İSTATİSTİKSEL TAHMİNLEME VE

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İSTATİSTİKSEL TAHMİNLEME VE"

Transkript

1 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı kavramıı taımlamak, _ Örek ortalamasıı örekleme dağılışıı ortalaması ve stadart sapmasıı belrlemek, Örek oraıı örekleme dağılışıı ortalaması ve stadart _ sapmasıı belrlemek Merkez Lmt Teorem ve çıkarsamalarıı kullamak, Ortalama ve ora ç öreklem dağılımı uygulamaları yapmak. Dr. Mehmet KSRYLI Yorumlama sürec ç Örek? Tahmler ve testler Örek İstatstkler (, ps) Populasyo Örek Test rmler İmhası Kalte Kotrol Doğru ve Güvelr Souçlar Pragmatk Sebepler Zama Malyet 3 4 Örek Tpler Örekleme Hatası (Samplg Error) Örek Tp Örek İstatstkler aktle Parametreler tahmlemek ç kullaılır. Olasılık Dışı Olasılık Sorular: Öreğ: pulasyo ortalamsıı (μ) tahmdr. Yargı Kota Ktle ast Şas Sstematk Tabakalı Kümel Farklı örekler aktle parametreler farklı tahmler verr. Örek souçları potasyel olarak değşkelk çerrler böylece; örekleme hatası ortaya çıkar. 5 6

2 7 Calculatg Samplg Error Samplg Error: The dfferece betwee a value (a statstc) computed from a sample ad the correspodg value (a parameter) computed from a populato Eample: (for the mea) Samplg Error - μ Eample If the populato mea s μ = 98.6 degrees ad a sample of = 5 temperatures yelds a sample mea of = 99. degrees, the the samplg error s μ degrees where: sample mea μ populato mea 8 Samplg Errors Farklı örekler farklı örekleme hataları verr. errors Örekleme hataları poztf veya egatf olablr. Örek büyüklüğü arttığıda örekleme hatası küçülür. Örekleme dağılımı Teork br olasılık dağılımı vardır. Şas değşke örek statstğdr. Örek ortalaması, örek oraı, vb. elrl br hacmde tüm mümkü örekler çeklmesyle oluşur. [, P( )] 9 1 Örek1 ssume there s a populato Populato sze =4 Radom varable,, s age of dvduals Values of : 18,,, 4 (years) C D Örek1 Summary Measures for the Populato Dstrbuto: P() μ ( μ) 18 4 σ.36 C D Uform Dstrbuto 11 1

3 13 ow cosder all possble samples of sze = 1 st d Observato Obs ,18 18, 18, 18,4,18,,,4,18,,,4 4 4,18 4, 4, 4,4 possble samples (samplg wth replacemet) Örek1 Sample Meas 1st d Observato Obs Samplg Dstrbuto of ll Sample Meas Sample Meas 1st d Observato Obs P(). Örek1 Sample Meas Dstrbuto (o loger uform) 14 _ Summary Measures of ths Samplg Dstrbuto: μ 1 σ ( μ ) (18-1) (19-1) Örek1 (4-1) 1.58 Populato = 4 μ 1 σ.36 P(). Örek C D Comparg the Populato wth ts Samplg Dstrbuto Sample Meas Dstrbuto = μ 1 σ 1.58 P() _ 15 Örek Örek Populasyo Karakterstkler r populasyo varsayalım... Populasyo hacm, = 4 Şas değşke,, ş sırasıda yapıla hatalar değerler: 1,, 3, 4 olsu. Örek Ölçütler ( ) Populasyo dağılımı

4 19 Örek = hacml tüm mümkü örekler Örek Tüm örek ortalamalarıı örekleme dağılımı örek örek ortalaması 1.. gözlem göz ,1 1, 1,3 1,4,,,3,4 3 3,1 3, 3,3 3,4 4 4,1 4, 4,3 4,4 1.. Gözlem göz örek ortalaması Örekleme dağılımı 1.. Gözlem Göz P() Yere koyarak örekleme Örek Tüm mümkü örek ortalamalarıı özet statstkler ( ) (1. 5). (15. 5). (4. 5).. 79 P().. Örek Populasyo Populasyo ve örekleme dağılımlarıı karşılaştırılması Örekleme dağılışları P() Ortalamaı stadart hatası Tüm mümkü örek ortalamalarıı stadart sapmasıdır. Populasyou stadart sapmasıda küçüktür. Formülü: Fte Populato Correcto pply the Fte Populato Correcto f: the sample s large relatve to the populato ( s greater tha 5% of ) ad Samplg s wthout replacemet ( μ) z The σ 1 3 4

5 5 ormal populasyolarda örekleme Merkez eğlm Yayılım yere koyarak örekleme = 4 = 5 Populasyo dağılımı 5 = 1 Örekleme dağılımı 5 = =.5 Ortalamaı örekleme dağılışıı stadardze edlmes Z Örekleme dağılımı Stadart ormal dağılım Z = z = 1 Z 6 ormal olmaya populasyolarda örekleme Merkez eğlm Yayılım Yere koyarak örekleme = 4 = 5 Populasyo dağılımı 5 = 1 Örek dağılımı =3 = 1.8 Örek hacm arttıkça ( 3)... Merkez Lmt Teorem Örekleme dağılışı ormal dağılıma yaklaşır Farklı örek büyüklükler ( ) ve farklı populasyolar ç ı örekleme dağılışı If the Populato s ot ormal 9 Samplg dstrbuto propertes: Cetral Tedecy Varato μ μ σ σ (Samplg wth replacemet) Populato Dstrbuto Samplg Dstrbuto (becomes ormal as creases) Smaller sample sze μ μ Larger sample sze 3

6 31 Eample Suppose a populato has mea μ = 8 ad stadard devato σ = 3. Suppose a radom sample of sze = 36 s selected. What s the probablty that the sample mea s betwee 7.8 ad 8.? Soluto: Eample Eve f the populato s ot ormally dstrbuted, the cetral lmt theorem ca be used ( > 3) so the samplg dstrbuto of s appromately ormal μ wth mea = μ = 8 ad stadard devato σ σ Eample Soluto -- fd z-scores: Populato Dstrbuto???????????? μ - μ P(7.8 μ 8.) P 3 σ Samplg Dstrbuto Sample P(-.4 z.4) 18 Stadard ormal Dstrbuto Stadardze μ 8 μ 8 μ z z 33 Populato Proportos, π π = the proporto of the populato havg some characterstc Sample proporto ( p ) provdes a estmate of π : p umber of successes the sample sample sze If two outcomes, p has a bomal dstrbuto 34 Samplg Dstrbuto of p ppromated by a ormal dstrbuto f: π (1 π) 5 where 5 μ p π ad Samplg Dstrbuto P(p) p σ p π(1 π) (where π = populato proporto) 35 z-value for Proportos Stadardze p to a z value wth the formula: p π z σ If samplg s wthout replacemet ad s greater tha 5% of the populato sze, the σ p must use the fte populato correcto factor: p p π π(1 π) σ p π(1 π) 1 36

7 37 Eample If the true proporto of voters who support Proposto s π =.4, what s the probablty that a sample of sze yelds a sample proporto betwee.4 ad.45? Eample f π =.4 ad =, what s P(.4 p.45)? σ p Fd : σ p π(1 π).4(1.4).3464.e.: f π =.4 ad =, what s P(.4 p.45)? Covert to stadard ormal: P(.4 p.45) P z P( z 1.44) 38 Samplg Dstrbuto Eample f π =.4 ad =, what s P(.4 p.45)? Use stadard ormal table: P( z 1.44) =.451 Stadardzed ormal Dstrbuto.451 lıştırma Türk telekomda çalışa br operatörsüüz. Uzu mesafel telefo görüşmeler = 8dk. & = dk. İle ormal dağılmakta. Eğer 5 aramalık örekler seçersez örek ortalamalarıı % kaçı 7.8 & 8. dk. arasıda olacaktır? Stadardze.4.45 p 1.44 z T/Maker Co Çözüm le Olasılıklar İç Z Değerler uluması Örekleme dağılımı = Z Z. 5 5 Stadart ormal dağılım Z = Z 41 P(Z) = 17 se Z edr? 17 Z = 1 Z = 1 Z Stadart ormal olasılık Tablosu (Kısme).1 Z

8 43 ÖREK: üyük br alışverş merkezde 15 YTL de fazla alışverş yapa müşterler %3 uu kred kartı kulladığı tespt edlmştr. 15 YTL de fazla alışverş yapa 1 müşter ç oraları öreklem dağılımıı stadart hatası edr? P 1 P 1 P yı örek ç 15 YTL de fazla alışverş yapa 1 müşterde % le %5 kred kartı kullaması htmal hesaplayıız. p1 P. p P.5 Z1 8 Z 1.9 P1 P (1 ) P1 P (1 ) P(. P.5) P( 8 Z 1.9) P(. P.5) ORTLMLR RSI FRKLRI ÖREKLEME DĞILIMI Ortalamalar arası farkı örek dağılımıı ortalaması μ 1 μ ve stadart hatası da 1 le gösterlr. 1 Z Örek: İk farklı u fabrkasıda paketlee stadart 1 kg lık u paketler test edlmş ve brc fabrkada alıa 1 paket ortalaması 1.3 kg, stadart sapması.4kg; kc fabrkada alıa 1 paket ortalaması.99 kg, stadart sapması.5 kg bulumuştur. akütle stadart sapmaları blmedğ ç örek stadart sapmalarıda hareketle ortalamalar arası farkı stadart hatası, s1 s 1 (.4) (.5) = 1 1 = ORLR RSI FRKLRI ÖREKLEME DĞILIMI Oralar arası farkı örek dağılımıı ortalaması P 1 P ve stadart hatası da 1 le gösterlr. P1 1 P1 P 1 P P P Z p1p P1P P 1P P 1P 1 Örek: rc fabrkadak kusurlu mamul oraıı.8 ve kc fabrkadak kusurlu mamul oraıı.5 olduğu blmektedr. Tesadüf olarak brc fabrkada 1, kc fabrkada 15 mamul seçlmş ve brc örektek kusurlu mamul oraı.9, kc örektek kusurlu mamul oraı.6 olarak gözlemştr. ua göre kusur oraları arasıdak farkı stadart hatası: P P P1 1 P1 P 1 P P P P P

9 49 lmeye populasyo parametreler tahmler... Ortalama Populasyo Örek statstğyle parametres Tahmle! Ora P p Varyas s Farklar 1 P ( ) P ( ) Sapmasız 3. Kararlılık Tahmleycler Özellkler 1. Sapmasızlık Sapmalı üyük örek hacm Küçük örek hacm P(). Etklk 5 P ( ) Tahmleycler Özellkler 1. Sapmasızlık Sapmasız Sapmalı brmlk ayı aakütlede farklı sayıda öreklem seçlebleceğ ç tahm edc değer de seçle örekleme göre değşmektedr. u durumda öreklem sayısı kadar elde edle tahm edc, br rassal değşke olup, ortalaması ve varyası ola br olasılık dağılımıa sahptr. u dağılımı beklee değer aakütle parametrese eşt olmasıa, dğer br fadeyle br statstğ beklee değer le blmeye aakütle parametres arasıdak farkı sıfıra eşt olmasıa sapmasızlık der. E() E() P( ). Tutarlılık (Kararlılık) üyük örek hacm Küçük örek hacm Öreklemdek brm sayısı sosuza doğru arttırıldığıda, tahm edc değer aakütle değere yaklaşması ve = olması durumuda aralarıdak farkı sıfıra mes özellğe tutarlılık der. lm P 1 ˆ, ı tutarlı tahmcsdr Etklk Etk Tahmc P() rde fazla sapmasızvetutarlı tahmc olması durumuda, br tahmc varyasıı, ayı aakütle parametres başka br tahmcs varyasıda daha küçük olması durumuda elde edle tahmclere etk tahmc adı verlmektedr. 53

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI

T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI 15.09.015 T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ SAYISAL YÖNTEMLER ANABİLİM DALI DERS NOTLARI ISL4 İSTATİSTİK II HAZIRLAYAN PROF. DR. ALİ SAİT ALBAYRAK

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Bir tahmin edicinin sapması, beklenen değeriyle gerçek parametre arasındaki fark olarak tanımlanır.

Bir tahmin edicinin sapması, beklenen değeriyle gerçek parametre arasındaki fark olarak tanımlanır. 6. EN KÜÇÜK KARELER TAHMİNLERİNİN ÖZELLİKLERİ 6. TAHMİN EDİCİLERDE ARANAN ÖZELLİKLER Geellkle br tahm aa kütle parametres gerçek değere yakı olmasıı ve b gerçek parametre yakılarıda dar br aralıkta değşmes

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Box ve Whisker Grafiği

Box ve Whisker Grafiği www.memetaarayl.com Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ mehmet.aarayl@deu.edu.tr Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

t Dağılımı ve t testi

t Dağılımı ve t testi t Dağılımı ve t teti Studet t Dağılımı Küçük öreklerde (

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi

Lojistik Regresyonda Meydana Gelen Aşırı Yayılımın İncelenmesi Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc.), 008, 18(1): 1-5 Araştırma Makales/Artcle Gelş Tarh: 10.06.007 Kabul Tarh: 7.1.007 Lojstk Regresyoda Meydaa Gele Aşırı Yayılımı İcelemes

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Ölçme Hataları ve Normal Dağılım

Ölçme Hataları ve Normal Dağılım Ölçme Hataları ve Normal Dağılım Yıl 967. Fzk ders mekak laoratuarıda rc laoratuar. Kousu: Ölçme ve çft kefel terazler hassasyet. Mesaj: ey ölçerse ölç, ölçmek stedğ şey ulamazsı, ölçü alet hassasyet sıırları

Detaylı

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN

Detaylı

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem YTÜ-İktisat İstatistik II Nokta Tahmii 1 Tahmi teoriside amaç öreklem (sample) bilgisie dayaarak aakütleye (populatio) ilişki çıkarsamalar yapmaktır. Bu çıkarsamalar aakütlei dağılımıı belirleye bilimeye

Detaylı

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK

α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

12.İSTATİSTİK SORU VE CEVAPLARI

12.İSTATİSTİK SORU VE CEVAPLARI .İSTATİSTİK SORU VE CEVAPLARI.. DESKRİPTİF İSTATİSTİK Soru. Br ş yerde çalışaları maaşlarıa, kşler kıdem derecelere göre aşağıdak şeklde zam yapılmıştır.acaba bu şyerde çalışa şahısları tartılı ortalama

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:0-Sayı/No: : 455-465 (009) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE İKİ PARAMETRELİ WEIBULL DAĞILIMINDA

Detaylı

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI

PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

Operasyonel Risk İleri Ölçüm Modelleri

Operasyonel Risk İleri Ölçüm Modelleri Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu

Detaylı

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI

WEİBULL DAĞILIMININ ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİN İSTATİSTİKSEL TAHMİN YÖNTEMLERİNİN KARŞILAŞTIRILMASI İstabul Tcaret Üverstes Sosal Blmler Dergs Yıl:8 Saı:5 Bahar 2009 s.73-87 WEİBULL DAĞILIMII ÖLÇEK VE BİÇİM PARAMETRELERİ İÇİ İSTATİSTİKSEL TAHMİ YÖTEMLERİİ KARŞILAŞTIRILMASI Flz ÇAKIR ZEYTİOĞLU* ÖZET Güümüzde

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler).

ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler). ÖNSÖZ Bu laboratuar kılavuzu ĐST 5 Đstatstk Laboratuarı deeyler ç hazırlamıştır. Buradak deeyler ve çalışmaları amacı, şu aa kadar görüle dersler çerçevesde, rasgelelk olgusuu alaşılması ve alatılması

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2015 yılı fo getrs 02/01/2015-04/01/2016 tarhl brm pay değerler kullaılması le hesaplamıştır. 2015 yılı karşılaştırma ölçütü getrs

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş

«ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ş ç Ü Ü ÜÜ ö ş ş ç ş ç ş «ç ç Ç ş ö ş ç ş ş ş ö ş ö ç ç Ç ö Ç ç ç ö ş ç ş Ü ç ç Ç ç ş ö ş ç ş ö Ç ş ö Ç ş ö ç ş ç Çö ç ş ş ö ş ş ş ş ş ö ö ş ç ş ç Çö ş ö ş ş ç ş Ü ş ş Ö Ü ş ç ç Çö ö Ş ş Çö ş ö ş ş ç ş

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ

KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Eoometr ve İstatst Sayı:5 0-4 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Arzdar KİRACI* Özet Gücel yazıda,

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ

TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular

Konular. VERİ MADENCİLİĞİ Veri Önişleme. Değer Kümeleri. Veri Nedir? Nitelik Türleri. Konular 0 Koular VERİ MADENCİLİĞİ Ver Öşleme Yrd. Doç. Dr. Şule Güdüz Öğüdücü Öşleme y Taıma Bezerlk ve farklılık Ver Nedr? eseler ve eseler telklerde oluşa küme kayıt (record), varlık (etty), örek (sample, stace)

Detaylı

POISSON REGRESYON ANALİZİ

POISSON REGRESYON ANALİZİ İstabul Tcaret Üverstes Fe Blmler Dergs Yıl:4 Sayı:7 Bahar 005/ s. 59-7 POISSON REGRESYON ANALİZİ Özlem DENİZ * ÖZET Herhag br olayı belrlee br süreç çersde yaıla deemeler soucuda meydaa gelme sayısı,

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Açık Artırma Teorisi Üzerine Bir Çalışma

Açık Artırma Teorisi Üzerine Bir Çalışma Kocael Üerstes Sosyal Blmler Esttüsü Dergs (4) 27 / 2 : 5-77 Açık Artırma Teors Üzere Br Çalışma Şeket Alper Koç Özet: Bu çalışmada haleler üzere teork r araştırma yapılacaktır. Belrl arsayımlar altıda

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI MUSTAFA ÇAĞATAY KORKMAZ YÜKSEK LİSANS TEZİ İSTATİSTİK ANA BİLİM DALI KONYA, 2

Detaylı

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller

UYGULAMA 2. Bağımlı Kukla Değişkenli Modeller UYGULAMA 2 Bağımlı Kukla Değşkenl Modeller Br araştırmacı Amerka da yüksek lsans ve doktora programlarını kabul ednlmey etkleyen faktörler ncelemek stemektedr. Bu doğrultuda aşağıdak değşkenler ele almaktadır.

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Populasyon Hacminin Yakalama-Tekrar Yakalama Yöntemi Kullanılarak Ters Tahmin Yöntemi ile Tahmini (1)

Populasyon Hacminin Yakalama-Tekrar Yakalama Yöntemi Kullanılarak Ters Tahmin Yöntemi ile Tahmini (1) Yüzücü Yıl Üverstes, Zraat Fakültes, Tarım Blmler Dergs (J. Agrc. Sc., 003, 3(: 3-8 Gelş Tarh :.0.003 Populasyo Hacm Yakalama-Tekrar Yakalama Yötem Kullaılarak Ters Tahm Yötem le Tahm ( Hamt MİRTAGHIZADEH

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları

5.1 Olasılık Tarihi. 5.2. Temel Olasılık Kavramları 5 OLSILIK 5.. Olasılık Tarh 5.. Temel Olasılık Kavramları 5.3. Deeysel Olasılık 5.4. Temel olasılık Teoremler 5.5. Olasılığı Tolaablrlk Kuralı: 5.6. Olasılığı çarım kuralı: 5.7. Değl ağıtısı: 5.8. Koşullu

Detaylı

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez

Detaylı