y G Y d 1 Y 0 çözümü olmadığı görülür. 166

9 . Tah Yötemii Klasik Boussiesq (CB) Deklemie Uygulaması Tah yötemi basit bir döüşüm ile lieer olmaya reaksiyo-yayılma deklem sistemlerii yöledirilmiş dalga çözümlerii elde edilmeside de kullaılabilir. Tah yötemii deklem sistemlerie uygularke farklı bir işlem uygulamayacağız. Sadece bu deklemlerde tek bağımlı değişke yerie u ve z şeklide iki bağımlı değişke ele alacağız. Şimdi bu yötemi Klasik Boussiesq (CB) 1 u 1 u u t x 4 x u u u 0 t x x deklemleri üzeride uygulayalım (Li, Ma ad Zhag, 000). Burada iki farklı k x Vt olmak foksiyo olduğuda, bu foksiyoları her biri içi üzere, x, t=, = U u x t değişke değiştirmesi yapıldığıda, d du d du 1 d U V U k =0 d d d d 4 d 5 V du U du d 0 d d d 6 deklemleri elde edilir. ( 5 ) ve alııp, itegral sabiti C = 0 alıırsa, 6 deklemlerii bir kez itegralleri 1 d U V U U. k =0 7 4 d 1 VU U 8 deklemleri elde edilir. Daha sora( 8 ) deklemi ( 7 ) deklemie yerleştirildiğide d U( ξ) =0 9 dξ ( - V ) U ξ + U ξ - U ξ

10 adi diferasiyel deklemi buluur. Daha sora Y tah döüşümü yapılırsa, ds Y 1 =0 dy dy 40 yazılır. Bu deklemde Y tah tah k x Vt olmak üzere V SY SY SY Y Y SY N U a Y açılımı yerleştirilerek, yüksek dereceli Y 0 terimlerii eşitliğide, N = N + Ş N = 1 buluur. Daha öcede belirtildiği üzere S ( Y ) = d 0 ( 1 - Y ) şeklide çözüm olabilir. Öcelikle bu ifade( 40) deklemide yazılırsa, V d0 Y d0 Y d0 Y d dy ifadesi buluur. Uygu sadeleştirmeler yapıldığıda d = V buluur. Böylece U S Y V 1 1 Y 4 1Y 1 Y d0 = 0 41 çözümü elde edilir. Bu eşitlik ( 8 ) deklemie yerleştirilirse ( ) foksiyou elde edilir. 1 V V 11 Y V 11 Y 44 Şekil x = - 5,5, t = - 0.5,0.5 ve V = içi grafiği. ( 4 ) deklemii [ ] [ ] 168

11 Şekil 4 x = - 5,5, t = - 0.5,0.5 ve V = içi grafiği. ( 44 ) deklemii [ ] [ ] SONUÇ Bu çalışmada, özellikle yayılımları içere lieer olmaya dalga deklemlerii çözümüde Tah yötemi kullaıldı. Bu yötemi temeli yöledirilmiş dalga çözümlerii hiperbolik tajat foksiyou (Tah) biçimide gösterilmesie dayaır. Bu yötemle uzu cebirsel işlemlerde kurtulmuş oluruz. Ayrıca, sıır koşullarıı uygulamasıyla hız daha kolay bir şekilde elde edilir. So bölümde, Tah yötemi Klasik Boussiesq deklemie uygulaarak çözülebileceği gösterildi. Bu yöteme dayaılarak, güümüzde birçok lieer olmaya kısmi diferasiyel deklemleri tam çözümüü araştıra çok güçlü sembolik bilgisayar yazılımları geliştirilmiştir. Bu programlar yardımıyla otomatik olarak tah, sech, c veya s foksiyoları şeklideki poliomları yöledirilmiş dalga çözümleri hesaplaabilir (Malfliet ad Herema, 005). Kayaklar Abdou, M.A. (007). The exteded tah method ad its applicatios for solvig oliear physical models, Applied Mathematics ad Computatio 190, Ablowitz, M.J., Clarkso, P.A. (1991). Solito, Noliear Evolutio Equatios ad Iverse Scatterig,Cambridge Uiversity Press, New York. Ablowitz, M., Kaup, D., Newell, A., Segur, H. (1974). The iverse scatterig trasform-fourier aalysis for oliear problems, Stud. Appl. Math.5, Bluma, G.W., Kumei, S.(1989). Symmetries ad Differetial Equatios, Spriger- Verlag, New York. Cariello, F., Tabor, M (1989). Physica D 9,

12 Che, Y., Li, B., Zhag, H.Q.(00). Commu. Theor. Phys. 8, 61. Che, Y., Li, B., Zhag, H.Q.(00). J Phys A: Math. Ge. 5, 85. Che, Y., Zheg, Y.(00). Geeralized exteded tah-fuctio method to costruct ew explicit exact solutios for the approximate equatios for log water waves, It. J. Mod. Phys. C 14 (4). Debath, L. (1997). Noliear Partial Differetial Equatios for Scietist ad Egieers, Birkhäuser, Bosto. Elwakil, S.A., El-labay, S.K., Zahra, M.A. ad Sabry, R.(00). Phys. Lett.99, 179. Fa, E.(000). Exteted tah-fuctio method ad its applicatios to oliear equatios. Phys. Lett. A.77,1. Fa, E. (00). Comput. Math. Appl. 4, 671. Fa, E., Zhag, J., Bey, Y.C.(001). Ho Phys. Lett. A 91, 76. Gao, Y.T., Tia, B. (001). Comput. Phys. Commu. 1, 158. Gu, C.H ad et al, (1990). Solito Theory ad its Applicatio, Zhejiag Sciece ad Techology Press,Zhejiag. Hirota, R. (004). The Direct Method i Solito Theory, Cambridge Uiversity Press, Cambridge. Kakutai, T. ad Kawahara, T.(1970). J. Phys. Soc. Japa 9, 1068 Khater, A.H., Malfiet, W., Callebaut, D.K., ad Kamel, E.S.(00). Chaos Solito. Fract. 14, 51. Li, Y., Ma, W. ad Zhag Ji, E.(000).Darboux trasformatio of classical Boussiesq system ad its ew solutios, Phys. Lett. A, 75, Li Z.B, Liu Y.P. (00). Comput Phys Commu,148,56. Li Z.B, Liu Y.P.(199). J. Phys. A: Math. Ge. 6, 607. Lou, S., Huag, G., Rua, H.(1991).J. Phys. A: Math. Ge. 4, L584 Malfliet, W. (199). Solitary wave solutios of oliear wave equatios, Am. J. Phys. 60, Malfliet, W. ad Herema, W.(1996). The tah method: I. Exact solutios of oliear evolutio ad wave equatios, Physica Scripta 54, Malfliet, W. ad Herema, W.(1996). The tah method: II. Perturbatio techique for coservative systems, Physica Scripta 54, Malfliet, W.(004). The tah method: a tool for solvig certai classes of oliear evolutio ad wave equatios, J. Comp. Appl. Math , Malfliet, W. ad Herema W. (005).The Tah Method: A Tool to Solve Noliear Partial Differetial Equatios with Symbolic Software, 9 th World Multicoferece o Systemics,Cyberetics ad Iformatics (WMSCI005), Orlado, Florida,July 10-1, pp Matveev, V.B., Salle, M.A. (1991). Darboux Trasformatio ad Solito, Spriger,Berli. Nuseir, A. (1994). Symbolic Computatio of Exact Solitios of Noliear Partial Differetial Equatios Usig Direct Methods, thesis of Doctor of Philosophy. Olver, P.J. (1986). Applicatios of Lie Groups to Differetial Equatios, Spriger- Verlag, New York. Parkes, E.J., Duffy, B.R.(1996). Phys. Lett. A 14, 71. Parkes, E.J., Duffy, B.R. (1997). Travellig solitary wave solutios to a compoud KdV-Burgers equatio, Phys. Lett. A 9,

13 Taoğlu, G. (007). Solitary wave solutio of oliear multi-dimesioal wave equatio by biliear trasformatio method, Commuicatios i Noliear Sciece ad Numerical Simulatio 1, Tia, B., Gao, Y.T. (00). Z. Naturforsch. A 57, 9. Wag, M.L. (1996). Applicatio of a homogeeous balace method to exact solutios of oliear equatios i mathematical physics, Phys.Lett. A16,67. Wazwaz, A.M.(00). Partial Differetial Equatios: Methods ad Applicatios, Balkema, The Netherlads. Wazwaz, A.M. (004). The tah method for travellig wave solutios of oliear equatios. Applied Mathematics ad Computatio. 154(), Wazwaz, A.M. (005). The tah ad the sie cosie methods for compact ad ocompact solutios of the oliear Klei Gordo equatio, Applied Mathematics ad Computatio 167, Ya, Z.Y.(001). New explicit travellig wave solutios for two ew itegrable coupled oliear evolutio equatios, Phys. Lett. A 9,

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh. 129-138 Ocak 2004 CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ (SOLUTION OF HOMEGENEOUS DIFFERANTIAL

Detaylı

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ .C SELÇUK ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ CHEBYSHEV POLİNOMLARI VE BAZI UYGULAMALARI NEJLA ÇALIK YÜKSEK LİSANS EZİ İLKÖĞREİM ANABİLİM DALI KONYA, 00 ÖZE YÜKSEK LİSANS EZİ CHEBYSHEV POLİNOMLARI VE BAZI

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

SÖNÜMLÜ-DEĞİŞTİRİLMİŞ KORTEWEG-deVRIES (KdV) DENKLEMİNİN ANALİTİK VE HESAPLAMALI ÇÖZÜM KARŞILAŞTIRMASI

SÖNÜMLÜ-DEĞİŞTİRİLMİŞ KORTEWEG-deVRIES (KdV) DENKLEMİNİN ANALİTİK VE HESAPLAMALI ÇÖZÜM KARŞILAŞTIRMASI XIX. ULUSAL MEKANİK KONGRESİ 4-8 Ağustos 5, Karadeiz Tekik Üiversitesi, Trabzo SÖNÜMLÜ-DEĞİŞTİRİLMİŞ KORTEWEG-deVRIES (KdV) DENKLEMİNİN ANALİTİK VE HESAPLAMALI ÇÖZÜM KARŞILAŞTIRMASI Ciha BAYINDIR Işık

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

HOMOTOPY ANALĐZĐ METODUNUN NÖTRON DĐFÜZYONUNA UYGULANMASI

HOMOTOPY ANALĐZĐ METODUNUN NÖTRON DĐFÜZYONUNA UYGULANMASI X. Ulusal Nükleer Bilimler ve Tekolojileri Kogresi, 6-9 Ekim 29, 149-158 Ş. Çavdar HOMOTOPY ANALĐZĐ METODUNUN NÖTRON DĐFÜZYONUNA UYGULANMASI Şükra Çavdar Eerji Estitüsü, Đstabul Tekik Üiversitesi, Maslak,

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

LİNEER OLMAYAN OLUŞUM DENKLEMLERİNİN ÜSTEL RASYONEL FONKSİYON METODUYLA ÇÖZÜMÜ. Geliş Tarihi: 05.08.2014 Kabul Tarihi: 09.06.2015

LİNEER OLMAYAN OLUŞUM DENKLEMLERİNİN ÜSTEL RASYONEL FONKSİYON METODUYLA ÇÖZÜMÜ. Geliş Tarihi: 05.08.2014 Kabul Tarihi: 09.06.2015 LİNEER OLMAYAN OLUŞUM DENKLEMLERİNİN ÜSTEL RASYONEL FONKSİYON METODUYLA ÇÖZÜMÜ Melike KAPLAN 1, Arzu AKBULUT 2, Mehmet Naci ÖZER 3 1 Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Matematik-Bilgisayar

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisans Tezi Matematik Anabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr.

HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisans Tezi Matematik Anabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr. HİPER KÜRESEL HORMONİKLER Nursefa YAKUPOĞLU Yüksek Lisas Tezi Matematik Aabilim Dalı Uygulamalı Matematik Bilim Dalı Yrd. Doç. Dr. Arzu AYKUT 2014 Her hakkı saklıdır ATATÜRK ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

DENEY 4 Birinci Dereceden Sistem

DENEY 4 Birinci Dereceden Sistem DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ Gai Üiv. Müh. Mim. Fak. Der. Joural of the Faculty of Egieerig ad Architecture of Gai Uiversity Cilt 3, No, 73-79, 15 Vol 3, No, 73-79, 15 GAUSS HÜZMESİNİN YÜKSEK FREKANSLARDA PLAZMA ORTAMLA ETKİLEŞİMİ

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI GAUSS BALANS VE GAUSS KOBALANS SAYILARI ÜZERİNE YÜKSEK LİSANS TEZİ MUSTAFA YILMAZ DENİZLİ, TEMMUZ - 07 T.C. PAMUKKALE ÜNİVERSİTESİ

Detaylı

KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ

KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ KESĠRLĠ MERTEBEDEN DEĞĠġKEN KATSAYILI DĠFERENSĠYEL DENKLEM VE DENKLEM SĠSTEMLERĠNĠN HERMĠTE COLLOCATION YÖNTEMĠ ĠLE YAKLAġIK ÇÖZÜMLERĠ Nilay AKGÖNÜLLÜ PĠRĠM DOKTORA TEZĠ MATEMATĠK GAZĠ ÜNĠVERSĠTESĠ FEN

Detaylı

2.2. Fonksiyon Serileri

2.2. Fonksiyon Serileri 2.2. Foksiyo Serileri Taım.. Herhagi bir ( u (x reel (gerçel değerli foksiyo dizisi verilsi. Bu m foksiyo dizisii tüm terimlerii toplamıa, yai u m (x + u m+ (x + u m+2 (x + u m+3 (x + + u m+ (x + = k=m

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI UZAY-ZAMAN KESİRLİ DİFÜZYON SİSTEMLERİNİN OPTİMAL KONTROLÜ

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI UZAY-ZAMAN KESİRLİ DİFÜZYON SİSTEMLERİNİN OPTİMAL KONTROLÜ T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI UZAY-ZAMAN KESİRLİ DİFÜZYON SİSTEMLERİNİN OPTİMAL KONTROLÜ DOKTORA TEZİ DERYA AVCI BALIKESİR, OCAK - 3 T.C. BALIKESİR ÜNİVERSİTESİ

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi 4.2. Pozitif Foksiyoları İtegrali SOU : f ), M +, A) kümeside bulua foksiyoları mooto arta dizisi ve h.h.h. f = f ise f dµ = f dµ gerçekleir. Gösteriiz Bu teorem Mooto yakısaklık teoremide yakısaklık yerie

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

GENELLEŞTİRİLMİŞ İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS POLİNOMLARI

GENELLEŞTİRİLMİŞ İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS POLİNOMLARI T.C. SELÇUK ÜNİVERSİTESİ EĞİTİM BİLİMLERİ ENSTİTÜSÜ İLÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ ANABİLİM DALI GENELLEŞTİRİLMİŞ İKİ DEĞİŞKENLİ FİBONACCİ VE LUCAS POLİNOMLARI Şerife TUNÇEZ YÜKSEK LİSANS TEZİ Daışma

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ UFUK KAYA Mersi Üiversitesi Fe Bilimleri Estitüsü Matematik Aa Bilim Dalı YÜKSEK LİSANS TEZİ Tez Daışmaı Prof. Dr. Nazım KERİMOV MERSİN Hazira - 8 ÖZ Bu çalışmada

Detaylı

MACH SAYISININ YAPAY SİNİR AĞLARI İLE HESAPLANMASI

MACH SAYISININ YAPAY SİNİR AĞLARI İLE HESAPLANMASI V. ULUSAL HAVACILIK VE UZAY KONFERANSI UHUK-014-065 8-10 Eylül 014, Erciyes Üiversitesi, Kayseri MACH SAYISININ YAPAY SİNİR AĞLARI İLE HESAPLANMASI İlke TÜRKMEN 1 Erciyes Üiversitesi, Kayseri Seda ARIK

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 5. KİTAP LİNEER VEKTÖR UZAYLARI

FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 5. KİTAP LİNEER VEKTÖR UZAYLARI FEN VE MÜHENDİSLİKTE MATEMATİK METOTLAR 5. KİTAP LİNEER VEKTÖR UZAYLARI 44 İÇİNDEKİLER I. CEBİRSEL TEMELLER A) Lieer Vektör Uzayları B) Lieer Bağımsızlık ve Boyut C) Skalar Çarpım ve Norm D) Hilbert Uzayları

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

Diferansiyel Gelişim Algoritmasının Valf Nokta Etkili Konveks Olmayan Ekonomik Güç Dağıtım Problemlerine Uygulanması

Diferansiyel Gelişim Algoritmasının Valf Nokta Etkili Konveks Olmayan Ekonomik Güç Dağıtım Problemlerine Uygulanması 6 th Iteratioal Advaced Techologies Symposium (IATS ), 6-8 May 0, Elazığ, Turkey Diferasiyel Gelişim Algoritmasıı Valf Nokta Etkili Koveks Olmaya Ekoomik Güç Dağıtım Problemlerie Uygulaması S. Özyö, C.

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.tekolojikarastirmalar.com ISSN:34-44 Makie Tekolojileri Elektroik Dergisi 7 () 35-4 TEKNOLOJĐK ARAŞTIRMALAR Makale Polivili Klorür (Pvc) Malzemeleri Sıcaklığa Bağlı Titreşim Özelliklerii Đcelemesi

Detaylı

ELEKTRİK ALAN ALTINDAKİ KARE KUANTUM KUYUSUNUN ELEKTRONİK ÖZELLİKLERİNİN PERTÜRBATİF VE ANALİTİK YÖNTEM İLE İNCELENMESİ

ELEKTRİK ALAN ALTINDAKİ KARE KUANTUM KUYUSUNUN ELEKTRONİK ÖZELLİKLERİNİN PERTÜRBATİF VE ANALİTİK YÖNTEM İLE İNCELENMESİ SAÜ. Fe Bilimleri Dergisi, 14. Cilt,. Sayı, Elektrik Ala Altıdaki Kare Kuatum Kuyusuu Elektroik Özelliklerii Pertürbatif Ve Aalitik Yötem İle İcelemesi ELEKTRİK ALAN ALTINDAKİ KARE KUANTUM KUYUSUNUN ELEKTRONİK

Detaylı

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ

SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ. Burak DEĞİRMENCİ T.C. DENİZ HARP OKULU DENİZ BİLİMLERİ VE MÜHENDİSLİĞİ ENSTİTÜSÜ ELEKTRİK VE ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI İLETİŞİM BİLİM DALI SUALTI AKUSTİK DALGA YAYILIMINDA BALONCUKLARIN DİSPERSİF MODELLENMESİ

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ GAZ DİNAMİK DENKLEMLERİNE YENİ BİR YAKLAŞIM: DİFERANSİYEL TRANSFORM METODUNUN BİR UYGULAMASI HÜLYA ESER YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI Koa 8

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı Veri edir? p Veri edir? Geometrik bir bakış açısı p Bezerlik Olasılıksal bir bakış açısı p Yoğuluk p Veri kalitesi p Veri öişleme Birleştirme Öreklem Veri küçültme p Temel bileşe aalizi (Pricipal Compoet

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

Zemine gömülü bir borunun dinamik analizi

Zemine gömülü bir borunun dinamik analizi Zemie gömülü bir boruu diamik aalizi Dyamic aalysis of a buried pipe Müge Balkaya, Meti O. Kaya, Ahmet Sağlamer İstabul Tekik Üiversitesi, İstabul, Türkiye ÖZET: Bu çalışmada, zemie gömülü bir boruyu temsil

Detaylı

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM 5. ORURKİ İSKOZ (SÜRTÜNMEİ) KIM 5.0. oru Sistemleri Çözüm Yötemleri oru sistemleriyle ilgili problemleri çözümüde tip çözüm yötemi vardır. ular I. Tip, II. Tip ve III. Tip çözüm yötemleridir. u çözüm yötemleride

Detaylı

STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ. Sezgin OĞRAŞ

STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ. Sezgin OĞRAŞ T.C DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ STANDART OLMAYAN BÜYÜME KOŞULLU ELİPTİK TİPTEN FARK DENKLEMLERİNİN ÇÖZÜMLERİ Sezgi OĞRAŞ YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI Temmuz DİYARBAKIR TEŞEKKÜR

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1

Bir Sınıf Jacobi Matrisi İçin Özdeğer Problemi 1 S Ü Fe Ed Fa Fe Derg Sayı 7 (6-8, KONYA Bir Sııf Jacobi Matrisi İçi Özdeğer Problemi Oza ÖZKAN Selçu Üiversitesi, Fe-Edebiyat Faültesi, Matemati Bölümü 479 Kampüs, Koya simetri Jacobi matrislerii özdeğerleri

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

ANADOLU ÜNivERSiTESi BiLiM VE TEKNOLOJi DERGiSi. SZASZ TIPI OPERATORlERlE poıinom AGIRUKU UZAYLARDA YAKLAŞıM. Nurhayat ispir 1

ANADOLU ÜNivERSiTESi BiLiM VE TEKNOLOJi DERGiSi. SZASZ TIPI OPERATORlERlE poıinom AGIRUKU UZAYLARDA YAKLAŞıM. Nurhayat ispir 1 ...\) O"'''t" ~.Q~Cıo;>~';. ANADOLU ÜNivERSiTESi BiLiM VE TEKNOLOJi DERGiSi cl o ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY \ L Cilt/Vol.: 3 - Sayı/No: 3 : 41-45 (00) ı ṯ rri('ho~o)\ Q~ XLV.

Detaylı

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAGLEY-TORVİK DENKLEMİNİN KESİRLİ DİFERANSİYEL DÖNÜŞÜM METODU İLE ÇÖZÜMÜ VE DİĞER YÖNTEMLERLE KARŞILAŞTIRILMASI YÜCEL ÇENESİZ YÜKSEK LİSANS TEZİ MATEMATİK

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

MATLAB VE ASP.NET TABANLI WEB ARAYÜZÜ KULLANILARAK DOĞRUSAL OLMAYAN SİSTEMLERİN ANALİZİ

MATLAB VE ASP.NET TABANLI WEB ARAYÜZÜ KULLANILARAK DOĞRUSAL OLMAYAN SİSTEMLERİN ANALİZİ Gazi Üiv. Müh. Mim. Fak. Der. Joural of the Faculty of Egieerig ad Architecture of Gazi Uiversity Cilt 27, No 4, 795-806, 2012 Vol 27, No 4, 795-806, 2012 MATLAB VE ASP.NET TABANLI WEB ARAYÜZÜ KULLANILARAK

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BİR STURM-LIOUVILLE PROBLEMİNİN BAZI ÖZELLİKLERİ VE GREEN FONKSİYONU

BİR STURM-LIOUVILLE PROBLEMİNİN BAZI ÖZELLİKLERİ VE GREEN FONKSİYONU T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİR STURM-LIOUVILLE PROBLEMİNİN BAZI ÖZELLİKLERİ VE GREEN FONKSİYONU Yaemi KUZU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR HAZİRAN T.C. AHİ

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI CHAKI PSEUDO SİMETRİK MANİFOLDLAR YÜKSEK LİSANS TEZİ.

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI CHAKI PSEUDO SİMETRİK MANİFOLDLAR YÜKSEK LİSANS TEZİ. T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI CHAKI PSEUDO SİMETRİK MANİFOLDLAR YÜKSEK LİSANS TEZİ İsmail AYDOĞDU Balıkesir, Hazira-009 ÖZET CHAKI PSEUDO SİMETRİK MANİFOLDLAR

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü

Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü Mekaik Titreşimler ve Kotrolü Makie Mühedisliği Bölümü s.selim@gtu.edu.tr 4.10.018 Söümlü tek serbestlik dereceli sistemler Serbest cisim diyagramı k c kx cx Force 0 m Ft () m F Titreşim hareketi bir başlagıç

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

GİRİŞ. Daha karmaşık yapıda olan ve bu ders kapsamına girmeyen denklemler için örnekler ise;

GİRİŞ. Daha karmaşık yapıda olan ve bu ders kapsamına girmeyen denklemler için örnekler ise; GİİŞ Matematik bakış açısıyla doğrusal modelleri büyük bir avataı vardır. Doğrusal olmaya sistemleri matematiği aalitik yötemlerle oldukça zordur ve geellikle bir ümerik bir çözüm elde edebilmek içi bilgisayar

Detaylı

BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU

BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU Oka KUZU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

Ludwick Tipi Doğrusal Olmayan Malzemeden Yapılmış Bir Konsol Kirişteki Doğrusal Kabullerin Yer Değiştirmeler Üzerindeki Etkisinin İncelenmesi

Ludwick Tipi Doğrusal Olmayan Malzemeden Yapılmış Bir Konsol Kirişteki Doğrusal Kabullerin Yer Değiştirmeler Üzerindeki Etkisinin İncelenmesi BAÜ Fe Bil. Est. Dergisi Cilt 6() 5-5 (04) Ludwick Tipi Doğrusal Olmaya alzemede Yapılmış Bir osol irişteki Doğrusal abulleri Yer Değiştirmeler Üzerideki Etkisii İcelemesi İbrahim EREN * Yıldız Tekik Üiversitesi

Detaylı

METAL MATRİSLİ DAİRESEL DELİKLİ KOMPOZİT LEVHALARDA ARTIK GERİLMELERİN ANALİZİ

METAL MATRİSLİ DAİRESEL DELİKLİ KOMPOZİT LEVHALARDA ARTIK GERİLMELERİN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : -3 : 141-146

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı

Diferansiyel Gelişim Algoritmasının Termik Birimlerden Oluşan Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması

Diferansiyel Gelişim Algoritmasının Termik Birimlerden Oluşan Çevresel Ekonomik Güç Dağıtım Problemlerine Uygulanması Diferasiyel Gelişim Algoritmasıı Termik Birimlerde Oluşa Çevresel Ekoomik Güç Dağıtım Problemlerie Uygulaması Differetial evolutio algorithm applied to evirometal ecoomic power dispatch problems cosistig

Detaylı

VEKTÖR SENSÖR DİZİNLERİ İÇİN AKUSTİK MOD HÜZME OLUŞTURUCU

VEKTÖR SENSÖR DİZİNLERİ İÇİN AKUSTİK MOD HÜZME OLUŞTURUCU 10. ULUSAL AKUSTİK KONGRESİ YILDIZ TEKNİK ÜNİVERSİTESİ ODİTORYUMU, İSTANBUL 16-17 Aralık 2013 VEKTÖR SENSÖR DİZİNLERİ İÇİN AKUSTİK MOD HÜZME OLUŞTURUCU M. Berke Gür 1 1 Bahçeşehir Üiversitesi, Beşiktaş,

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi, Cilt 19, Sayı 2, 2013, Sayfalar 76-80 Pamukkale Üiversitesi Mühedislik Bilimleri Dergisi Pamukkale Uiversity Joural of Egieerig Scieces TEK MAKİNELİ

Detaylı

Doğrusal Olmayan Kısıtlı Programlama ile Yapay Sinir Ağlarının Eğitilmesi ÖZET

Doğrusal Olmayan Kısıtlı Programlama ile Yapay Sinir Ağlarının Eğitilmesi ÖZET Doğrusal Olmaya Kısıtlı Programlama ile Yapay Siir Ağlarıı Eğitilmesi Sabri ERDEM 1 ve Şe ÇAKIR 2 1 Dokuz Eylül Üiv. İşletme Fak., İg. İşletme Bölümü, İzmir, Türkiye sabri.erdem@deu.edu.tr 2 Dokuz Eylül

Detaylı

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül BİR ÇUBUĞUN MODAL ANALİZİ A.Saide Sarıgül DENEYİN AMACI: Akastre bir çubuğu modal parametrelerii (doğal frekas, titreşim biçimi, iç söümü) elde edilmesi. TANIMLAMALAR: Modal aaliz: Titreşe bir sistemi

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 1 sh Ocak 2000

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 1 sh Ocak 2000 ÖZE / ABSRAC DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: Sayı: sh. 4-45 Ocak 000 İKİ İNDİSLİ DÜZLEMSEL DAĞIIM PROBLEMİNİN MARİS DENKLEMLERİ İLE İNCELENMESİ (INVESIGAION OF WO-INDEX PLANAR

Detaylı

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME

AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME Fahri VATANSEVER 1 Ferudu UYSAL Adullah UZUN 3 1 Sakarya Üiversitesi, Tekik Eğitim Fakültesi, Elektroik-Bilgisayar Eğitimi Bölümü, 54187 Esetepe Kampüsü/SAKARYA

Detaylı

FZM450 Elektro-Optik. 8.Hafta

FZM450 Elektro-Optik. 8.Hafta FZM450 Elektro-Optik 8.Hafta Elektro-Optik 008 HSarı 1 8. Hafta Ders İçeriği Elektro-Optik Elektro-optik Etki Pockel Etkisi Kerr Etkisi Diğer Optik Etkiler Akusto-Optik Etki Mağeto-Optik Etki 008 HSarı

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

Rijit Olmayan Sınır Koşullarında Elastik Zemine Oturan Bir Çubuğun Eksenel Titreşim Analizi

Rijit Olmayan Sınır Koşullarında Elastik Zemine Oturan Bir Çubuğun Eksenel Titreşim Analizi Bilecik Şeyh Edebali Üiversitesi Fe Bilimleri Dergisi, Cilt:, Sayı: 1, 15 ISSN: 148-33 (http://edergi.bilecik.edu.tr/idex.php/fbd Araştırma Makalesi/Research Article Rijit Olmaya Sıır Koşullarıda Elastik

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

SİSTEMLERİN ZAMAN CEVABI

SİSTEMLERİN ZAMAN CEVABI DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

İki Serbestlik Dereceli Mekanizmalarla İşlev Sentezinde Tasarım Noktalarının Eşit ve Çebişev Aralıklandırması ile Seçiminin Karşılaştırılması

İki Serbestlik Dereceli Mekanizmalarla İşlev Sentezinde Tasarım Noktalarının Eşit ve Çebişev Aralıklandırması ile Seçiminin Karşılaştırılması Uluslararası Katılımlı 7. Makia Teorisi Sempozyumu, İzmir, -7 Hazira 05 İki Serbestlik Dereceli Mekaizmalarla İşlev Setezide Tasarım oktalarıı Eşit ve Çebişev Aralıkladırması ile Seçimii Karşılaştırılması

Detaylı

OBTAINING REGIONAL TRANSFORM COEFFICIENT CONSIDERING THE DISTANCE AND DIRECTION WİTH L1-NORM METHOD

OBTAINING REGIONAL TRANSFORM COEFFICIENT CONSIDERING THE DISTANCE AND DIRECTION WİTH L1-NORM METHOD LNORM YÖNTEMİ İLE BÖLGESEL DÖNÜŞÜM KATSAYILARININ UZAKLIK VE YÖN DİKKATE ALINARAK ELDE EDİLMESİ Ü. KIRICI, Y. ŞİŞMAN Odokuz Mayıs Üiversitesi, Mühedislik Fakültesi, Harita Mühedisliği Bölümü, Samsu, ulku.kirici@omu.edu.tr,

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı