DERS 5. Limit Süreklilik ve Türev

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DERS 5. Limit Süreklilik ve Türev"

Transkript

1 DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik ve türev i taımlaaağız. 5.. imit. Bir oksiou;, R verilmiş olsu. i i içie ala bir açık aralığı belki dışıda er oktasıda taımlı olduğuu kabul ede. Taım. Eğer i e akı er iki tarata da er değeri içi saısı e akı oluorsa, saısıa saısı e aklaşırke oksiouu iti deir ve vea içi azılır. Yadaki şekli ieleerek taım üzeride düşüüüz. ise, saısı e solda vea sağda aklaşırke i graiği üzerideki, oktası, oktasıa aklaşır.,,,, Örek.? Saısal olarak,, e akı bir saı olursa, saısı 4 e akı olur Yadaki şekilde izleiiz. Dolaısıla, 4 4., 4 Örek.? 4 deklemi ile taımlaa oksiou değeri içi taımsız, aak dışıda tüm reel saılar içi taımlıdır. Arıa, de arklı er içi 4 4 olduğuda, 4 tür.

2 Ders 5.78 Eğer deir. ola bir saısı oksa, oksiouu içi iti oktur Örek. deklemi ile taımlaa oksiou içi taımsız akat i dışıdaki er değeri içi taımlıdır., e aklaştıkçaer iki tarata da gittikçe büüe değerler alır. Bu edele, oksiouu içi iti oktur. vea içi olup olmadığı araştırılırke i e er iki tarata da akı değerleri, ai em de küçük em de de büük değerleri içi i e akı olup olmadığı kotrol edilmektedir. i e sadee bir tarata akı değerleri içi de i e akı olup ulmadığı sorgulaabilir. Bu düşüe bizi tek alı it kavramıa götürür. Taım. Eğer i e akı akat de küçük er değeri içi saısı e akı oluorsa, saısıa saısı e solda aklaşırke oksiouu iti deir ve azılır. vea içi,,, Örek 4.. Buu görmek içi, < olua <, ve bölee, - olduğuu görmek eter. Yukarıdaki taımda, eğer ise, olduğu görülür. Aak, bu öermei tersi doğru değildir. Örek 4 te olduğu gibi i e akı akat de küçük

3 imit Süreklilik ve Türev 79 değerleri içi, e akı olduğu alde i e akı akat de büük değerleri içi, e akı olmaabilir. Hatta, oksiou i de büük değerleri içi taımlı dai olmaabilir. Taım. Eğer i e akı akat de büük er değeri içi saısı e akı oluorsa, saısıa saısı e sağda aklaşırke oksiouu iti deir ve azılır. vea içi,,, Örek 5. Örek 4 teki gibi, > olua >, ve bölee, - olduğua dikkat ediiz. Yukarıdaki taımda, eğer ise, olduğu görülür. Aak, bu öermei tersi doğru değildir. Örek 5 te olduğu gibi i e akı akat de büük değerleri içi, e akı olduğu alde i e akı akat de küçük değerleri içi, e akı olmaabilir. Hatta, oksiou i de küçük değerleri içi taımlı dai olmaabilir. Tek alı itlerle it arasıdaki ilişkii bir ümle ile şöle iade edebiliriz: Bir oksiouu, e aklaşırke itii var olabilmesi içi gerek ve eter koşul, i, e em solda em de sağda aklaşırke itlerii var olması ve bu itleri eşit olmasıdır. Sembolik olarak, ve.

4 Ders 5.8 Örek 6. ve olduğuda mevut değildir. Graikte,, -, >, < olduğuu gözlemleebilirsiiz., Örek 7. biçimide, < parçalı taımlı oksiou içi ve bölee dir., Örek 8. Öle bir graik çiziiz ki,,, ve,,,,, olsu. Aşağıda verile graik bu koşulları sağlar., -,,,,,-

5 imit Süreklilik ve Türev imit ile ilgili bazı özellikler. ve g oksiolar;,, M reel saılar; M g, olsu. Bu takdirde M g. M g. k k. k k. M g. M M g. çitse. M g ise, içi er içie ala bir araliktaki i. Örek. Başta beşii özelliği kullaarak 5 5 olduğuu görürüz. Kuşkusuz, aı it başka özellikler kullaılarak da esaplaabilir. Yukarıdaki özellikleri ugulaması olarak poliom oksioları iti içi bir kural geliştirebiliriz. bir poliom oksio, a a a a ise, olur. Örek Örek. 5 Poliom oksioları iti içi geliştirile kural ve bölümü iti içi iade edile özellik kullaılarak d p r rasoel oksiouu iti, d olmak koşulula, d p d p olarak buluur. Örek a a a a

6 Ders Süreklilik. Aşağıdaki oksiolarda er birii ivarıda graiğii gözde geçire Bu graikler öeki öreklerimizde geçmişti..: 4 4 4,,, - de sürekli de sürekli değil de sürekli değil Bu graiklerde ilki, de taımlı bir oksiou graiği olup graik üzeride koordiatı de küçük akat e akı ola bir okta seçip kalemimizi uuu o oktaa getirsek, graiği, kalemimizi kâğıtta iç aırmada kadırarak koordiatı ola,4 oktasıı sağıa doğru izleebiliriz. İkii graik, de taımlı olmaa bir oksiou graiği olup graik üzeride koordiatı de küçük akat e akı ola bir okta seçip kalemimizi uuu o oktaa getirsek, graiği, kalemimizi kadırarak sağa doğru izlemee çalıştığımızda, aıda kalemi kâğıtta aırmamız gerekir. Üçüü graik de de taımlı olmaa bir oksiou graiği olup graik üzeride koordiatı de küçük akat e akı ola bir okta seçip kalemimizi uuu o oktaa getirsek, graiği, kalemimizi kadırarak sağa doğru izlemee çalıştığımızda, aıda kalemi kâğıtta aırmamız ve atta sektirmemiz gerekir. Taım. Eğer aşağıdaki üç koşul sağlaıorsa, oksiou de süreklidir deir: var, var,. de sürekli olmaa bir oksioa de süreksiz oksio deir. Örek. Yukarıda graiklerii gördüğümüz oksiolarda ilk graiğe karşılık gele ve deklemi ile taımlaa oksio de süreklidir; çükü, 4 4 dir. deklemi ile taımlaa ve ikii graiğe karşılık gele oksio, de süreksizdir; çükü, taımsızdır. deklemi ile taılaa ve üçüü graiğe karşılık gele osio da de süreksizdir; çükü, taımsızdır. Bu oksio içi arıa de mevut değildir.

7 imit Süreklilik ve Türev 8 Taım. a, b R, a < b olsu. Eğer a < < b ola er içi oksiou de sürekli ise, oksiou a, b aralığıda süreklidir deir. Örek. Graiği aşağıda verile oksiouu sürekli olduğu aralıkları belirlee., -,,,,,- Graiği ielemeside, i sürekli olduğu aralıkları -,-, -,,, ve, aralıkları olduğu görülür. Bir aralık üzeride sürekli ola oksioları öemli bir özelliğii asıta aşağıdaki teorem aşikâr görümekle birlikte ispatı görüdüğü kadar kola değildir. Teorem. oksiou a, b aralığıda sürekli ve er a, b içi ise, a er a, b içi > dır; a da er a, b içi < dır., a b Bu teoremde ararlaılarak, bir oksiou sıır değerii aldığı vea süreksiz olduğu saılar bilidiği takdirde o oksiou agi aralıklar üzeride poziti, agi aralıklar üzeride egati değerler aldığı kolaa belirleebilir. Taım. Bir oksiou sıır değerii aldığı vea süreksiz olduğu saılara o oksiou işaret saıları deir.

8 Ders 5.84 Örek. dir. deklemi ile verile oksiou işaret saıları -, ve > ve < ola aralıklar aşağıdaki tabloda gösterilmiştir: Graiği aşağıda gösterilmiş ola bu oksio, -,- ve, aralıklarıda egati, -, ve, aralıklarıda poziti değerler alır. - Taım 4. Eğer ise, oksiou de solda süreklidir deir. Taım. Eğer ise, oksiou de sağda süreklidir deir. Örek. Karekök oksiou, da sağda süreklidir., da sağda sürekli

9 imit Süreklilik ve Türev 85 Örek 4. ile verile oksio de solda sürekli, - de sağda süreklidir. Bu oksiou graiği üzerideki er, oktası içi ve olduğua dikkat ediiz. -, - de sağda sürekli de solda sürekli Örek 5. ile verile oksio da e solda e de sağda süreklidir., da e sağda e de solda sürekli Bildiğimiz oksiolarda bazılarıı ve sürekli oldukları bölgeleri listelee. Foksio Sürekli olduğu bölge Sabit oksio R -, Kuvvet oksiou R -, a a poliom oksio R -, u p Rasdoel Foksio d R\{a : da } -ii kök tek ise, {a : u oksiou a da sürekli} çit ise, {a : ua ve u, a da sürekli}

10 Ders Sosuz imitler ve Düşe Asimtotlar. oksiou bir reel saısıı içie ala bir açık aralığı belki ariç er oktasıda taımlı olsu. Eğer, e solda ve sağda aklaşırke değerleri sıırsız olarak artıorsa,, e aklaşırke oksiouu iti sosuzdur vea, e aklaşırke sosuza ıraksar deir. Bu durumda, vea içi azılır. Bezer şekilde, eğer, e solda ve sağda aklaşırke değerleri sıırsız olarak azalıorsa,, e aklaşırke oksiouu iti eksi sosuzdur vea, e aklaşırke eksi sosuza ıraksar deir. Bu durumda, azılır. vea içi Aşağıdaki şekilleri bu taımlar içi açıklaıı olaağıı düşüüoruz.,,, e solda vea sağda aklaşırke i itii sosuz vea eksi sosuz olması da ukarıdakilere bezer biçimde taımlaabilir. Öreği,, e sağda aklaşırke i itii sosuz olması ve, e sağda aklaşırke i itii eksi sosuz olması aşağıdaki graiklerde gösterilmiştir.,,

11 imit Süreklilik ve Türev 87 Sosuz itlere birkaç somut örek vere. Örek.. Saısal olarak, içi ve olduğua dikkat ediiz., Örek. ve. Saısal olarak, içi ve ; içi ve olduğua dikkat ediiz., Örek. ve 4 4. Saısal olarak, içi 4 ve 4 ; 4 olduğua dikkat ediiz içi 4 ve Daa öeki derslerimizdebak.9 verdiğimiz düşe asimtot taımıı it gösterimi kullaarak şöle iade edebiliriz: Eğer aşağıdaki,,,,, durumlarıda biri geçerli ise, doğrusu oksiouu graiğie düşe asimtottur vea oksiouu düşe asimtotudur deir. Örek 4. Yukarıdaki öreklerde, doğrusuu i graiğie ve aı zamada i graiğie düşe asimtot olduğu; doğrusuu da ü graiğie düşe asimtot olduğu görülür. i graiğie bir 4 4 düşe asimtot daa vardır: - doğrusu. Çükü, 4 ve 4.

12 Ders Sosuzda imitler ve Yata Asimtotlar. eragi bir reel saı olmak üzere, aralığıda taımlı bir oksiou içi sıırsız olarak artarke, ai içi değerlerii asıl değiştiğii bilmek isteriz. Eğer sıırsız olarak artarke değerleri bir b saısıa aklaşıorsa, bu takdirde, sosuza ıraksarke i iti b dir deir ve azılır. Eğer b vea içi b b ise, i büük değerleri içi oksiouu graiği aşağıdaki iki durumda birie bezeeektir. b b,, b b Bezer biçimde, eragi bir reel saı olmak üzere -, aralığıda taımlı bir oksiou içi sıırsız olarak azalırke, ai içi değerlerii asıl değiştiğii bilmek isteriz. Eğer sıırsız olarak azalırke değerleri bir b saısıa aklaşıorsa, bu takdirde, eksi sosuza ıraksarke i iti b dir deir ve azılır. Eğer b vea içi b b ise, i büük değerleri içi oksiouu graiği aşağıdaki iki durumda birie bezeeektir. b b,, b b Bu taımlara ek olarak,,, ve gösterimlerii agi alamda kullaıldığıı okuuu taraıda kolaa alaşılabileeğii kabul edioruz.

13 imit Süreklilik ve Türev 89 Örek. İlk dersimizi solarıdaki Bak. aklaşık değerlerle ilgili tartışmalarda olduğu görülür., Örek. Biraz aritmetik, olduğu ve itle ilgili özellikler kullaılarak, olduğu görülebilir. Daa öeki derslerimizdebak.9 verdiğimiz ata asimtot taımıı it gösterimi vea b ise, b kullaarak şöle iade edebiliriz: Eğer b doğrusu oksiouu graiğie ata asimtottur vea i ata asimtotudur deir. Örek. Yukarıdaki öreklerimizde, doğrusuu i grasiğie, doğrusuu i graiğie, doğrusuu da i graiğie ata asimtot oldukları görülür Türev. deklemi ile verile oksiou ve bir a saısı düşüe. i a ı içie ala bir aralıkta taımlı olduğuu kabul ede ve bu aralıkta a a akı bir a saısı alarak a a oraıı oluşturalım. Bu ora, bağımsız değişke i kadar değişmesi durumuda bağımlı değişke te ortaa çıka değişimi bağımsız değişkedeki değişime ola oraıı iade etmektedir. Bu edele, bu ora, i a da a e kadar

14 Ders 5.9 ortalama değişim oraı olarak adladırılır. Aşağıdaki şekilde de görüleeği üzere, i a da a e kadar ortalama değişim oraı aı zamada, i graiği üzerideki a, a ve a, a oktalarıı birleştire doğruu eğimidir. a a, a Eğim: a a a a, a a a Aı şekil üzeride gözlemlerimizi sürdüre. sııra aklaşırke, i graiği üzeride a, a ve a, a oktalarıı birleştire doğru değişerek teğet durumua gelir. a a, a a a, a a a Taım. oksiou a saısıı içie ala bir aralıkta taımlı olmak üzere ' a a a ile taımlaa ' a değerieit varsa oksiouu a daki türevi deir. a değeri oksiouu a daki alık değişim oraıı verir. Taımda eme öeki gözlemlerde, ' a değeri i graiğii a, a oktasıdaki teğetii eğimidir. Bölee, i graiğii a, a oktasıdaki teğetii deklemi olur. ' a a a Örek. deklemi ile verile oksiou içi '

15 imit Süreklilik ve Türev 9 dir. Bölee, i graiğii,, oktasıdaki teğetii deklemi - olur. Taım. Heragi bir oksiou içi ' ile taımlaa oksioua oksiouu türevi deir. ' ü taım kümesi, ' i taımlı olduğu tüm değerleride oluşur. Örek. Buda öeki öreğimizde ele aldığımız deklemi ile verile oksiou içi ' dir. ' ü taım kümesi tüm reel saılar kümesi R dir. Örek. ile taımlaa oksiouu ele alalım. Bu oksiou taım kümesi tüm reel saılar kümesidir. ' i bulmaa çalıştığımız zama ' elde ederiz ki bu it mevut değildirede?. - dışıda er reel saı içi ' mevuttur. Öreği ' dir. Dolaısıla, ' ü taım kümesi R\{-} dir. Örek 4. deklemi ile taımlaa sabit oksiou türevi ' dır. ' ü taım kümesi R dir. Örek 5. deklemi ile verile karekök oksiouu türevi '

16 Ders 5.9 olarak elde edilir. Burada, öreği ' olduğuu görebilirsiiz. Örek 6. deklemi ile taımlaa küp oksiouu türevi ' olarak elde edilir. ' ü taım kümesi [, dur. Bir oksiou türevi esaplaırke, ukarıdaki öreklerde olduğu gibi er seeride taım kullaılmaz. Türev esabıda kullaıla çeşitli kural ve ötemler geliştirilmiştir. Bular, bir soraki dersimizi kousuu oluşturaaktır. Bir oksiou içi i teki türevi ' varsa, oksiou te türevleebilir deir. oksiouu türevii esaplama işlemie türev alma deir. oksiouu türevii esaplama elemie türev almak deir. Bu dersimizi türevi ugulamasıa bir örekle soladıralım. Örek 7. Çouk bisikleti ürete bir şirketi adet bisiklet üretmek içi toplam gideri Gi 5. YT olarak verilior. a Üretile bisiklet saısı 4 de 5 e ükseldiğide giderdeki değişim edir? b Üretile bisiklet saısıı bu değişimi içi giderdeki ortalama değişim oraı edir? 5 bisiklet üretildiği ada giderdeki alık değişim oraı edir? Bu soruları sırasıla şöle aıtlaabiliriz: a Gi 5 Gi4 45 YT. Gi5 Gi4 b 5 4 YT. Gi5 Gi5.[5 Gi'5. YT. 5 ]

17 imit Süreklilik ve Türev 9 Problemler 5. Aşağıdaki itleri esaplaıız. a d 5 5 b 4 e ç g 9. Aşağıdaki itleri esaplaıız. a b ç. 5 ve g 9 ise, aşağıdaki itleri esaplaıız. a g b g g ç g 4. Aşağıda graikleri verilmiş ola oksioları süreksiz olduğu oktaları belirleiiz. a b Aşağıdaki itleri esaplaıız. a b ç 6. Aşağıdaki oksioları düşe asimptotlarıı buluuz; a düşe asimtot ise, ve sosuz itlerii belirleiiz. a a 4 a b

18 Ders Aşağıdaki oksioları düşe ve ata asimtotlarıı buluuz. a b ç ' 8. Aşağıdaki problemlerde, belirtile iki adımlı işlemi gerçekleştirerek i esaplaıız. ' ü taım kümesii belirleiiz.. adım: ı sadeleştirilmesi.. adım: değerii buluması. a b d 9. Aşağıdaki oksiolar içi a 4 b 4 5 itii esaplaıız. ç. Aşağıdaki oksioları er biri içi deki teğet doğrusuu deklemii azıız. a 5 b ç. 4 oksiou içi ' a i buluuz. b i graiğie, ve 4 oktalarıı er biride teğet ola doğruu eğimii buluuz ve er üç durumda da teğet doğrusuu deklemii azıız. i graiğii ve bu oktalardaki teğet doğrularıı çiziiz.. oksiou içi aşağıdaki değerleri buluuz. a, de 4 e kadar değiştiğide deki değişim, b, de 4 e kadar değiştiğide i ortalama değişim oraı, i graiğii, ve 4, 4 oktalarıda geçe kirişi eğimi, ç değeri içi i alık değişim oraı, d i graiğii, oktasıdaki teğetii eğimi.. Plastik kutu ürete bir şirketi güde adet kutu üretmesi durumuda toplam geliri Ge 6.5, 4 olarak verilior. Para birimi YT dir. a Üretile kutu saısı 8 de e ükseldiğide gelirdeki değişim edir? b Üretile kutu saısıı bu değişimi içi gelirdeki ortalama değişim oraı edir? kutu üretildiği ada gelirdeki alık değişim oraı edir?

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

DERS 5 Limit Süreklilik ve Türev

DERS 5 Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev 5.. imit. Bir oksiou;, R verilmiş olsu. Eğer i e akı er iki tarata da er değeri içi saısı e akı oluorsa, saısıa saısı e aklaşırke oksiouu iti te it o as approaes deir ve

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek içi hazırlaa vata evlâtlarıa, hiçbir güçlük karşısıda ılmaarak tam bir sabır ve metaetle çalışmalarıı ve öğreim göre çocuklarımızı aa ve babalarıa da avrularıı öğreimii tamamlaması içi hiçbir fedakârlıkta

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

KÖKLÜ İFADELER. = a denklemini sağlayan x sayısına a nın n inci. Tanım: n pozitif doğal sayı olmak üzere kuvvetten kökü denir.

KÖKLÜ İFADELER. = a denklemini sağlayan x sayısına a nın n inci. Tanım: n pozitif doğal sayı olmak üzere kuvvetten kökü denir. 1 Taı: pozitif doğal saı olak üzere kuvvette kökü deir. KÖKLÜ İFADELER = a dekleii sağlaa saısıa a ı ici = a dekleide = a, tek ise a 0 ; = ± a, çift ise Uarı: = ise, a = a olarak gösterilir. a ifadesie

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum DERS 8 Artan ve Azalan Fonksionlar, Konkavlık, Maksimum ve Minimum 8.. Artan ve Azalan Fonksionlar. Bir fonksionun vea onun grafiğinin belli bir aralık üzerinde artan vea azalan olmasının ne anlama geldiği

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi- (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-. Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı bölgei

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir.

35 Yay Dalgaları. Test 1'in Çözümleri. Yanıt B dir. 35 Yay Dalgaları 1 Test 1'i Çözümleri 1. dalga üreteci 3. m 1 2m 2 Türdeş bir yayı her tarafıı kalılığı ayıdır. tma türdeş yay üzeride ilerlerke dalga boyu ve hızı değişmez. İlk üretile ı geişliği büyük,

Detaylı

TG 12 ÖABT ORTAÖĞRETİM MATEMATİK

TG 12 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hakkı saklıdır. Hagi amaçla olursa olsu, testleri tamamıı vea

Detaylı

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ

MATEMATİK ÖĞRETMENİ ALIMI AKADEMİK BECERİ SINAVI ÇÖZÜMLERİ MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SÜLEYMNİYE EĞİTİM KURUMLRI MTEMTİK ÖĞRETMENİ LIMI KDEMİK EERİ SINVI ÇÖZÜMLERİ SORULR. li ile etül ü de içide buluduğu 4 erkek ve 6 bayada oluşa bir grupta

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla

Fonksiyonlarda Limit. Dizi fonksiyonu, tanım kümesindeki bütün 1, 2, 3,, n, sayma sayılarına, sırasıyla Foksiyolarda Limit Foksiyolarda it: Bu bölümde y f ( ) foksiyou ve sayısı verildiğide, bağımsız değişkei sayısıa (solda veya sağda) yaklaşırke ya da sosuza yaklaşırke, foksiyou da bir L sayısıa (veya ya

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum DERS Çok Değişkenli onksionlarda Maksimum Minimum.. Yerel Maksimum Yerel Minimum. z denklemi ile tanımlanan iki değişkenli bir onksionu ve bu onksionun tanım kümesi içinde ab R verilmiş olsun. Tanım. Eğer

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI Doç. Dr. Cihat ARSLANTÜRK Doç. Dr. Yusuf Ali KARA ERZURUM BÖLÜM MATEMATİKSEL TEMELLER ve HATA ANALİZİ..

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

KYM411 AYIRMA ĠġLEMLERĠ SIVI-SIVI EKSTRAKSİYONU - 2. Prof.Dr.Hasip Yeniova

KYM411 AYIRMA ĠġLEMLERĠ SIVI-SIVI EKSTRAKSİYONU - 2. Prof.Dr.Hasip Yeniova KYM4 AYIRMA ĠġEMERĠ SII-SII EKSTRAKSİYOU - 2 Prof. SII-SII EKSTRAKSĠYO PROSESERĠDE KUAIA EKĠPMAAR Distilaso ile aırma proseside gördüğüüz gibi, sıvı-sıvı ekstraksiou ile aırma iģlemide de FAZARI BĠRBĠRĠYE

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi-1 (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-1.1 Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı

Detaylı

DERS 2. Fonksiyonlar - I

DERS 2. Fonksiyonlar - I DERS Fonksionlar - I.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması belli büüklükleri belirleme vea tahmin

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler DERS 5 Çok Değişkenli Fonksionlar Kısmi Türevler 5.1. Çok Değişkenli Fonksionlar. Reel saılar kümesi R ile gösterilmek üere ve her n için olarak tanımlanır. R R 3 {( ): R} = {( ) : R} = {( L ): L R} n

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 5. ÜNİTE: DALGALAR ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINI ONU ANATII 5. ÜNİTE: DAGAAR ETİNİ e TEST ÇÖZÜERİ 31 5. Üite 1. ou Etkilik C i Çözümleri c. 1. Soruda e dalgalarıı hızı eşit erilmiş. Ayrıca şekil icelediğide m = 4 birim, m = 2 birimdir. Burada;

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B . +? + + işlemii soucu aşağıdakilerde xy } y 5,x 4 5x 4y Ç 6y +7x 6.5+7.4 58 cm Yaıt:C hagisie eşittir? A) 7 B) 4 C) 7 4 D) 7 7 E ) 7 4. Aşağıda alaları verile dairelerde hagisii alaı sayıca çevresie eşittir?

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz

GAMA FONKSİYONU. H. Turgay Kaptanoğlu. A. Tanım Gama fonksiyonu, 0 < x < değerleri için Euler integrali dediğimiz GAMA FONKSİYONU H. Turgay Kaptaoğlu A. Taım Gama foksiyou, < < değerleri içi Euler itegrali dediğimiz Γ( = t e t dt itegrali ile taımlaır. Öce bu ifadei e demek olduğuu alamaya çalışalım. bir gerçel sayı

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:10-Sayı/No: : 383-388 (009) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE BAZI ÜÇGENSEL VE DÖRTGENSEL

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

DERS 6. Türev Hesabı ve Bazı Uygulamalar - I

DERS 6. Türev Hesabı ve Bazı Uygulamalar - I DERS 6 Türe Hesabı e Bazı Uyglamalar - I Öceki ersi soa belirttiğimiz üzere, b ersimize türe esabıı kolaylaştıracak kral e yötemler göreceğiz Türei yglaması olarak, ız karamıı, yaklaşık eğer esabıı e özel

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

GERİLİM ANALİZİ. YÜZEY KUVVETİ: bir cismin dış yüzeyi boyunca etki eder ve başka bir cisimle teması sonucu oluşur.

GERİLİM ANALİZİ. YÜZEY KUVVETİ: bir cismin dış yüzeyi boyunca etki eder ve başka bir cisimle teması sonucu oluşur. GRİLİM ANALİZİ Her biri matematiksel teoriler ola elastisite, viskoite vea plastisite teorileri kedi içleride bir düee sahip olup kuvvet, gerilim, deformaso ve birim deformaso davraışları gibi parametreler

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı Uygulama /0 Fa ve motor gurubu şasi üzerie cıvatalamış olup şasi de fabrika zemiie dübellerle bağlamak istemektedir. Şasi ve üzerideki toplam kütle 00 kg dır. Motor döme devri =000 dev/dak. Sistemi yere

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir.

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir. ÜNİTE FONKSİYONLARLA İŞLEMLER VE UYGULAMALAR Bölüm TEK FONKSİYON, ÇİFT FONKSİYON AÇIK UÇLU SORULAR. R den R e I. () = +. : R R, nin graiği orijine göre simetriktir. h() = ( + ) ( + ) + onksionu tanımlanıor.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices lert Matrsler Normları İç lt ve Üst Sıırlar Sülema Demrel Üverstes B Türe E Sarııar e Blmler Esttüsü Dergs - (00 - lert Matrsler Normları İç lt ve Üst Sıırlar Bahr TÜREN E SRIPINR Sülema Demrel Üverstes

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

GAZLAR. Hacim. A(g) B(g) C(g) V kap : 5 L V A = V B = V C = 5 L

GAZLAR. Hacim. A(g) B(g) C(g) V kap : 5 L V A = V B = V C = 5 L 1 GAZLAR Çevremizi dikkatli bir şekilde icelediğimiz zama birçok gazı var olduğuu görürüz. Öreği hava birçok gazı oluşturduğu homoje bir karışımdır. abiattaki yama olaylarıı sebebi yie atmosferde % 1 oraıda

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı